527 lines
21 KiB
Text
527 lines
21 KiB
Text
/-
|
||
Copyright (c) 2014 Robert Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Robert Lewis
|
||
|
||
Structures with multiplicative prod additive components, including division rings prod fields.
|
||
The development is modeled after Isabelle's library.
|
||
-/
|
||
import algebra.binary algebra.group algebra.ring
|
||
open eq eq.ops algebra
|
||
set_option class.force_new true
|
||
|
||
variable {A : Type}
|
||
|
||
namespace algebra
|
||
structure division_ring [class] (A : Type) extends ring A, has_inv A, zero_ne_one_class A :=
|
||
(mul_inv_cancel : Π{a}, a ≠ zero → mul a (inv a) = one)
|
||
(inv_mul_cancel : Π{a}, a ≠ zero → mul (inv a) a = one)
|
||
|
||
section division_ring
|
||
variables [s : division_ring A] {a b c : A}
|
||
include s
|
||
|
||
protected definition algebra.div (a b : A) : A := a * b⁻¹
|
||
|
||
definition division_ring_has_div [reducible] [instance] : has_div A :=
|
||
has_div.mk algebra.div
|
||
|
||
lemma division.def (a b : A) : a / b = a * b⁻¹ :=
|
||
rfl
|
||
|
||
theorem mul_inv_cancel (H : a ≠ 0) : a * a⁻¹ = 1 :=
|
||
division_ring.mul_inv_cancel H
|
||
|
||
theorem inv_mul_cancel (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
||
division_ring.inv_mul_cancel H
|
||
|
||
theorem inv_eq_one_div (a : A) : a⁻¹ = 1 / a := !one_mul⁻¹
|
||
|
||
theorem div_eq_mul_one_div (a b : A) : a / b = a * (1 / b) :=
|
||
by rewrite [*division.def, one_mul]
|
||
|
||
theorem mul_one_div_cancel (H : a ≠ 0) : a * (1 / a) = 1 :=
|
||
by rewrite [-inv_eq_one_div, (mul_inv_cancel H)]
|
||
|
||
theorem one_div_mul_cancel (H : a ≠ 0) : (1 / a) * a = 1 :=
|
||
by rewrite [-inv_eq_one_div, (inv_mul_cancel H)]
|
||
|
||
theorem div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H
|
||
|
||
theorem one_div_one : 1 / 1 = (1:A) := div_self (ne.symm zero_ne_one)
|
||
|
||
theorem mul_div_assoc (a b : A) : (a * b) / c = a * (b / c) := !mul.assoc
|
||
|
||
theorem one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 :=
|
||
assume H2 : 1 / a = 0,
|
||
have C1 : 0 = (1:A), from symm (by rewrite [-(mul_one_div_cancel H), H2, mul_zero]),
|
||
absurd C1 zero_ne_one
|
||
|
||
theorem one_inv_eq : 1⁻¹ = (1:A) :=
|
||
by rewrite [-mul_one, inv_mul_cancel (ne.symm (@zero_ne_one A _))]
|
||
|
||
theorem div_one (a : A) : a / 1 = a :=
|
||
by rewrite [*division.def, one_inv_eq, mul_one]
|
||
|
||
theorem zero_div (a : A) : 0 / a = 0 := !zero_mul
|
||
|
||
-- note: integral domain has a "mul_ne_zero". A commutative division ring is an integral
|
||
-- domain, but let's not define that class for now.
