399 lines
13 KiB
Text
399 lines
13 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang
|
||
|
||
Functions between subsets of finite types.
|
||
-/
|
||
import .basic
|
||
open function eq.ops
|
||
|
||
namespace set
|
||
|
||
variables {X Y Z : Type}
|
||
|
||
/- preimages -/
|
||
|
||
definition preimage {A B:Type} (f : A → B) (Y : set B) : set A := { x | f x ∈ Y }
|
||
|
||
notation f ` '- ` s := preimage f s
|
||
|
||
theorem mem_preimage_iff (f : X → Y) (a : set Y) (x : X) :
|
||
f x ∈ a ↔ x ∈ f '- a :=
|
||
!iff.refl
|
||
|
||
theorem mem_preimage {f : X → Y} {a : set Y} {x : X} (H : f x ∈ a) :
|
||
x ∈ f '- a := H
|
||
|
||
theorem mem_of_mem_preimage {f : X → Y} {a : set Y} {x : X} (H : x ∈ f '- a) :
|
||
f x ∈ a :=
|
||
proof H qed
|
||
|
||
theorem preimage_comp (f : Y → Z) (g : X → Y) (a : set Z) :
|
||
(f ∘ g) '- a = g '- (f '- a) :=
|
||
ext (take x, !iff.refl)
|
||
|
||
lemma image_subset_iff {A B : Type} {f : A → B} {X : set A} {Y : set B} :
|
||
f ' X ⊆ Y ↔ X ⊆ f '- Y :=
|
||
@bounded_forall_image_iff A B f X Y
|
||
|
||
theorem preimage_subset {a b : set Y} (f : X → Y) (H : a ⊆ b) :
|
||
f '- a ⊆ f '- b :=
|
||
λ x H', proof @H (f x) H' qed
|
||
|
||
theorem preimage_id (s : set Y) : (λx, x) '- s = s :=
|
||
ext (take x, !iff.refl)
|
||
|
||
theorem preimage_union (f : X → Y) (s t : set Y) :
|
||
f '- (s ∪ t) = f '- s ∪ f '- t :=
|
||
ext (take x, !iff.refl)
|
||
|
||
theorem preimage_inter (f : X → Y) (s t : set Y) :
|
||
f '- (s ∩ t) = f '- s ∩ f '- t :=
|
||
ext (take x, !iff.refl)
|
||
|
||
theorem preimage_compl (f : X → Y) (s : set Y) :
|
||
f '- (-s) = -(f '- s) :=
|
||
ext (take x, !iff.refl)
|
||
|
||
theorem preimage_diff (f : X → Y) (s t : set Y) :
|
||
f '- (s \ t) = f '- s \ f '- t :=
|
||
ext (take x, !iff.refl)
|
||
|
||
theorem image_preimage_subset (f : X → Y) (s : set Y) :
|
||
f ' (f '- s) ⊆ s :=
|
||
take y, suppose y ∈ f ' (f '- s),
|
||
obtain x [xfis fxeqy], from this,
|
||
show y ∈ s, by rewrite -fxeqy; exact xfis
|
||
|
||
theorem subset_preimage_image (s : set X) (f : X → Y) :
|
||
s ⊆ f '- (f ' s) :=
|
||
take x, suppose x ∈ s,
|
||
show f x ∈ f ' s, from mem_image_of_mem f this
|
||
|
||
theorem inter_preimage_subset (s : set X) (t : set Y) (f : X → Y) :
|
||
s ∩ f '- t ⊆ f '- (f ' s ∩ t) :=
|
||
take x, assume H : x ∈ s ∩ f '- t,
|
||
mem_preimage (show f x ∈ f ' s ∩ t,
|
||
from and.intro (mem_image_of_mem f (and.left H)) (mem_of_mem_preimage (and.right H)))
|
||
|
||
theorem union_preimage_subset (s : set X) (t : set Y) (f : X → Y) :
|
||
s ∪ f '- t ⊆ f '- (f ' s ∪ t) :=
|
||
take x, assume H : x ∈ s ∪ f '- t,
|
||
mem_preimage (show f x ∈ f ' s ∪ t,
|
||
from or.elim H
|
||
(suppose x ∈ s, or.inl (mem_image_of_mem f this))
|
||
(suppose x ∈ f '- t, or.inr (mem_of_mem_preimage this)))
|
||
|
||
theorem image_inter (f : X → Y) (s : set X) (t : set Y) :
