lean2/library/algebra/order.lean
2014-11-17 18:32:14 -08:00

230 lines
7.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.order
Author: Jeremy Avigad
Various types of orders. We develop weak orders (<=) and strict orders (<) separately. We also
consider structures with both, where the two are related by
x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair)
x ≤ y ↔ (x < y x = y) (strong_order_pair)
These might not hold constructively in some applications, but we can define additional structures
with both < and ≤ as needed.
-/
import logic.eq logic.connectives
import data.unit data.sigma data.prod
import algebra.function algebra.binary
open eq eq.ops
namespace algebra
variable {A : Type}
/- overloaded symbols -/
structure has_le [class] (A : Type) :=
(le : A → A → Prop)
structure has_lt [class] (A : Type) :=
(lt : A → A → Prop)
infixl `<=` := has_le.le
infixl `≤` := has_le.le
infixl `<` := has_lt.lt
definition has_le.ge {A : Type} [s : has_le A] (a b : A) := b ≤ a
notation a ≥ b := has_le.ge a b
notation a >= b := has_le.ge a b
definition has_lt.gt {A : Type} [s : has_lt A] (a b : A) := b < a
notation a > b := has_lt.gt a b
theorem eq_le_trans {A : Type} [s : has_le A] {a b c : A} (H1 : a = b) (H2 : b ≤ c) :
a ≤ c := H1⁻¹ ▸ H2
theorem le_eq_trans {A : Type} [s : has_le A] {a b c : A} (H1 : a ≤ b) (H2 : b = c) :
a ≤ c := H2 ▸ H1
theorem eq_lt_trans {A : Type} [s : has_lt A] {a b c : A} (H1 : a = b) (H2 : b < c) :
a < c := H1⁻¹ ▸ H2
theorem lt_eq_trans {A : Type} [s : has_lt A] {a b c : A} (H1 : a < b) (H2 : b = c) :
a < c := H2 ▸ H1
calc_trans eq_le_trans
calc_trans le_eq_trans
calc_trans eq_lt_trans
calc_trans lt_eq_trans
/- weak orders -/
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : ∀a, le a a)
(le_trans : ∀a b c, le a b → le b c → le a c)
(le_antisym : ∀a b, le a b → le b a → a = b)
theorem le_refl [s : weak_order A] (a : A) : a ≤ a := !weak_order.le_refl
theorem le_trans [s : weak_order A] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
calc_trans le_trans
theorem le_antisym [s : weak_order A] {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisym
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : ∀a b, le a b le b a)
theorem le_total [s : linear_weak_order A] {a b : A} : a ≤ b b ≤ a :=
!linear_weak_order.le_total
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : ∀a, ¬ lt a a)
(lt_trans : ∀a b c, lt a b → lt b c → lt a c)
theorem lt_irrefl [s : strict_order A] (a : A) : ¬ a < a := !strict_order.lt_irrefl
theorem lt_trans [s : strict_order A] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
calc_trans lt_trans
theorem lt_imp_ne [s : strict_order A] {a b : A} : a < b → a ≠ b :=
assume lt_ab : a < b, assume eq_ab : a = b, lt_irrefl a (eq_ab⁻¹ ▸ lt_ab)
/- well-founded orders -/
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x)
definition wf_rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
theorem wf_ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_rec_on x H
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(lt_iff_le_ne : ∀a b, lt a b ↔ (le a b ∧ a ≠ b))
theorem lt_iff_le_ne [s : order_pair A] {a b : A} : a < b ↔ (a ≤ b ∧ a ≠ b) :=
!order_pair.lt_iff_le_ne
theorem lt_imp_le [s : order_pair A] {a b : A} (H : a < b) : a ≤ b :=
and.elim_left (iff.mp lt_iff_le_ne H)
theorem le_ne_imp_lt [s : order_pair A] {a b : A} (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
iff.mp (iff.symm lt_iff_le_ne) (and.intro H1 H2)
definition order_pair.to_strict_order [instance] [s : order_pair A] : strict_order A :=
strict_order.mk
order_pair.lt
(show ∀a, ¬ a < a, from
take a,
assume H : a < a,
have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_ne H),
H1 rfl)
(show ∀a b c, a < b → b < c → a < c, from
take a b c,
assume lt_ab : a < b,
have le_ab : a ≤ b, from lt_imp_le lt_ab,
assume lt_bc : b < c,
have le_bc : b ≤ c, from lt_imp_le lt_bc,
have le_ac : a ≤ c, from le_trans le_ab le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le_antisym le_ab le_ba,
have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_ne lt_ab),
ne_ab eq_ab,
show a < c, from le_ne_imp_lt le_ac ne_ac)
theorem lt_le_trans [s : order_pair A] {a b c : A} : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le_trans (lt_imp_le lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le_antisym (lt_imp_le lt_ab) le_ba,
show false, from lt_imp_ne lt_ab eq_ab,
show a < c, from le_ne_imp_lt le_ac ne_ac
theorem le_lt_trans [s : order_pair A] {a b c : A} : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le_trans le_ab (lt_imp_le lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le_antisym (lt_imp_le lt_bc) le_cb,
show false, from lt_imp_ne lt_bc eq_bc,
show a < c, from le_ne_imp_lt le_ac ne_ac
calc_trans le_lt_trans
calc_trans lt_le_trans
structure strong_order_pair [class] (A : Type) extends strict_order A, has_le A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b a = b :=
!strong_order_pair.le_iff_lt_or_eq
theorem le_imp_lt_or_eq [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b a = b :=
iff.mp le_iff_lt_or_eq le_ab
definition strong_order_pair.to_order_pair [instance] [s : strong_order_pair A] : order_pair A :=
order_pair.mk
strong_order_pair.le
(take a, show a ≤ a, from iff.mp (iff.symm le_iff_lt_or_eq) (or.intro_right _ rfl))
(take a b c,
assume le_ab : a ≤ b,
assume le_bc : b ≤ c,
show a ≤ c, from
or.elim (le_imp_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (le_imp_lt_or_eq le_bc)
(assume lt_bc : b < c,
iff.elim_right le_iff_lt_or_eq (or.intro_left _ (lt_trans lt_ab lt_bc)))
(assume eq_bc : b = c, eq_bc ▸ le_ab))
(assume eq_ab : a = b,
eq_ab⁻¹ ▸ le_bc))
(take a b,
assume le_ab : a ≤ b,
assume le_ba : b ≤ a,
show a = b, from
or.elim (le_imp_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (le_imp_lt_or_eq le_ba)
(assume lt_ba : b < a, absurd (lt_trans lt_ab lt_ba) (lt_irrefl a))
(assume eq_ba : b = a, eq_ba⁻¹))
(assume eq_ab : a = b, eq_ab))
strong_order_pair.lt
(take a b,
iff.intro
(assume lt_ab : a < b,
have le_ab : a ≤ b, from iff.elim_right le_iff_lt_or_eq (or.intro_left _ lt_ab),
show a ≤ b ∧ a ≠ b, from and.intro le_ab (lt_imp_ne lt_ab))
(assume H : a ≤ b ∧ a ≠ b,
have H1 : a < b a = b, from le_imp_lt_or_eq (and.elim_left H),
show a < b, from or.resolve_left H1 (and.elim_right H)))
structure linear_order_pair (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair (A : Type) extends strong_order_pair A :=
(trichotomy : ∀a b, lt a b a = b lt b a)
end algebra