52dd6cf90b
This commit adds truncated 2-quotients, groupoid quotients, Eilenberg MacLane spaces, chain complexes, the long exact sequence of homotopy groups, the Freudenthal Suspension Theorem, Whitehead's principle, and the computation of homotopy groups of almost all spheres which are known in HoTT.
245 lines
9.3 KiB
Text
245 lines
9.3 KiB
Text
/-
|
|
Copyright (c) 2015-16 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
The groupoid quotient. This is a 1-type which path spaces is the same as the morphisms
|
|
a given groupoid. We define it as the 1-truncation of a two quotient.
|
|
-/
|
|
|
|
import algebra.category.groupoid .two_quotient homotopy.connectedness
|
|
algebra.group_theory
|
|
|
|
open trunc_two_quotient eq bool unit relation category e_closure iso is_trunc trunc equiv is_equiv
|
|
group
|
|
|
|
namespace groupoid_quotient
|
|
section
|
|
parameter (G : Groupoid)
|
|
|
|
inductive groupoid_quotient_R : G → G → Type :=
|
|
| Rmk : Π{a b : G} (f : a ⟶ b), groupoid_quotient_R a b
|
|
|
|
open groupoid_quotient_R
|
|
local abbreviation R := groupoid_quotient_R
|
|
|
|
inductive groupoid_quotient_Q : Π⦃x y : G⦄,
|
|
e_closure groupoid_quotient_R x y → e_closure groupoid_quotient_R x y → Type :=
|
|
| Qconcat : Π{a b c : G} (g : b ⟶ c) (f : a ⟶ b),
|
|
groupoid_quotient_Q [Rmk (g ∘ f)] ([Rmk f] ⬝r [Rmk g])
|
|
|
|
open groupoid_quotient_Q
|
|
local abbreviation Q := groupoid_quotient_Q
|
|
|
|
definition groupoid_quotient := trunc_two_quotient 1 R Q
|
|
|
|
local attribute groupoid_quotient [reducible]
|
|
definition is_trunc_groupoid_quotient [instance] : is_trunc 1 groupoid_quotient := _
|
|
|
|
parameter {G}
|
|
variables {a b c : G}
|
|
definition elt (a : G) : groupoid_quotient := incl0 a
|
|
definition pth (f : a ⟶ b) : elt a = elt b := incl1 (Rmk f)
|
|
definition resp_comp (g : b ⟶ c) (f : a ⟶ b) : pth (g ∘ f) = pth f ⬝ pth g := incl2 (Qconcat g f)
|
|
definition resp_id (a : G) : pth (ID a) = idp :=
|
|
begin
|
|
apply cancel_right (pth (id)), refine _ ⬝ !idp_con⁻¹,
|
|
refine !resp_comp⁻¹ ⬝ _,
|
|
exact ap pth !id_id,
|
|
end
|
|
|
|
definition resp_inv (f : a ⟶ b) : pth (f⁻¹) = (pth f)⁻¹ :=
|
|
begin
|
|
apply eq_inv_of_con_eq_idp',
|
|
refine !resp_comp⁻¹ ⬝ _,
|
|
refine ap pth !right_inverse ⬝ _,
|
|
apply resp_id
|
|
end
|
|
|
|
protected definition rec {P : groupoid_quotient → Type} [Πx, is_trunc 1 (P x)]
|
|
(Pe : Πg, P (elt g)) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b)
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b),
|
|
change_path (resp_comp g f) (Pp (g ∘ f)) = Pp f ⬝o Pp g)
|
|
(x : groupoid_quotient) : P x :=
|
|
begin
|
|
induction x,
|
|
{ apply Pe},
|
|
{ induction s with a b f, apply Pp},
|
|
{ induction q with a b c g f,
|
|
apply Pcomp}
|
|
end
|
|
|
|
protected definition rec_on {P : groupoid_quotient → Type} [Πx, is_trunc 1 (P x)]
|
|
(x : groupoid_quotient)
|
|
(Pe : Πg, P (elt g)) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b)
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b),
|
|
change_path (resp_comp g f) (Pp (g ∘ f)) = Pp f ⬝o Pp g) : P x :=
|
|
rec Pe Pp Pcomp x
|
|
|
|
protected definition set_rec {P : groupoid_quotient → Type} [Πx, is_set (P x)]
|
|
(Pe : Πg, P (elt g)) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b)