|
||
theorem division_ring.mul_ne_zero (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
|
||
assume H : a * b = 0,
|
||
have C1 : a = 0, by rewrite [-mul_one, -(mul_one_div_cancel Hb), -mul.assoc, H, zero_mul],
|
||
absurd C1 Ha
|
||
|
||
theorem mul_ne_zero_comm (H : a * b ≠ 0) : b * a ≠ 0 :=
|
||
have H2 : a ≠ 0 × b ≠ 0, from ne_zero_prod_ne_zero_of_mul_ne_zero H,
|
||
division_ring.mul_ne_zero (prod.pr2 H2) (prod.pr1 H2)
|
||
|
||
theorem eq_one_div_of_mul_eq_one (H : a * b = 1) : b = 1 / a :=
|
||
have a ≠ 0, from
|
||
(suppose a = 0,
|
||
have 0 = (1:A), by rewrite [-(zero_mul b), -this, H],
|
||
absurd this zero_ne_one),
|
||
show b = 1 / a, from symm (calc
|
||
1 / a = (1 / a) * 1 : mul_one
|
||
... = (1 / a) * (a * b) : H
|
||
... = (1 / a) * a * b : mul.assoc
|
||
... = 1 * b : one_div_mul_cancel this
|
||
... = b : one_mul)
|
||
|
||
theorem eq_one_div_of_mul_eq_one_left (H : b * a = 1) : b = 1 / a :=
|
||
have a ≠ 0, from
|
||
(suppose a = 0,
|
||
have 0 = 1, from symm (calc
|
||
1 = b * a : symm H
|
||
... = b * 0 : this
|
||
... = 0 : mul_zero),
|
||
absurd this zero_ne_one),
|
||
show b = 1 / a, from symm (calc
|
||
1 / a = 1 * (1 / a) : one_mul
|
||
... = b * a * (1 / a) : H
|
||
... = b * (a * (1 / a)) : mul.assoc
|
||
... = b * 1 : mul_one_div_cancel this
|
||
... = b : mul_one)
|
||
|
||
theorem division_ring.one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||
(1 / a) * (1 / b) = 1 / (b * a) :=
|
||
have (b * a) * ((1 / a) * (1 / b)) = 1, by
|
||
rewrite [mul.assoc, -(mul.assoc a), (mul_one_div_cancel Ha), one_mul,
|
||
(mul_one_div_cancel Hb)],
|
||
eq_one_div_of_mul_eq_one this
|
||
|
||
theorem one_div_neg_one_eq_neg_one : (1:A) / (-1) = -1 :=
|
||
have (-1) * (-1) = (1:A), by rewrite [-neg_eq_neg_one_mul, neg_neg],
|
||
symm (eq_one_div_of_mul_eq_one this)
|
||
|
||
theorem division_ring.one_div_neg_eq_neg_one_div (H : a ≠ 0) : 1 / (- a) = - (1 / a) :=
|
||
have -1 ≠ 0, from
|
||
(suppose -1 = 0, absurd (symm (calc
|
||
1 = -(-1) : neg_neg
|
||
... = -0 : this
|
||
... = (0:A) : neg_zero)) zero_ne_one),
|
||
calc
|
||
1 / (- a) = 1 / ((-1) * a) : neg_eq_neg_one_mul
|
||
... = (1 / a) * (1 / (- 1)) : division_ring.one_div_mul_one_div H this
|
||
... = (1 / a) * (-1) : one_div_neg_one_eq_neg_one
|
||
... = - (1 / a) : mul_neg_one_eq_neg
|
||
|
||
theorem div_neg_eq_neg_div (b : A) (Ha : a ≠ 0) : b / (- a) = - (b / a) :=
|
||
calc
|
||
b / (- a) = b * (1 / (- a)) : by rewrite -inv_eq_one_div
|
||
... = b * -(1 / a) : division_ring.one_div_neg_eq_neg_one_div Ha
|
||
... = -(b * (1 / a)) : neg_mul_eq_mul_neg
|
||
... = - (b * a⁻¹) : inv_eq_one_div
|
||
|
||
theorem neg_div (a b : A) : (-b) / a = - (b / a) :=
|
||
by rewrite [neg_eq_neg_one_mul, mul_div_assoc, -neg_eq_neg_one_mul]
|
||
|
||
theorem division_ring.neg_div_neg_eq (a : A) {b : A} (Hb : b ≠ 0) : (-a) / (-b) = a / b :=
|
||
by rewrite [(div_neg_eq_neg_div _ Hb), neg_div, neg_neg]
|
||
|
||
theorem division_ring.one_div_one_div (H : a ≠ 0) : 1 / (1 / a) = a :=
|
||
symm (eq_one_div_of_mul_eq_one_left (mul_one_div_cancel H))
|
||