|
||
f ' s ∩ t = f ' (s ∩ f '- t) :=
|
||
ext (take y, iff.intro
|
||
(suppose y ∈ f ' s ∩ t,
|
||
obtain [x [xs fxeqy]] yt, from this,
|
||
have x ∈ s ∩ f '- t,
|
||
from and.intro xs (mem_preimage (show f x ∈ t, by rewrite fxeqy; exact yt)),
|
||
mem_image this fxeqy)
|
||
(suppose y ∈ f ' (s ∩ f '- t),
|
||
obtain x [[xs xfit] fxeqy], from this,
|
||
and.intro (mem_image xs fxeqy)
|
||
(show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage xfit)))
|
||
|
||
theorem image_union_supset (f : X → Y) (s : set X) (t : set Y) :
|
||
f ' s ∪ t ⊇ f ' (s ∪ f '- t) :=
|
||
take y, assume H,
|
||
obtain x [xmem fxeqy], from H,
|
||
or.elim xmem
|
||
(suppose x ∈ s, or.inl (mem_image this fxeqy))
|
||
(suppose x ∈ f '- t, or.inr (show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage this))
|
||
|
||
/- maps to -/
|
||
|
||
definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b
|
||
|
||
theorem maps_to_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_on_a : eq_on f1 f2 a)
|
||
(maps_to_f1 : maps_to f1 a b) :
|
||
maps_to f2 a b :=
|
||
take x,
|
||
assume xa : x ∈ a,
|
||
have H : f1 x ∈ b, from maps_to_f1 xa,
|
||
show f2 x ∈ b, from eq_on_a xa ▸ H
|
||
|
||
theorem maps_to_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
|
||
(H1 : maps_to g b c) (H2 : maps_to f a b) : maps_to (g ∘ f) a c :=
|
||
take x, assume H : x ∈ a, H1 (H2 H)
|
||
|
||
theorem maps_to_univ_univ (f : X → Y) : maps_to f univ univ :=
|
||
take x, assume H, trivial
|
||
|
||
theorem image_subset_of_maps_to_of_subset {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b)
|
||
{c : set X} (csuba : c ⊆ a) :
|
||
f ' c ⊆ b :=
|
||
take y,
|
||
suppose y ∈ f ' c,
|
||
obtain x [(xc : x ∈ c) (yeq : f x = y)], from this,
|
||
have x ∈ a, from csuba `x ∈ c`,
|
||
have f x ∈ b, from mfab this,
|
||
show y ∈ b, from yeq ▸ this
|
||
|
||
theorem image_subset_of_maps_to {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b) :
|
||
f ' a ⊆ b :=
|
||
image_subset_of_maps_to_of_subset mfab (subset.refl a)
|
||
|
||
/- injectivity -/
|
||
|
||
definition inj_on [reducible] (f : X → Y) (a : set X) : Prop :=
|
||
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
|
||
|
||
theorem inj_on_empty (f : X → Y) : inj_on f ∅ :=
|
||
take x₁ x₂, assume H₁ H₂ H₃, false.elim H₁
|
||
|
||
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a)
|
||
(inj_f1 : inj_on f1 a) :
|
||
inj_on f2 a :=
|
||
take x1 x2 : X,
|
||
assume ax1 : x1 ∈ a,
|
||
assume ax2 : x2 ∈ a,
|
||
assume H : f2 x1 = f2 x2,
|
||
have H' : f1 x1 = f1 x2, from eq_f1_f2 ax1 ⬝ H ⬝ (eq_f1_f2 ax2)⁻¹,
|
||
show x1 = x2, from inj_f1 ax1 ax2 H'
|
||
|
||
theorem inj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y}
|
||
(fab : maps_to f a b) (Hg : inj_on g b) (Hf: inj_on f a) :
|
||
inj_on (g ∘ f) a :=
|
||
take x1 x2 : X,
|
||
assume x1a : x1 ∈ a,