|
|
(x : groupoid_quotient) : P x :=
|
|
rec Pe Pp !center x
|
|
|
|
protected definition prop_rec {P : groupoid_quotient → Type} [Πx, is_prop (P x)]
|
|
(Pe : Πg, P (elt g)) (x : groupoid_quotient) : P x :=
|
|
rec Pe !center !center x
|
|
|
|
definition rec_pth {P : groupoid_quotient → Type} [Πx, is_trunc 1 (P x)]
|
|
{Pe : Πg, P (elt g)} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b}
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b),
|
|
change_path (resp_comp g f) (Pp (g ∘ f)) = Pp f ⬝o Pp g)
|
|
{a b : G} (f : a ⟶ b) : apd (rec Pe Pp Pcomp) (pth f) = Pp f :=
|
|
proof !rec_incl1 qed
|
|
|
|
protected definition elim {P : Type} [is_trunc 1 P] (Pe : G → P)
|
|
(Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g)
|
|
(x : groupoid_quotient) : P :=
|
|
begin
|
|
induction x,
|
|
{ exact Pe a},
|
|
{ induction s with a b f, exact Pp f},
|
|
{ induction q with a b c g f,
|
|
exact Pcomp g f}
|
|
end
|
|
|
|
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : groupoid_quotient)
|
|
(Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g) : P :=
|
|
elim Pe Pp Pcomp x
|
|
|
|
protected definition set_elim [reducible] {P : Type} [is_set P] (Pe : G → P)
|
|
(Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
|
|
(x : groupoid_quotient) : P :=
|
|
elim Pe Pp !center x
|
|
|
|
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pe : G → P)
|
|
(x : groupoid_quotient) : P :=
|
|
elim Pe !center !center x
|
|
|
|
definition elim_pth {P : Type} [is_trunc 1 P] {Pe : G → P} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b}
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g) {a b : G} (f : a ⟶ b) :
|
|
ap (elim Pe Pp Pcomp) (pth f) = Pp f :=
|
|
!elim_incl1
|
|
|
|
-- The following rule is also true because P is a 1-type, and can be proven by `!is_set.elims`
|
|
-- The following is the canonical proofs which holds for any truncated two-quotient.
|
|
theorem elim_resp_comp {P : Type} [is_trunc 1 P] {Pe : G → P}
|
|
{Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b}
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g)
|
|
{a b c : G} (g : b ⟶ c) (f : a ⟶ b)
|
|
: square (ap02 (elim Pe Pp Pcomp) (resp_comp g f))
|
|
(Pcomp g f)
|
|
(elim_pth Pcomp (g ∘ f))
|
|
(!ap_con ⬝ (elim_pth Pcomp f ◾ elim_pth Pcomp g)) :=
|
|
proof !elim_incl2 qed
|
|
|
|
protected definition elim_set.{u} (Pe : G → Set.{u}) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a ≃ Pe b)
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b) (x : Pe a), Pp (g ∘ f) x = Pp g (Pp f x))
|
|
(x : groupoid_quotient) : Set.{u} :=
|
|
elim Pe (λa b f, tua (Pp f)) (λa b c g f, ap tua (equiv_eq (Pcomp g f)) ⬝ !tua_trans) x
|
|
|
|
theorem elim_set_pth {Pe : G → Set} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a ≃ Pe b}
|
|
(Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b) (x : Pe a), Pp (g ∘ f) x = Pp g (Pp f x))
|
|
{a b : G} (f : a ⟶ b) :
|
|
transport (elim_set Pe Pp Pcomp) (pth f) = Pp f :=
|
|
by rewrite [tr_eq_cast_ap_fn, ↑elim_set, ▸*, ap_compose' trunctype.carrier, elim_pth];
|
|
apply tcast_tua_fn
|
|
|
|
end
|
|
end groupoid_quotient
|
|
|
|
attribute groupoid_quotient.elt [constructor]
|
|
attribute groupoid_quotient.rec groupoid_quotient.elim [unfold 7] [recursor 7]
