395 lines
13 KiB
Text
395 lines
13 KiB
Text
/-
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Leonardo de Moura
|
|
-/
|
|
|
|
prelude
|
|
import init.reserved_notation
|
|
|
|
/- not -/
|
|
|
|
definition not (a : Type) := a → empty
|
|
prefix `¬` := not
|
|
|
|
definition absurd {a b : Type} (H₁ : a) (H₂ : ¬a) : b :=
|
|
empty.rec (λ e, b) (H₂ H₁)
|
|
|
|
definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a :=
|
|
assume Ha : a, absurd (H₁ Ha) H₂
|
|
|
|
protected definition not_empty : ¬ empty :=
|
|
assume H : empty, H
|
|
|
|
definition not_not_intro {a : Type} (Ha : a) : ¬¬a :=
|
|
assume Hna : ¬a, absurd Ha Hna
|
|
|
|
definition not.elim {a : Type} (H₁ : ¬a) (H₂ : a) : empty := H₁ H₂
|
|
|
|
definition not.intro {a : Type} (H : a → empty) : ¬a := H
|
|
|
|
definition not_not_of_not_implies {a b : Type} (H : ¬(a → b)) : ¬¬a :=
|
|
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
|
|
|
definition not_of_not_implies {a b : Type} (H : ¬(a → b)) : ¬b :=
|
|
assume Hb : b, absurd (assume Ha : a, Hb) H
|
|
|
|
/- eq -/
|
|
|
|
notation a = b := eq a b
|
|
definition rfl {A : Type} {a : A} := eq.refl a
|
|
|
|
namespace eq
|
|
variables {A : Type} {a b c : A}
|
|
|
|
definition subst [unfold-c 5] {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b :=
|
|
eq.rec H₂ H₁
|
|
|
|
definition trans [unfold-c 5] (H₁ : a = b) (H₂ : b = c) : a = c :=
|
|
subst H₂ H₁
|
|
|
|
definition symm [unfold-c 4] (H : a = b) : b = a :=
|
|
subst H (refl a)
|
|
|
|
namespace ops
|
|
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
|
notation H1 ⬝ H2 := trans H1 H2
|
|
notation H1 ▸ H2 := subst H1 H2
|
|
end ops
|
|
end eq
|
|
|
|
definition congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ :=
|
|
eq.subst H₁ (eq.subst H₂ rfl)
|
|
|
|
section
|
|
variables {A : Type} {a b c: A}
|
|
open eq.ops
|
|
|
|
definition trans_rel_left (R : A → A → Type) (H₁ : R a b) (H₂ : b = c) : R a c :=
|
|
H₂ ▸ H₁
|
|
|
|
definition trans_rel_right (R : A → A → Type) (H₁ : a = b) (H₂ : R b c) : R a c :=
|
|
H₁⁻¹ ▸ H₂
|
|
end
|
|
|
|
attribute eq.subst [subst]
|
|
attribute eq.refl [refl]
|
|
attribute eq.trans [trans]
|
|
attribute eq.symm [symm]
|
|
|
|
namespace lift
|
|
definition down_up.{l₁ l₂} {A : Type.{l₁}} (a : A) : down (up.{l₁ l₂} a) = a :=
|
|
rfl
|
|
|
|
definition up_down.{l₁ l₂} {A : Type.{l₁}} (a : lift.{l₁ l₂} A) : up (down a) = a :=
|
|
lift.rec_on a (λ d, rfl)
|
|
end lift
|
|
|
|
/- ne -/
|
|
|
|
definition ne {A : Type} (a b : A) := ¬(a = b)
|
|
notation a ≠ b := ne a b
|
|
|
|
namespace ne
|
|
open eq.ops
|
|
variable {A : Type}
|
|
variables {a b : A}
|
|
|
|
definition intro : (a = b → empty) → a ≠ b :=
|
|
assume H, H
|
|
|
|
definition elim : a ≠ b → a = b → empty :=
|
|
assume H₁ H₂, H₁ H₂
|
|
|
|
definition irrefl : a ≠ a → empty :=
|
|
assume H, H rfl
|
|
|
|
definition symm : a ≠ b → b ≠ a :=
|
|
assume (H : a ≠ b) (H₁ : b = a), H H₁⁻¹
|
|
end ne
|
|
|
|
section
|
|
open eq.ops
|
|
variables {A : Type} {a b c : A}
|
|
|
|
definition false.of_ne : a ≠ a → empty :=
|
|
assume H, H rfl
|
|
|
|
definition ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c :=
|
|
assume H₁ H₂, H₁⁻¹ ▸ H₂
|
|
|
|
definition ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c :=
|
|
assume H₁ H₂, H₂ ▸ H₁
|
|
end
|
|
|
|
/- iff -/
|
|
|
|
definition iff (a b : Type) := prod (a → b) (b → a)
|
|
|
|
notation a <-> b := iff a b
|
|
notation a ↔ b := iff a b
|
|
|
|
namespace iff
|
|
variables {a b c : Type}
|
|
|
|
definition def : (a ↔ b) = (prod (a → b) (b → a)) :=
|
|
rfl
|
|
|
|
definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b :=
|
|
prod.mk H₁ H₂
|
|
|
|
definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c :=
|
|
prod.rec H₁ H₂
|
|
|
|
definition elim_left (H : a ↔ b) : a → b :=
|
|
elim (assume H₁ H₂, H₁) H
|
|
|
|
definition mp := @elim_left
|
|
|
|
definition elim_right (H : a ↔ b) : b → a :=
|
|
elim (assume H₁ H₂, H₂) H
|
|
|
|
definition mp' := @elim_right
|
|
|
|
definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
|
intro
|
|
(assume Hna, mt (elim_right H₁) Hna)
|
|
(assume Hnb, mt (elim_left H₁) Hnb)
|
|
|
|
definition refl (a : Type) : a ↔ a :=
|
|
intro (assume H, H) (assume H, H)
|
|
|
|
definition rfl {a : Type} : a ↔ a :=
|
|
refl a
|
|
|
|
definition trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