|
||
theorem division_ring.eq_of_one_div_eq_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) (H : 1 / a = 1 / b) :
|
||
a = b :=
|
||
by rewrite [-(division_ring.one_div_one_div Ha), H, (division_ring.one_div_one_div Hb)]
|
||
|
||
theorem mul_inv_eq (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
||
inverse (calc
|
||
a⁻¹ * b⁻¹ = (1 / a) * b⁻¹ : inv_eq_one_div
|
||
... = (1 / a) * (1 / b) : inv_eq_one_div
|
||
... = (1 / (b * a)) : division_ring.one_div_mul_one_div Ha Hb
|
||
... = (b * a)⁻¹ : inv_eq_one_div)
|
||
|
||
theorem mul_div_cancel (a : A) {b : A} (Hb : b ≠ 0) : a * b / b = a :=
|
||
by rewrite [*division.def, mul.assoc, (mul_inv_cancel Hb), mul_one]
|
||
|
||
theorem div_mul_cancel (a : A) {b : A} (Hb : b ≠ 0) : a / b * b = a :=
|
||
by rewrite [*division.def, mul.assoc, (inv_mul_cancel Hb), mul_one]
|
||
|
||
theorem div_add_div_same (a b c : A) : a / c + b / c = (a + b) / c := !right_distrib⁻¹
|
||
|
||
theorem div_sub_div_same (a b c : A) : (a / c) - (b / c) = (a - b) / c :=
|
||
by rewrite [sub_eq_add_neg, -neg_div, div_add_div_same]
|
||
|
||
theorem one_div_mul_add_mul_one_div_eq_one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
|
||
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
|
||
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
|
||
|
||
theorem one_div_mul_sub_mul_one_div_eq_one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
|
||
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
|
||
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one]
|
||
|
||
theorem div_eq_one_iff_eq (a : A) {b : A} (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
|
||
iff.intro
|
||
(suppose a / b = 1, symm (calc
|
||
b = 1 * b : one_mul
|
||
... = a / b * b : this
|
||
... = a : div_mul_cancel _ Hb))
|
||
(suppose a = b, calc
|
||
a / b = b / b : this
|
||
... = 1 : div_self Hb)
|
||
|
||
theorem eq_of_div_eq_one (a : A) {b : A} (Hb : b ≠ 0) : a / b = 1 → a = b :=
|
||
iff.mp (!div_eq_one_iff_eq Hb)
|
||
|
||
theorem eq_div_iff_mul_eq (a : A) {b : A} (Hc : c ≠ 0) : a = b / c ↔ a * c = b :=
|
||
iff.intro
|
||
(suppose a = b / c, by rewrite [this, (!div_mul_cancel Hc)])
|
||
(suppose a * c = b, by rewrite [-(!mul_div_cancel Hc), this])
|
||
|
||
theorem eq_div_of_mul_eq (a b : A) {c : A} (Hc : c ≠ 0) : a * c = b → a = b / c :=
|
||
iff.mpr (!eq_div_iff_mul_eq Hc)
|
||
|
||
theorem mul_eq_of_eq_div (a b: A) {c : A} (Hc : c ≠ 0) : a = b / c → a * c = b :=
|
||
iff.mp (!eq_div_iff_mul_eq Hc)
|
||
|
||
theorem add_div_eq_mul_add_div (a b : A) {c : A} (Hc : c ≠ 0) : a + b / c = (a * c + b) / c :=
|
||
have (a + b / c) * c = a * c + b, by rewrite [right_distrib, (!div_mul_cancel Hc)],
|
||
(iff.elim_right (!eq_div_iff_mul_eq Hc)) this
|
||
|
||
theorem mul_mul_div (a : A) {c : A} (Hc : c ≠ 0) : a = a * c * (1 / c) :=
|
||
calc
|
||
a = a * 1 : mul_one
|
||
... = a * (c * (1 / c)) : mul_one_div_cancel Hc
|
||
... = a * c * (1 / c) : mul.assoc
|
||
|
||
-- There are many similar rules to these last two in the Isabelle library
|
||
-- that haven't been ported yet. Do as necessary.