|
|
attribute groupoid_quotient.rec_on groupoid_quotient.elim_on [unfold 4]
|
|
attribute groupoid_quotient.set_rec groupoid_quotient.set_elim [unfold 6]
|
|
attribute groupoid_quotient.prop_rec groupoid_quotient.prop_elim
|
|
groupoid_quotient.elim_set [unfold 5]
|
|
|
|
|
|
open sigma pi is_conn function
|
|
namespace groupoid_quotient
|
|
section
|
|
universe variables u v
|
|
variables {G : Groupoid.{u v}} (a : G) {b c : G}
|
|
|
|
include a
|
|
|
|
protected definition code [unfold 3] (x : groupoid_quotient G) : Set.{v} :=
|
|
begin
|
|
refine groupoid_quotient.elim_set _ _ _ x,
|
|
{ intro b, exact homset a b},
|
|
{ intro b c g, exact equiv_postcompose g},
|
|
{ intro b c d h g f, esimp at *, apply assoc'}
|
|
end
|
|
|
|
omit a
|
|
|
|
local abbreviation code [unfold 3] := @groupoid_quotient.code G a
|
|
|
|
variable {a}
|
|
protected definition encode [unfold 4] (x : groupoid_quotient G) (p : elt a = x) : code a x :=
|
|
transport (code a) p (ID a)
|
|
|
|
protected definition decode [unfold 3] (x : groupoid_quotient G) (z : code a x) : elt a = x :=
|
|
begin
|
|
induction x using groupoid_quotient.set_rec with b b c g,
|
|
{ esimp, exact pth z},
|
|
{ apply arrow_pathover_left, esimp, intro f, apply eq_pathover_constant_left_id_right,
|
|
apply square_of_eq, refine !resp_comp⁻¹ ⬝ _ ⬝ !idp_con⁻¹, rewrite elim_set_pth}
|
|
end
|
|
|
|
local abbreviation encode [unfold_full] := @groupoid_quotient.encode G a
|
|
local abbreviation decode [unfold 3] := @groupoid_quotient.decode G a
|
|
|
|
protected definition decode_encode (x : groupoid_quotient G) (p : elt a = x) :
|
|
decode x (encode x p) = p :=
|
|
begin induction p, esimp, apply resp_id end
|
|
|
|
protected definition encode_decode (x : groupoid_quotient G) (z : code a x) :
|
|
encode x (decode x z) = z :=
|
|
begin
|
|
induction x using groupoid_quotient.prop_rec with b,
|
|
esimp, refine ap10 !elim_set_pth.{u v v} (ID a) ⬝ _, esimp,
|
|
apply id_right
|
|
end
|
|
|
|
definition decode_comp (z : code a (elt b)) (z' : code b (elt c)) :
|
|
decode (elt c) (z' ∘ z) = decode (elt b) z ⬝ decode (elt c) z' :=
|
|
!resp_comp
|
|
|
|
variables (a b)
|
|
definition elt_eq_elt_equiv [constructor] : (elt a = elt b) ≃ (a ⟶ b) :=
|
|
equiv.MK (encode (elt b)) (decode (elt b))
|
|
(groupoid_quotient.encode_decode (elt b)) (groupoid_quotient.decode_encode (elt b))
|
|
|
|
variables {a b}
|
|
definition encode_con (p : elt a = elt b)
|
|
(q : elt b = elt c) : encode (elt c) (p ⬝ q) = encode (elt c) q ∘ encode (elt b) p :=
|
|
begin
|
|
apply eq_of_fn_eq_fn (elt_eq_elt_equiv a c)⁻¹ᵉ,
|
|
refine !right_inv ⬝ _ ⬝ !decode_comp⁻¹,
|
|
apply concat2, do 2 exact (to_left_inv !elt_eq_elt_equiv _)⁻¹
|
|
end
|
|
|
|
variable (G)
|
|
definition is_conn_groupoid_quotient [H : is_conn 0 G] : is_conn 0 (groupoid_quotient G) :=
|
|
begin
|
|
have g : trunc 0 G, from !center,
|
|
induction g with g,
|
|
have p : Πh, ∥ g = h ∥,
|
|
begin
|
|
intro h, refine !tr_eq_tr_equiv _, apply is_prop.elim
|
|
end,
|
|
fapply is_contr.mk,
|
|
{ apply trunc_functor 0 elt (tr g)},
|
|
{ intro x, induction x with x,
|
|
induction x using groupoid_quotient.prop_rec with b, esimp,
|
|
induction p b with q, exact ap (tr ∘ elt) q}
|
|
end
|
|
|
|
end
|
|
|
|
end groupoid_quotient
|