|
intro
|
|
(assume Ha, elim_left H₂ (elim_left H₁ Ha))
|
|
(assume Hc, elim_right H₁ (elim_right H₂ Hc))
|
|
|
|
definition symm (H : a ↔ b) : b ↔ a :=
|
|
intro
|
|
(assume Hb, elim_right H Hb)
|
|
(assume Ha, elim_left H Ha)
|
|
|
|
definition true_elim (H : a ↔ unit) : a :=
|
|
mp (symm H) unit.star
|
|
|
|
definition false_elim (H : a ↔ empty) : ¬a :=
|
|
assume Ha : a, mp H Ha
|
|
|
|
open eq.ops
|
|
definition of_eq {a b : Type} (H : a = b) : a ↔ b :=
|
|
iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb)
|
|
|
|
definition pi_iff_pi {A : Type} {P Q : A → Type} (H : Πa, (P a ↔ Q a)) : (Πa, P a) ↔ Πa, Q a :=
|
|
iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a))
|
|
|
|
theorem imp_iff {P : Type} (Q : Type) (p : P) : (P → Q) ↔ Q :=
|
|
iff.intro (λf, f p) (λq p, q)
|
|
|
|
end iff
|
|
|
|
attribute iff.refl [refl]
|
|
attribute iff.trans [trans]
|
|
attribute iff.symm [symm]
|
|
|
|
/- inhabited -/
|
|
|
|
inductive inhabited [class] (A : Type) : Type :=
|
|
mk : A → inhabited A
|
|
|
|
namespace inhabited
|
|
|
|
protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
|
inhabited.rec H2 H1
|
|
|
|
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
|
|
inhabited.destruct H (λb, mk (λa, b))
|
|
|
|
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
|
inhabited (Πx, B x) :=
|
|
mk (λa, inhabited.destruct (H a) (λb, b))
|
|
|
|
definition default (A : Type) [H : inhabited A] : A := inhabited.destruct H (take a, a)
|
|
|
|
end inhabited
|
|
|
|
/- decidable -/
|
|
|
|
inductive decidable.{l} [class] (p : Type.{l}) : Type.{l} :=
|
|
| inl : p → decidable p
|
|
| inr : ¬p → decidable p
|
|
|
|
namespace decidable
|
|
variables {p q : Type}
|
|
|
|
definition pos_witness [C : decidable p] (H : p) : p :=
|
|
decidable.rec_on C (λ Hp, Hp) (λ Hnp, absurd H Hnp)
|
|
|
|
definition neg_witness [C : decidable p] (H : ¬ p) : ¬ p :=
|
|
decidable.rec_on C (λ Hp, absurd Hp H) (λ Hnp, Hnp)
|
|
|
|
definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q :=
|
|
decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp)
|
|
|
|
definition em (p : Type) [H : decidable p] : sum p ¬p :=
|
|
by_cases (λ Hp, sum.inl Hp) (λ Hnp, sum.inr Hnp)
|
|
|
|
definition by_contradiction [Hp : decidable p] (H : ¬p → empty) : p :=
|
|
by_cases
|
|
(assume H₁ : p, H₁)
|
|
(assume H₁ : ¬p, empty.rec (λ e, p) (H H₁))
|
|
|
|
definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
|
decidable.rec_on Hp
|
|
(assume Hp : p, inl (iff.elim_left H Hp))
|
|
(assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp))
|
|
|
|
definition decidable_eq_equiv.{l} {p q : Type.{l}} (Hp : decidable p) (H : p = q) : decidable q :=
|
|
decidable_iff_equiv Hp (iff.of_eq H)
|
|
end decidable
|
|
|
|
section
|
|
variables {p q : Type}
|
|
open decidable (rec_on inl inr)
|
|
|
|
definition decidable_unit [instance] : decidable unit :=
|
|
inl unit.star
|
|
|
|
definition decidable_empty [instance] : decidable empty :=
|
|
inr not_empty
|
|
|
|
definition decidable_prod [instance] [Hp : decidable p] [Hq : decidable q] : decidable (prod p q) :=
|
|
rec_on Hp
|
|
(assume Hp : p, rec_on Hq
|
|
(assume Hq : q, inl (prod.mk Hp Hq))
|
|
(assume Hnq : ¬q, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hq Hnq))))
|
|
(assume Hnp : ¬p, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hp Hnp)))
|
|
|
|
definition decidable_sum [instance] [Hp : decidable p] [Hq : decidable q] : decidable (sum p q) :=
|
|
rec_on Hp
|
|
(assume Hp : p, inl (sum.inl Hp))
|
|
(assume Hnp : ¬p, rec_on Hq
|
|
(assume Hq : q, inl (sum.inr Hq))
|
|
(assume Hnq : ¬q, inr (λ H : sum p q, sum.rec_on H (λ Hp, absurd Hp Hnp) (λ Hq, absurd Hq Hnq))))
|
|
|
|
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
|
|
rec_on Hp
|
|
(assume Hp, inr (not_not_intro Hp))
|
|
(assume Hnp, inl Hnp)
|
|
|
|
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
|
|
rec_on Hp
|
|
(assume Hp : p, rec_on Hq
|
|
(assume Hq : q, inl (assume H, Hq))
|
|
(assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq)))
|
|
(assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp))
|
|
|
|
definition decidable_if [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
|
|
show decidable (prod (p → q) (q → p)), from _
|
|
end
|
|
|
|
definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a)