|
||
assume x2a : x2 ∈ a,
|
||
have fx1b : f x1 ∈ b, from fab x1a,
|
||
have fx2b : f x2 ∈ b, from fab x2a,
|
||
assume H1 : g (f x1) = g (f x2),
|
||
have H2 : f x1 = f x2, from Hg fx1b fx2b H1,
|
||
show x1 = x2, from Hf x1a x2a H2
|
||
|
||
theorem inj_on_of_inj_on_of_subset {f : X → Y} {a b : set X} (H1 : inj_on f b) (H2 : a ⊆ b) :
|
||
inj_on f a :=
|
||
take x1 x2 : X, assume (x1a : x1 ∈ a) (x2a : x2 ∈ a),
|
||
assume H : f x1 = f x2,
|
||
show x1 = x2, from H1 (H2 x1a) (H2 x2a) H
|
||
|
||
lemma injective_iff_inj_on_univ {f : X → Y} : injective f ↔ inj_on f univ :=
|
||
iff.intro
|
||
(assume H, take x₁ x₂, assume ax₁ ax₂, H x₁ x₂)
|
||
(assume H : inj_on f univ,
|
||
take x₁ x₂ Heq,
|
||
show x₁ = x₂, from H trivial trivial Heq)
|
||
|
||
/- surjectivity -/
|
||
|
||
definition surj_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := b ⊆ f ' a
|
||
|
||
theorem surj_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_f1_f2 : eq_on f1 f2 a)
|
||
(surj_f1 : surj_on f1 a b) :
|
||
surj_on f2 a b :=
|
||
take y, assume H : y ∈ b,
|
||
obtain x (H1 : x ∈ a ∧ f1 x = y), from surj_f1 H,
|
||
have H2 : x ∈ a, from and.left H1,
|
||
have H3 : f2 x = y, from (eq_f1_f2 H2)⁻¹ ⬝ and.right H1,
|
||
exists.intro x (and.intro H2 H3)
|
||
|
||
theorem surj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
|
||
(Hg : surj_on g b c) (Hf: surj_on f a b) :
|
||
surj_on (g ∘ f) a c :=
|
||
take z,
|
||
assume zc : z ∈ c,
|
||
obtain y (H1 : y ∈ b ∧ g y = z), from Hg zc,
|
||
obtain x (H2 : x ∈ a ∧ f x = y), from Hf (and.left H1),
|
||
show ∃x, x ∈ a ∧ g (f x) = z, from
|
||
exists.intro x
|
||
(and.intro
|
||
(and.left H2)
|
||
(calc
|
||
g (f x) = g y : {and.right H2}
|
||
... = z : and.right H1))
|
||
|
||
lemma surjective_iff_surj_on_univ {f : X → Y} : surjective f ↔ surj_on f univ univ :=
|
||
iff.intro
|
||
(assume H, take y, assume Hy,
|
||
obtain x Hx, from H y,
|
||
mem_image trivial Hx)
|
||
(assume H, take y,
|
||
obtain x H1x H2x, from H y trivial,
|
||
exists.intro x H2x)
|
||
|
||
lemma image_eq_of_maps_to_of_surj_on {f : X → Y} {a : set X} {b : set Y}
|
||
(H1 : maps_to f a b) (H2 : surj_on f a b) :
|
||
f ' a = b :=
|
||
eq_of_subset_of_subset (image_subset_of_maps_to H1) H2
|
||
|
||
/- bijectivity -/
|
||
|
||
definition bij_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop :=
|
||
maps_to f a b ∧ inj_on f a ∧ surj_on f a b
|
||
|
||
lemma maps_to_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
|
||
maps_to f a b :=
|
||
and.left H
|
||
|
||
lemma inj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
|
||
inj_on f a :=
|
||
and.left (and.right H)
|
||
|
||
lemma surj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
|
||
surj_on f a b :=
|
||
and.right (and.right H)
|
||
|
||
lemma bij_on.mk {f : X → Y} {a : set X} {b : set Y}
|
||
