188 lines
7.4 KiB
Text
188 lines
7.4 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Floris van Doorn
|
|
|
|
The "equivalence closure" of a type-valued relation.
|
|
A more appropriate intuition is the type of words formed from the relation,
|
|
and inverses, concatenations and reflexivity
|
|
-/
|
|
|
|
import .relation eq2 arity
|
|
|
|
open eq equiv
|
|
|
|
inductive e_closure {A : Type} (R : A → A → Type) : A → A → Type :=
|
|
| of_rel : Π{a a'} (r : R a a'), e_closure R a a'
|
|
| of_path : Π{a a'} (pp : a = a'), e_closure R a a'
|
|
| symm : Π{a a'} (r : e_closure R a a'), e_closure R a' a
|
|
| trans : Π{a a' a''} (r : e_closure R a a') (r' : e_closure R a' a''), e_closure R a a''
|
|
|
|
namespace e_closure
|
|
infix ` ⬝r `:75 := e_closure.trans
|
|
postfix `⁻¹ʳ`:(max+10) := e_closure.symm
|
|
notation `[`:max a `]`:0 := e_closure.of_rel a
|
|
abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a)
|
|
end e_closure
|
|
|
|
namespace relation
|
|
|
|
section
|
|
parameters {A : Type}
|
|
(R : A → A → Type)
|
|
local abbreviation T := e_closure R
|
|
|
|
variables ⦃a a' a'' : A⦄ {s : R a a'} {r : T a a} {B C : Type}
|
|
parameter {R}
|
|
protected definition e_closure.elim [unfold 8] {f : A → B}
|
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : f a = f a' :=
|
|
begin
|
|
induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂,
|
|
exact e r,
|
|
exact ap f pp,
|
|
exact IH⁻¹,
|
|
exact IH₁ ⬝ IH₂
|
|
end
|
|
|
|
definition ap_e_closure_elim_h [unfold 12] {B C : Type} {f : A → B} {g : B → C}
|
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
|
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
|
: ap g (e_closure.elim e t) = e_closure.elim e' t :=
|
|
begin
|
|
induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂,
|
|
apply p,
|
|
induction pp, reflexivity,
|
|
exact ap_inv g (e_closure.elim e r) ⬝ inverse2 IH,
|
|
exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂)
|
|
end
|
|
|
|
definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C)
|
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
|
|
: ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t :=
|
|
ap_e_closure_elim_h e (λa a' s, idp) t
|
|
|
|
definition ap_e_closure_elim_h_eq {B C : Type} {f : A → B} {g : B → C}
|
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
|
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
|
: ap_e_closure_elim_h e p t =
|
|
ap_e_closure_elim g e t ⬝ ap (λx, e_closure.elim x t) (eq_of_homotopy3 p) :=
|
|
begin
|
|
fapply homotopy3.rec_on p,
|
|
intro q, esimp at q, induction q,
|
|
esimp, rewrite eq_of_homotopy3_id
|
|
end
|
|
|
|
theorem ap_ap_e_closure_elim_h {B C D : Type} {f : A → B}
|
|
{g : B → C} (h : C → D)
|
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
{e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')}
|
|
(p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a')
|
|
: square (ap (ap h) (ap_e_closure_elim_h e p t))
|
|
(ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t)
|
|
(ap_compose h g (e_closure.elim e t))⁻¹
|
|
(ap_e_closure_elim_h e' (λa a' s, (ap (ap h) (p s))⁻¹) t) :=
|
|
begin
|
|
induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂,
|
|
{ esimp,
|
|
apply square_of_eq, exact !con.right_inv ⬝ !con.left_inv⁻¹},
|
|
{ induction pp, apply ids},
|
|
{ rewrite [▸*,ap_con (ap h)],
|
|
refine (transpose !ap_compose_inv)⁻¹ᵛ ⬝h _,
|
|
rewrite [con_inv,inv_inv,-inv2_inv],
|
|
exact !ap_inv2 ⬝v square_inv2 IH},
