lean2/library/hott/algebra/binary.lean

75 lines
2.3 KiB
Text

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.binary
Authors: Leonardo de Moura, Jeremy Avigad
General properties of binary operations.
-/
import hott.path
open path
namespace path_binary
section
variable {A : Type}
variables (op₁ : A → A → A) (inv : A → A) (one : A)
notation [local] a * b := op₁ a b
notation [local] a ⁻¹ := inv a
notation [local] 1 := one
definition commutative := ∀a b, a*b ≈ b*a
definition associative := ∀a b c, (a*b)*c ≈ a*(b*c)
definition left_identity := ∀a, 1 * a ≈ a
definition right_identity := ∀a, a * 1 ≈ a
definition left_inverse := ∀a, a⁻¹ * a ≈ 1
definition right_inverse := ∀a, a * a⁻¹ ≈ 1
definition left_cancelative := ∀a b c, a * b ≈ a * c → b ≈ c
definition right_cancelative := ∀a b c, a * b ≈ c * b → a ≈ c
definition inv_op_cancel_left := ∀a b, a⁻¹ * (a * b) ≈ b
definition op_inv_cancel_left := ∀a b, a * (a⁻¹ * b) ≈ b
definition inv_op_cancel_right := ∀a b, a * b⁻¹ * b ≈ a
definition op_inv_cancel_right := ∀a b, a * b * b⁻¹ ≈ a
variable (op₂ : A → A → A)
notation [local] a + b := op₂ a b
definition left_distributive := ∀a b c, a * (b + c) ≈ a * b + a * c
definition right_distributive := ∀a b c, (a + b) * c ≈ a * c + b * c
end
context
variable {A : Type}
variable {f : A → A → A}
variable H_comm : commutative f
variable H_assoc : associative f
infixl `*` := f
theorem left_comm : ∀a b c, a*(b*c) ≈ b*(a*c) :=
take a b c, calc
a*(b*c) ≈ (a*b)*c : H_assoc
... ≈ (b*a)*c : H_comm
... ≈ b*(a*c) : H_assoc
theorem right_comm : ∀a b c, (a*b)*c ≈ (a*c)*b :=
take a b c, calc
(a*b)*c ≈ a*(b*c) : H_assoc
... ≈ a*(c*b) : H_comm
... ≈ (a*c)*b : H_assoc
end
context
variable {A : Type}
variable {f : A → A → A}
variable H_assoc : associative f
infixl `*` := f
theorem assoc4helper (a b c d) : (a*b)*(c*d) ≈ a*((b*c)*d) :=
calc
(a*b)*(c*d) ≈ a*(b*(c*d)) : H_assoc
... ≈ a*((b*c)*d) : H_assoc
end
end path_binary