(H₁ : maps_to f a b) (H₂ : inj_on f a) (H₃ : surj_on f a b) :
|
||
bij_on f a b :=
|
||
and.intro H₁ (and.intro H₂ H₃)
|
||
|
||
theorem bij_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eqf : eq_on f1 f2 a)
|
||
(H : bij_on f1 a b) : bij_on f2 a b :=
|
||
match H with and.intro Hmap (and.intro Hinj Hsurj) :=
|
||
and.intro
|
||
(maps_to_of_eq_on eqf Hmap)
|
||
(and.intro
|
||
(inj_on_of_eq_on eqf Hinj)
|
||
(surj_on_of_eq_on eqf Hsurj))
|
||
end
|
||
|
||
lemma image_eq_of_bij_on {f : X → Y} {a : set X} {b : set Y} (bfab : bij_on f a b) :
|
||
f ' a = b :=
|
||
image_eq_of_maps_to_of_surj_on (and.left bfab) (and.right (and.right bfab))
|
||
|
||
theorem bij_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
|
||
(Hg : bij_on g b c) (Hf: bij_on f a b) :
|
||
bij_on (g ∘ f) a c :=
|
||
match Hg with and.intro Hgmap (and.intro Hginj Hgsurj) :=
|
||
match Hf with and.intro Hfmap (and.intro Hfinj Hfsurj) :=
|
||
and.intro
|
||
(maps_to_compose Hgmap Hfmap)
|
||
(and.intro
|
||
(inj_on_compose Hfmap Hginj Hfinj)
|
||
(surj_on_compose Hgsurj Hfsurj))
|
||
end
|
||
end
|
||
|
||
lemma bijective_iff_bij_on_univ {f : X → Y} : bijective f ↔ bij_on f univ univ :=
|
||
iff.intro
|
||
(assume H,
|
||
obtain Hinj Hsurj, from H,
|
||
and.intro (maps_to_univ_univ f)
|
||
(and.intro
|
||
(iff.mp !injective_iff_inj_on_univ Hinj)
|
||
(iff.mp !surjective_iff_surj_on_univ Hsurj)))
|
||
(assume H,
|
||
obtain Hmaps Hinj Hsurj, from H,
|
||
(and.intro
|
||
(iff.mpr !injective_iff_inj_on_univ Hinj)
|
||
(iff.mpr !surjective_iff_surj_on_univ Hsurj)))
|
||
|
||
/- left inverse -/
|
||
|
||
-- g is a left inverse to f on a
|
||
definition left_inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) : Prop :=
|
||
∀₀ x ∈ a, g (f x) = x
|
||
|
||
theorem left_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
||
(fab : maps_to f a b) (eqg : eq_on g1 g2 b) (H : left_inv_on g1 f a) : left_inv_on g2 f a :=
|
||
take x,
|
||
assume xa : x ∈ a,
|
||
calc
|
||
g2 (f x) = g1 (f x) : (eqg (fab xa))⁻¹
|
||
... = x : H xa
|
||
|
||
theorem left_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X}
|
||
(eqf : eq_on f1 f2 a) (H : left_inv_on g f1 a) : left_inv_on g f2 a :=
|
||
take x,
|
||
assume xa : x ∈ a,
|
||
calc
|
||
g (f2 x) = g (f1 x) : {(eqf xa)⁻¹}
|
||
... = x : H xa
|
||
|
||
theorem inj_on_of_left_inv_on {g : Y → X} {f : X → Y} {a : set X} (H : left_inv_on g f a) :
|
||
inj_on f a :=
|
||
take x1 x2,
|
||
assume x1a : x1 ∈ a,
|
||
assume x2a : x2 ∈ a,
|
||
assume H1 : f x1 = f x2,
|
||
calc
|
||
x1 = g (f x1) : H x1a
|
||
... = g (f x2) : H1
|
||
... = x2 : H x2a
|
||
|
||
theorem left_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
|
||
{a : set X} {b : set Y} (fab : maps_to f a b)
|
||
(Hf : left_inv_on f' f a) (Hg : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a :=
|
||
take x : X,
|
||
assume xa : x ∈ a,
|
||