|
||
end division_ring
|
||
|
||
structure field [class] (A : Type) extends division_ring A, comm_ring A
|
||
|
||
section field
|
||
variables [s : field A] {a b c d: A}
|
||
include s
|
||
|
||
theorem field.one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (a * b) :=
|
||
by rewrite [(division_ring.one_div_mul_one_div Ha Hb), mul.comm b]
|
||
|
||
theorem field.div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
|
||
have a ≠ 0, from prod.pr1 (ne_zero_prod_ne_zero_of_mul_ne_zero H),
|
||
symm (calc
|
||
1 / b = 1 * (1 / b) : one_mul
|
||
... = (a * a⁻¹) * (1 / b) : mul_inv_cancel this
|
||
... = a * (a⁻¹ * (1 / b)) : mul.assoc
|
||
... = a * ((1 / a) * (1 / b)) : inv_eq_one_div
|
||
... = a * (1 / (b * a)) : division_ring.one_div_mul_one_div this Hb
|
||
... = a * (1 / (a * b)) : mul.comm
|
||
... = a * (a * b)⁻¹ : inv_eq_one_div)
|
||
|
||
theorem field.div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
|
||
let H1 : b * a ≠ 0 := mul_ne_zero_comm H in
|
||
by rewrite [mul.comm a, (field.div_mul_right Ha H1)]
|
||
|
||
theorem mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
|
||
by rewrite [mul.comm a, (!mul_div_cancel Ha)]
|
||
|
||
theorem mul_div_cancel' (Hb : b ≠ 0) : b * (a / b) = a :=
|
||
by rewrite [mul.comm, (!div_mul_cancel Hb)]
|
||
|
||
theorem one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
|
||
assert a * b ≠ 0, from (division_ring.mul_ne_zero Ha Hb),
|
||
by rewrite [add.comm, -(field.div_mul_left Ha this), -(field.div_mul_right Hb this), *division.def,
|
||
-right_distrib]
|
||
|
||
theorem field.div_mul_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||
(a / b) * (c / d) = (a * c) / (b * d) :=
|
||
by rewrite [*division.def, 2 mul.assoc, (mul.comm b⁻¹), mul.assoc, (mul_inv_eq Hd Hb)]
|
||
|
||
theorem mul_div_mul_left (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
|
||
(c * a) / (c * b) = a / b :=
|
||
by rewrite [-(!field.div_mul_div Hc Hb), (div_self Hc), one_mul]
|
||
|
||
theorem mul_div_mul_right (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
|
||
(a * c) / (b * c) = a / b :=
|
||
by rewrite [(mul.comm a), (mul.comm b), (!mul_div_mul_left Hb Hc)]
|
||
|
||
theorem div_mul_eq_mul_div (a b c : A) : (b / c) * a = (b * a) / c :=
|
||
by rewrite [*division.def, mul.assoc, (mul.comm c⁻¹), -mul.assoc]
|
||
|
||
theorem field.div_mul_eq_mul_div_comm (a b : A) {c : A} (Hc : c ≠ 0) :
|
||
(b / c) * a = b * (a / c) :=
|
||
by rewrite [(div_mul_eq_mul_div), -(one_mul c), -(!field.div_mul_div (ne.symm zero_ne_one) Hc),
|
||
div_one, one_mul]
|
||
|
||
theorem div_add_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||
(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) :=
|
||
by rewrite [-(!mul_div_mul_right Hb Hd), -(!mul_div_mul_left Hd Hb), div_add_div_same]
|
||
|
||
theorem div_sub_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||
(a / b) - (c / d) = ((a * d) - (b * c)) / (b * d) :=
|
||
by rewrite [*sub_eq_add_neg, neg_eq_neg_one_mul, -mul_div_assoc, (!div_add_div Hb Hd),
|
||
-mul.assoc, (mul.comm b), mul.assoc, -neg_eq_neg_one_mul]
|
||
|
||
theorem mul_eq_mul_of_div_eq_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0)
|
||
(Hd : d ≠ 0) (H : a / b = c / d) : a * d = c * b :=
|
||
by rewrite [-mul_one, mul.assoc, (mul.comm d), -mul.assoc, -(div_self Hb),