|
|
definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b)
|
|
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
|
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : decidable_rel (@ne A) :=
|
|
show Π x y : A, decidable (x = y → empty), from _
|
|
|
|
definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A :=
|
|
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
|
|
|
definition if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t :=
|
|
decidable.rec
|
|
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
|
|
(λ Hnc : ¬c, absurd Hc Hnc)
|
|
H
|
|
|
|
definition if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e :=
|
|
decidable.rec
|
|
(λ Hc : c, absurd Hc Hnc)
|
|
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
|
H
|
|
|
|
definition if_t_t (c : Type) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t :=
|
|
decidable.rec
|
|
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
|
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
|
H
|
|
|
|
definition if_unit {A : Type} (t e : A) : (if unit then t else e) = t :=
|
|
if_pos unit.star
|
|
|
|
definition if_empty {A : Type} (t e : A) : (if empty then t else e) = e :=
|
|
if_neg not_empty
|
|
|
|
section
|
|
open eq.ops
|
|
definition if_cond_congr {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A)
|
|
: (if c₁ then t else e) = (if c₂ then t else e) :=
|
|
decidable.rec_on H₁
|
|
(λ Hc₁ : c₁, decidable.rec_on H₂
|
|
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
|
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
|
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
|
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
|
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
|
|
|
definition if_congr_aux {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A}
|
|
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
|
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
|
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
|
|
|
|
definition if_congr {c₁ c₂ : Type} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
|
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
|
|
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
|
|
if_congr_aux Hc Ht He
|
|
|
|
theorem implies_of_if_pos {c t e : Type} [H : decidable c] (h : if c then t else e) : c → t :=
|
|
assume Hc, eq.rec_on (if_pos Hc) h
|
|
|
|
theorem implies_of_if_neg {c t e : Type} [H : decidable c] (h : if c then t else e) : ¬c → e :=
|
|
assume Hnc, eq.rec_on (if_neg Hnc) h
|
|
|
|
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
|
-- to the branches
|
|
definition dite (c : Type) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A :=
|
|
decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc)
|
|
|
|
definition dif_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t (decidable.pos_witness Hc) :=
|
|
decidable.rec
|
|
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
|
|
(λ Hnc : ¬c, absurd Hc Hnc)
|
|
H
|
|
|
|
definition dif_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e (decidable.neg_witness Hnc) :=
|
|
decidable.rec
|
|
(λ Hc : c, absurd Hc Hnc)
|
|
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
|
H
|
|
|
|
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
|
definition dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
|
rfl
|
|
end
|
|
open eq.ops unit
|
|
|
|
definition is_unit (c : Type) [H : decidable c] : Type₀ :=
|
|
if c then unit else empty
|
|
|
|
definition is_empty (c : Type) [H : decidable c] : Type₀ :=
|
|
if c then empty else unit
|
|
|
|
theorem of_is_unit {c : Type} [H₁ : decidable c] (H₂ : is_unit c) : c :=
|
|
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, empty.rec _ (if_neg Hnc ▸ H₂))
|
|
|
|
notation `dec_trivial` := of_is_unit star
|
|
|
|
theorem not_of_not_is_unit {c : Type} [H₁ : decidable c] (H₂ : ¬ is_unit c) : ¬ c :=
|
|
decidable.rec_on H₁ (λ Hc, absurd star (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
|
|
|
theorem not_of_is_empty {c : Type} [H₁ : decidable c] (H₂ : is_empty c) : ¬ c :=
|
|
decidable.rec_on H₁ (λ Hc, empty.rec _ (if_pos Hc ▸ H₂)) (λ Hnc, Hnc)
|
|
|
|
theorem of_not_is_empty {c : Type} [H₁ : decidable c] (H₂ : ¬ is_empty c) : c :=
|
|
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd star (if_neg Hnc ▸ H₂))
|