have fxb : f x ∈ b, from fab xa,
|
||
calc
|
||
f' (g' (g (f x))) = f' (f x) : Hg fxb
|
||
... = x : Hf xa
|
||
|
||
/- right inverse -/
|
||
|
||
-- g is a right inverse to f on a
|
||
definition right_inv_on [reducible] (g : Y → X) (f : X → Y) (b : set Y) : Prop :=
|
||
left_inv_on f g b
|
||
|
||
theorem right_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
||
(eqg : eq_on g1 g2 b) (H : right_inv_on g1 f b) : right_inv_on g2 f b :=
|
||
left_inv_on_of_eq_on_right eqg H
|
||
|
||
theorem right_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X} {b : set Y}
|
||
(gba : maps_to g b a) (eqf : eq_on f1 f2 a) (H : right_inv_on g f1 b) : right_inv_on g f2 b :=
|
||
left_inv_on_of_eq_on_left gba eqf H
|
||
|
||
theorem surj_on_of_right_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
||
(gba : maps_to g b a) (H : right_inv_on g f b) :
|
||
surj_on f a b :=
|
||
take y,
|
||
assume yb : y ∈ b,
|
||
have gya : g y ∈ a, from gba yb,
|
||
have H1 : f (g y) = y, from H yb,
|
||
exists.intro (g y) (and.intro gya H1)
|
||
|
||
theorem right_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
|
||
{c : set Z} {b : set Y} (g'cb : maps_to g' c b)
|
||
(Hf : right_inv_on f' f b) (Hg : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c :=
|
||
left_inv_on_compose g'cb Hg Hf
|
||
|
||
theorem right_inv_on_of_inj_on_of_left_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y}
|
||
(fab : maps_to f a b) (gba : maps_to g b a) (injf : inj_on f a) (lfg : left_inv_on f g b) :
|
||
right_inv_on f g a :=
|
||
take x, assume xa : x ∈ a,
|
||
have H : f (g (f x)) = f x, from lfg (fab xa),
|
||
injf (gba (fab xa)) xa H
|
||
|
||
theorem eq_on_of_left_inv_of_right_inv {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
|
||
(g2ba : maps_to g2 b a) (Hg1 : left_inv_on g1 f a) (Hg2 : right_inv_on g2 f b) : eq_on g1 g2 b :=
|
||
take y,
|
||
assume yb : y ∈ b,
|
||
calc
|
||
g1 y = g1 (f (g2 y)) : {(Hg2 yb)⁻¹}
|
||
... = g2 y : Hg1 (g2ba yb)
|
||
|
||
theorem left_inv_on_of_surj_on_right_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y}
|
||
(surjf : surj_on f a b) (rfg : right_inv_on f g a) :
|
||
left_inv_on f g b :=
|
||
take y, assume yb : y ∈ b,
|
||
obtain x (xa : x ∈ a) (Hx : f x = y), from surjf yb,
|
||
calc
|
||
f (g y) = f (g (f x)) : Hx
|
||
... = f x : rfg xa
|
||
... = y : Hx
|
||
|
||
/- inverses -/
|
||
|
||
-- g is an inverse to f viewed as a map from a to b
|
||
definition inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) (b : set Y) : Prop :=
|
||
left_inv_on g f a ∧ right_inv_on g f b
|
||
|
||
theorem bij_on_of_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b)
|
||
(gba : maps_to g b a) (H : inv_on g f a b) : bij_on f a b :=
|
||
and.intro fab
|
||
(and.intro
|
||
(inj_on_of_left_inv_on (and.left H))
|
||
(surj_on_of_right_inv_on gba (and.right H)))
|
||
|
||
end set
|