lean2/src/util/numerics/double.h
2013-08-13 20:09:06 -07:00

93 lines
4.3 KiB
C++

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Soonho Kong
*/
#pragma once
#include <mpfr.h>
#include "mpfp.h"
namespace lean {
/**
\brief Template specializations define traits for native and lean
numeric types.
*/
void double_power(double & v, unsigned k);
void double_abs(double & v);
void double_ceil(double & v);
void double_floor(double & v);
// Macro to implement transcendental functions using MPFR
#define LEAN_TRANS_DOUBLE_FUNC(f, v, rnd) \
static thread_local mpfp t(53); \
t = v; \
t.f(rnd); \
v = t.get_double(rnd);
void set_double_rnd(bool plus_inf);
mpfr_rnd_t get_double_rnd();
template<>
class numeric_traits<double> {
public:
static bool precise() { return false; }
static bool is_zero(double v) { return v == 0.0; }
static bool is_pos(double v) { return v > 0.0; }
static bool is_neg(double v) { return v < 0.0; }
static mpfr_rnd_t rnd() { return get_double_rnd(); }
static void set_rounding(bool plus_inf) { set_double_rnd(plus_inf); }
static void neg(double & v) { v = -v; }
static void inv(double & v) { v = 1.0/v; }
static void reset(double & v) { v = 0.0; }
static void power(double & v, unsigned k) { double_power(v, k); }
static void abs(double & v) { double_abs(v); }
static void ceil(double & v) { double_ceil(v); }
static void floor(double & v) { double_floor(v); }
static double const & min(double const & v1, double const & v2) {
return v1 < v2 ? v1 : v2;
}
static double const & max(double const & v1, double const & v2) {
return v1 > v2 ? v1 : v2;
}
// constants
static const double constexpr pi_l = (3373259426.0 + 273688.0 / (1<<21)) / (1<<30);
static const double constexpr pi_n = (3373259426.0 + 273688.0 / (1<<21)) / (1<<30);
static const double constexpr pi_u = (3373259426.0 + 273689.0 / (1<<21)) / (1<<30);
static inline double pi_lower() { return pi_l; }
static inline double pi() { return pi_n; }
static inline double pi_upper() { return pi_u; }
static inline double pi_half_lower() { return pi_l / 2; }
static inline double pi_half() { return pi_n / 2; }
static inline double pi_half_upper() { return pi_u / 2; }
static inline double pi_twice_lower() { return pi_l * 2; }
static inline double pi_twice() { return pi_n * 2; }
static inline double pi_twice_upper() { return pi_u * 2; }
// Transcendental functions using MPFR
static void exp(double & v) { LEAN_TRANS_DOUBLE_FUNC(exp, v, rnd()); }
static void exp2(double & v) { LEAN_TRANS_DOUBLE_FUNC(exp2, v, rnd()); }
static void exp10(double & v) { LEAN_TRANS_DOUBLE_FUNC(exp10, v, rnd()); }
static void log(double & v) { LEAN_TRANS_DOUBLE_FUNC(log, v, rnd()); }
static void log2(double & v) { LEAN_TRANS_DOUBLE_FUNC(log2, v, rnd()); }
static void log10(double & v) { LEAN_TRANS_DOUBLE_FUNC(log10, v, rnd()); }
static void sin(double & v) { LEAN_TRANS_DOUBLE_FUNC(sin, v, rnd()); }
static void cos(double & v) { LEAN_TRANS_DOUBLE_FUNC(cos, v, rnd()); }
static void tan(double & v) { LEAN_TRANS_DOUBLE_FUNC(tan, v, rnd()); }
static void sec(double & v) { LEAN_TRANS_DOUBLE_FUNC(sec, v, rnd()); }
static void csc(double & v) { LEAN_TRANS_DOUBLE_FUNC(csc, v, rnd()); }
static void cot(double & v) { LEAN_TRANS_DOUBLE_FUNC(cot, v, rnd()); }
static void asin(double & v) { LEAN_TRANS_DOUBLE_FUNC(asin, v, rnd()); }
static void acos(double & v) { LEAN_TRANS_DOUBLE_FUNC(acos, v, rnd()); }
static void atan(double & v) { LEAN_TRANS_DOUBLE_FUNC(atan, v, rnd()); }
static void sinh(double & v) { LEAN_TRANS_DOUBLE_FUNC(sinh, v, rnd()); }
static void cosh(double & v) { LEAN_TRANS_DOUBLE_FUNC(cosh, v, rnd()); }
static void tanh(double & v) { LEAN_TRANS_DOUBLE_FUNC(tanh, v, rnd()); }
static void asinh(double & v) { LEAN_TRANS_DOUBLE_FUNC(asinh, v, rnd()); }
static void acosh(double & v) { LEAN_TRANS_DOUBLE_FUNC(acosh, v, rnd()); }
static void atanh(double & v) { LEAN_TRANS_DOUBLE_FUNC(atanh, v, rnd()); }
};
}