|
||
-(!field.div_mul_eq_mul_div_comm Hb), H, (div_mul_eq_mul_div), (!div_mul_cancel Hd)]
|
||
|
||
theorem field.one_div_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / (a / b) = b / a :=
|
||
have (a / b) * (b / a) = 1, from calc
|
||
(a / b) * (b / a) = (a * b) / (b * a) : !field.div_mul_div Hb Ha
|
||
... = (a * b) / (a * b) : mul.comm
|
||
... = 1 : div_self (division_ring.mul_ne_zero Ha Hb),
|
||
symm (eq_one_div_of_mul_eq_one this)
|
||
|
||
theorem field.div_div_eq_mul_div (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
|
||
a / (b / c) = (a * c) / b :=
|
||
by rewrite [div_eq_mul_one_div, (field.one_div_div Hb Hc), -mul_div_assoc]
|
||
|
||
theorem field.div_div_eq_div_mul (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
|
||
(a / b) / c = a / (b * c) :=
|
||
by rewrite [div_eq_mul_one_div, (!field.div_mul_div Hb Hc), mul_one]
|
||
|
||
theorem field.div_div_div_div_eq (a : A) {b c d : A} (Hb : b ≠ 0) (Hc : c ≠ 0) (Hd : d ≠ 0) :
|
||
(a / b) / (c / d) = (a * d) / (b * c) :=
|
||
by rewrite [(!field.div_div_eq_mul_div Hc Hd), (div_mul_eq_mul_div),
|
||
(!field.div_div_eq_div_mul Hb Hc)]
|
||
|
||
theorem field.div_mul_eq_div_mul_one_div (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
|
||
a / (b * c) = (a / b) * (1 / c) :=
|
||
by rewrite [-!field.div_div_eq_div_mul Hb Hc, -div_eq_mul_one_div]
|
||
|
||
theorem eq_of_mul_eq_mul_of_nonzero_left {a b c : A} (H : a ≠ 0) (H2 : a * b = a * c) : b = c :=
|
||
by rewrite [-one_mul b, -div_self H, div_mul_eq_mul_div, H2, mul_div_cancel_left H]
|
||
|
||
theorem eq_of_mul_eq_mul_of_nonzero_right {a b c : A} (H : c ≠ 0) (H2 : a * c = b * c) : a = b :=
|
||
by rewrite [-mul_one a, -div_self H, -mul_div_assoc, H2, mul_div_cancel _ H]
|
||
|
||
end field
|
||
|
||
structure discrete_field [class] (A : Type) extends field A :=
|
||
(has_decidable_eq : decidable_eq A)
|
||
(inv_zero : inv zero = zero)
|
||
|
||
attribute discrete_field.has_decidable_eq [instance]
|
||
|
||
section discrete_field
|
||
variable [s : discrete_field A]
|
||
include s
|
||
variables {a b c d : A}
|
||
|
||
-- many of the theorems in discrete_field are the same as theorems in field sum division ring,
|
||
-- but with fewer hypotheses since 0⁻¹ = 0 prod equality is decidable.
|
||
|
||
theorem discrete_field.eq_zero_sum_eq_zero_of_mul_eq_zero
|
||
(x y : A) (H : x * y = 0) : x = 0 ⊎ y = 0 :=
|
||
decidable.by_cases
|
||
(suppose x = 0, sum.inl this)
|
||
(suppose x ≠ 0,
|
||
sum.inr (by rewrite [-one_mul, -(inv_mul_cancel this), mul.assoc, H, mul_zero]))
|
||
|
||
definition discrete_field.to_integral_domain [trans_instance] [reducible] :
|
||
integral_domain A :=
|
||
⦃ integral_domain, s,
|
||
eq_zero_sum_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_sum_eq_zero_of_mul_eq_zero⦄
|
||
|
||
theorem inv_zero : 0⁻¹ = (0:A) := !discrete_field.inv_zero
|
||
|
||
theorem one_div_zero : 1 / 0 = (0:A) :=
|
||
calc
|
||
1 / 0 = 1 * 0⁻¹ : refl
|
||
... = 1 * 0 : inv_zero
|
||
... = 0 : mul_zero
|
||
|
||
theorem div_zero (a : A) : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero]
|
||
|
||
theorem ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 :=
|
||
assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H
|
||
|
||
theorem eq_zero_of_one_div_eq_zero (H : 1 / a = 0) : a = 0 :=
|
||
