lean2/hott/algebra/homotopy_group.hlean
2016-03-06 13:03:31 -05:00

138 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import .trunc_group .hott types.trunc
open nat eq pointed trunc is_trunc algebra
namespace eq
definition phomotopy_group [constructor] (n : ) (A : Type*) : Set* :=
ptrunc 0 (Ω[n] A)
definition homotopy_group [reducible] (n : ) (A : Type*) : Type :=
phomotopy_group n A
notation `π*[`:95 n:0 `] `:0 A:95 := phomotopy_group n A
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
definition group_homotopy_group [instance] [constructor] (n : ) (A : Type*)
: group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition comm_group_homotopy_group [constructor] (n : ) (A : Type*)
: comm_group (π[succ (succ n)] A) :=
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute comm_group_homotopy_group [instance]
definition ghomotopy_group [constructor] (n : ) (A : Type*) : Group :=
Group.mk (π[succ n] A) _
definition cghomotopy_group [constructor] (n : ) (A : Type*) : CommGroup :=
CommGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Type*) : Group :=
ghomotopy_group zero A
notation `πg[`:95 n:0 ` +1] `:0 A:95 := ghomotopy_group n A
notation `πag[`:95 n:0 ` +2] `:0 A:95 := cghomotopy_group n A
prefix `π₁`:95 := fundamental_group
definition phomotopy_group_pequiv [constructor] (n : ) {A B : Type*} (H : A ≃* B)
: π*[n] A ≃* π*[n] B :=
ptrunc_pequiv_ptrunc 0 (iterated_loop_space_pequiv n H)
definition phomotopy_group_pequiv_loop_ptrunc [constructor] (k : ) (A : Type*) :
π*[k] A ≃* Ω[k] (ptrunc k A) :=
begin
refine !iterated_loop_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
end
open equiv unit
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ) : πg[n+1] A = G0 :=
begin
apply trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply is_trunc_succ_succ_of_is_set
end
definition phomotopy_group_succ_out (A : Type*) (n : ) : π*[n + 1] A = π₁ Ω[n] A := idp
definition phomotopy_group_succ_in (A : Type*) (n : ) : π*[n + 1] A = π*[n] Ω A :=
ap (ptrunc 0) (loop_space_succ_eq_in A n)
definition ghomotopy_group_succ_out (A : Type*) (n : ) : πg[n +1] A = π₁ Ω[n] A := idp
definition ghomotopy_group_succ_in (A : Type*) (n : ) : πg[succ n +1] A = πg[n +1] Ω A :=
begin
fapply Group_eq,
{ apply equiv_of_eq, exact ap (ptrunc 0) (loop_space_succ_eq_in A (succ n))},
{ exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q,
rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport], refine !trunc_transport ⬝ _, apply ap tr,
apply loop_space_succ_eq_in_concat end end},
end
definition homotopy_group_add (A : Type*) (n m : ) : πg[n+m +1] A = πg[n +1] Ω[m] A :=
begin
revert A, induction m with m IH: intro A,
{ reflexivity},
{ esimp [iterated_ploop_space, nat.add], refine !ghomotopy_group_succ_in ⬝ _, refine !IH ⬝ _,
exact ap (ghomotopy_group n) !loop_space_succ_eq_in⁻¹}
end
theorem trivial_homotopy_add_of_is_set_loop_space {A : Type*} {n : } (m : )
(H : is_set (Ω[n] A)) : πg[m+n+1] A = G0 :=
!homotopy_group_add ⬝ !trivial_homotopy_of_is_set
theorem trivial_homotopy_le_of_is_set_loop_space {A : Type*} {n : } (m : ) (H1 : n ≤ m)
(H2 : is_set (Ω[n] A)) : πg[m+1] A = G0 :=
obtain (k : ) (p : n + k = m), from le.elim H1,
ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k) ⬝ trivial_homotopy_add_of_is_set_loop_space k H2
definition phomotopy_group_functor [constructor] (n : ) {A B : Type*} (f : A →* B)
: π*[n] A →* π*[n] B :=
ptrunc_functor 0 (apn n f)
definition homotopy_group_functor (n : ) {A B : Type*} (f : A →* B) : π[n] A → π[n] B :=
phomotopy_group_functor n f
notation `π→*[`:95 n:0 `] `:0 f:95 := phomotopy_group_functor n f
notation `π→[`:95 n:0 `] `:0 f:95 := homotopy_group_functor n f
definition tinverse [constructor] {X : Type*} : π*[1] X →* π*[1] X :=
ptrunc_functor 0 pinverse
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
definition ptrunc_functor_pinverse [constructor] {X : Type*}
: ptrunc_functor 0 (@pinverse X) ~* @tinverse X :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ reflexivity}
end
definition phomotopy_group_functor_mul [constructor] (n : ) {A B : Type*} (g : A →* B)
(p q : πg[n+1] A) :
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n + 1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
begin
unfold [ghomotopy_group, homotopy_group] at *,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q,
apply ap tr, apply apn_con
end
end eq