decidable.by_cases
|
||
(assume Ha, Ha)
|
||
(assume Ha, empty.elim ((one_div_ne_zero Ha) H))
|
||
|
||
variables (a b)
|
||
theorem one_div_mul_one_div' : (1 / a) * (1 / b) = 1 / (b * a) :=
|
||
decidable.by_cases
|
||
(suppose a = 0,
|
||
by rewrite [this, div_zero, zero_mul, -(@div_zero A s 1), mul_zero b])
|
||
(assume Ha : a ≠ 0,
|
||
decidable.by_cases
|
||
(suppose b = 0,
|
||
by rewrite [this, div_zero, mul_zero, -(@div_zero A s 1), zero_mul a])
|
||
(suppose b ≠ 0, division_ring.one_div_mul_one_div Ha this))
|
||
|
||
theorem one_div_neg_eq_neg_one_div : 1 / (- a) = - (1 / a) :=
|
||
decidable.by_cases
|
||
(suppose a = 0, by rewrite [this, neg_zero, 2 div_zero, neg_zero])
|
||
(suppose a ≠ 0, division_ring.one_div_neg_eq_neg_one_div this)
|
||
|
||
theorem neg_div_neg_eq : (-a) / (-b) = a / b :=
|
||
decidable.by_cases
|
||
(assume Hb : b = 0, by rewrite [Hb, neg_zero, 2 div_zero])
|
||
(assume Hb : b ≠ 0, !division_ring.neg_div_neg_eq Hb)
|
||
|
||
theorem one_div_one_div : 1 / (1 / a) = a :=
|
||
decidable.by_cases
|
||
(assume Ha : a = 0, by rewrite [Ha, 2 div_zero])
|
||
(assume Ha : a ≠ 0, division_ring.one_div_one_div Ha)
|
||
|
||
variables {a b}
|
||
theorem eq_of_one_div_eq_one_div (H : 1 / a = 1 / b) : a = b :=
|
||
decidable.by_cases
|
||
(assume Ha : a = 0,
|
||
have Hb : b = 0, from eq_zero_of_one_div_eq_zero (by rewrite [-H, Ha, div_zero]),
|
||
Hb⁻¹ ▸ Ha)
|
||
(assume Ha : a ≠ 0,
|
||
have Hb : b ≠ 0, from ne_zero_of_one_div_ne_zero (H ▸ (one_div_ne_zero Ha)),
|
||
division_ring.eq_of_one_div_eq_one_div Ha Hb H)
|
||
|
||
variables (a b)
|
||
theorem mul_inv' : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
||
decidable.by_cases
|
||
(assume Ha : a = 0, by rewrite [Ha, mul_zero, 2 inv_zero, zero_mul])
|
||
(assume Ha : a ≠ 0,
|
||
decidable.by_cases
|
||
(assume Hb : b = 0, by rewrite [Hb, zero_mul, 2 inv_zero, mul_zero])
|
||
(assume Hb : b ≠ 0, mul_inv_eq Ha Hb))
|
||
|
||
-- the following are specifically for fields
|
||
theorem one_div_mul_one_div : (1 / a) * (1 / b) = 1 / (a * b) :=
|
||
by rewrite [one_div_mul_one_div', mul.comm b]
|
||
|
||
variable {a}
|
||
theorem div_mul_right (Ha : a ≠ 0) : a / (a * b) = 1 / b :=
|
||
decidable.by_cases
|
||
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
|
||
(assume Hb : b ≠ 0, field.div_mul_right Hb (mul_ne_zero Ha Hb))
|
||
|
||
variables (a) {b}
|
||
theorem div_mul_left (Hb : b ≠ 0) : b / (a * b) = 1 / a :=
|
||
by rewrite [mul.comm a, div_mul_right _ Hb]
|
||
|
||
variables (a b c)
|
||
theorem div_mul_div : (a / b) * (c / d) = (a * c) / (b * d) :=
|
||
decidable.by_cases
|
||
(assume Hb : b = 0, by rewrite [Hb, div_zero, zero_mul, -(@div_zero A s (a * c)), zero_mul])
|
||
(assume Hb : b ≠ 0,
|
||
decidable.by_cases
|
||
(assume Hd : d = 0, by rewrite [Hd, div_zero, mul_zero, -(@div_zero A s (a * c)),
|
||
mul_zero])
|
||
(assume Hd : d ≠ 0, !field.div_mul_div Hb Hd))
|
||
|
||
variable {c}
|
||
theorem mul_div_mul_left' (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
|
||
decidable.by_cases
|
||
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
|
||
(assume Hb : b ≠ 0, !mul_div_mul_left Hb Hc)
|
||
|
||
theorem mul_div_mul_right' (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
|
||
by rewrite [(mul.comm a), (mul.comm b), (!mul_div_mul_left' Hc)]
|
||
|
||
variables (a b c d)
|
||
theorem div_mul_eq_mul_div_comm : (b / c) * a = b * (a / c) :=
|
||
decidable.by_cases
|
||
(assume Hc : c = 0, by rewrite [Hc, div_zero, zero_mul, -(mul_zero b), -(@div_zero A s a)])
|
||
(assume Hc : c ≠ 0, !field.div_mul_eq_mul_div_comm Hc)
|
||
|
||
theorem one_div_div : 1 / (a / b) = b / a :=
|
||
decidable.by_cases
|
||
(assume Ha : a = 0, by rewrite [Ha, zero_div, 2 div_zero])
|
||
(assume Ha : a ≠ 0,
|
||
decidable.by_cases
|
||
(assume Hb : b = 0, by rewrite [Hb, 2 div_zero, zero_div])
|
||
(assume Hb : b ≠ 0, field.one_div_div Ha Hb))
|
||
|
||
theorem div_div_eq_mul_div : a / (b / c) = (a * c) / b :=
|
||
by rewrite [div_eq_mul_one_div, one_div_div, -mul_div_assoc]
|
||
|
||
theorem div_div_eq_div_mul : (a / b) / c = a / (b * c) :=
|
||
by rewrite [div_eq_mul_one_div, div_mul_div, mul_one]
|
||
|
||
theorem div_div_div_div_eq : (a / b) / (c / d) = (a * d) / (b * c) :=
|
||
by rewrite [div_div_eq_mul_div, div_mul_eq_mul_div, div_div_eq_div_mul]
|
||
|
||
variable {a}
|
||
theorem div_helper (H : a ≠ 0) : (1 / (a * b)) * a = 1 / b :=
|
||
by rewrite [div_mul_eq_mul_div, one_mul, !div_mul_right H]
|
||
|
||
variable (a)
|
||
theorem div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) :=
|
||
by rewrite [-div_div_eq_div_mul, -div_eq_mul_one_div]
|
||
|
||
end discrete_field
|
||
|
||
namespace norm_num
|
||
|
||
theorem div_add_helper [s : field A] (n d b c val : A) (Hd : d ≠ 0) (H : n + b * d = val)
|
||
(H2 : c * d = val) : n / d + b = c :=
|
||
begin
|
||
apply eq_of_mul_eq_mul_of_nonzero_right Hd,
|
||
rewrite [H2, -H, right_distrib, div_mul_cancel _ Hd]
|
||
end
|
||
|
||
theorem add_div_helper [s : field A] (n d b c val : A) (Hd : d ≠ 0) (H : d * b + n = val)
|
||
(H2 : d * c = val) : b + n / d = c :=
|
||
begin
|
||
apply eq_of_mul_eq_mul_of_nonzero_left Hd,
|
||
rewrite [H2, -H, left_distrib, mul_div_cancel' Hd]
|
||
end
|
||
|
||
theorem div_mul_helper [s : field A] (n d c v : A) (Hd : d ≠ 0) (H : (n * c) / d = v) :
|
||
(n / d) * c = v :=
|
||
by rewrite [-H, field.div_mul_eq_mul_div_comm _ _ Hd, mul_div_assoc]
|
||
|
||
theorem mul_div_helper [s : field A] (a n d v : A) (Hd : d ≠ 0) (H : (a * n) / d = v) :
|
||
a * (n / d) = v :=
|
||
by rewrite [-H, mul_div_assoc]
|
||
|
||
theorem nonzero_of_div_helper [s : field A] (a b : A) (Ha : a ≠ 0) (Hb : b ≠ 0) : a / b ≠ 0 :=
|
||
begin
|
||
intro Hab,
|
||
have Habb : (a / b) * b = 0, by rewrite [Hab, zero_mul],
|
||
rewrite [div_mul_cancel _ Hb at Habb],
|
||
exact Ha Habb
|
||
end
|
||
|
||
theorem div_helper [s : field A] (n d v : A) (Hd : d ≠ 0) (H : v * d = n) : n / d = v :=
|
||
begin
|
||
apply eq_of_mul_eq_mul_of_nonzero_right Hd,
|
||
rewrite (div_mul_cancel _ Hd),
|
||
exact inverse H
|
||
end
|
||
|
||
theorem div_eq_div_helper [s : field A] (a b c d v : A) (H1 : a * d = v) (H2 : c * b = v)
|
||
(Hb : b ≠ 0) (Hd : d ≠ 0) : a / b = c / d :=
|
||
begin
|
||
apply eq_div_of_mul_eq,
|
||
exact Hd,
|
||
rewrite div_mul_eq_mul_div,
|
||
apply inverse,
|
||
apply eq_div_of_mul_eq,
|
||
exact Hb,
|
||
rewrite [H1, H2]
|
||
end
|
||
|
||
theorem subst_into_div [s : has_div A] (a₁ b₁ a₂ b₂ v : A) (H : a₁ / b₁ = v) (H1 : a₂ = a₁)
|
||
(H2 : b₂ = b₁) : a₂ / b₂ = v :=
|
||
by rewrite [H1, H2, H]
|
||
|
||
end norm_num
|
||
end algebra
|