|
|
{ rewrite [▸*,ap_con (ap h)],
|
|
refine (transpose !ap_compose_con)⁻¹ᵛ ⬝h _,
|
|
rewrite [con_inv,inv_inv,con2_inv],
|
|
refine !ap_con2 ⬝v square_con2 IH₁ IH₂},
|
|
end
|
|
|
|
theorem ap_ap_e_closure_elim {B C D : Type} {f : A → B}
|
|
(g : B → C) (h : C → D)
|
|
(e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a')
|
|
: square (ap (ap h) (ap_e_closure_elim g e t))
|
|
(ap_e_closure_elim_h e (λa a' s, ap_compose h g (e s)) t)
|
|
(ap_compose h g (e_closure.elim e t))⁻¹
|
|
(ap_e_closure_elim h (λa a' r, ap g (e r)) t) :=
|
|
!ap_ap_e_closure_elim_h
|
|
|
|
open e_closure
|
|
definition is_equivalence_e_closure : is_equivalence T :=
|
|
begin
|
|
constructor,
|
|
intro a, exact rfl,
|
|
intro a a' t, exact t⁻¹ʳ,
|
|
intro a a' a'' t t', exact t ⬝r t',
|
|
end
|
|
|
|
definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(t : e_closure R a a') (p : a = a'')
|
|
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t :=
|
|
by induction p; exact !idp_con⁻¹
|
|
|
|
definition e_closure.transport_right {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(t : e_closure R a a') (p : a' = a'')
|
|
: e_closure.elim e (p ▸ t) = e_closure.elim e t ⬝ (ap f p) :=
|
|
by induction p; reflexivity
|
|
|
|
definition e_closure.transport_lr {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(t : e_closure R a a) (p : a = a')
|
|
: e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) :=
|
|
by induction p; esimp; exact !idp_con⁻¹
|
|
|
|
--dependent elimination:
|
|
|
|
variables {P : B → Type} {Q : C → Type} {f : A → B} {g : B → C} {f' : Π(a : A), P (f a)}
|
|
protected definition e_closure.elimo [unfold 11]
|
|
(p : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(po : Π⦃a a' : A⦄ (s : R a a'), f' a =[p s] f' a')
|
|
(t : T a a') : f' a =[e_closure.elim p t] f' a' :=
|
|
begin
|
|
induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂,
|
|
exact po r,
|
|
induction pp, constructor,
|
|
exact IH⁻¹ᵒ,
|
|
exact IH₁ ⬝o IH₂
|
|
end
|
|
|
|
definition ap_e_closure_elimo_h [unfold 12] {g' : Πb, Q (g b)}
|
|
(p : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(po : Π⦃a a' : A⦄ (s : R a a'), g' (f a) =[p s] g' (f a'))
|
|
(q : Π⦃a a' : A⦄ (s : R a a'), apdo g' (p s) = po s)
|
|
(t : T a a') : apdo g' (e_closure.elim p t) = e_closure.elimo p po t :=
|
|
begin
|
|
induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂,
|
|
apply q,
|
|
induction pp, reflexivity,
|
|
esimp [e_closure.elim],
|
|
exact apdo_inv g' (e_closure.elim p r) ⬝ IH⁻²ᵒ,
|
|
exact apdo_con g' (e_closure.elim p r) (e_closure.elim p r') ⬝ (IH₁ ◾o IH₂)
|
|
end
|
|
|
|
/-
|
|
definition e_closure_elimo_ap {g' : Π(a : A), Q (g (f a))}
|
|
(p : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(po : Π⦃a a' : A⦄ (s : R a a'), g' a =[ap g (p s)] g' a')
|
|
(t : T a a') : e_closure.elimo (λa a' r, ap g (p r)) po t =
|
|
change_path (ap_e_closure_elim g p t)
|
|
(pathover_ap Q g (e_closure.elimo p (λa a' s, pathover_of_pathover_ap Q g (po s)) t)) :=
|
|
begin
|
|
induction t with a a' r a a' pp a a' r IH a a' a'' r r' IH₁ IH₂,
|
|
{ esimp, exact (to_right_inv !pathover_compose (po r))⁻¹},
|
|
{ induction pp, reflexivity},
|
|
{ exact sorry},
|
|
{ exact sorry},
|
|
end
|
|
|
|
definition e_closure_elimo_ap' {g' : Π(a : A), Q (g (f a))}
|
|
(p : Π⦃a a' : A⦄, R a a' → f a = f a')
|
|
(po : Π⦃a a' : A⦄ (s : R a a'), g' a =[ap g (p s)] g' a')
|
|
(t : T a a') :
|
|
pathover_of_pathover_ap Q g (change_path (ap_e_closure_elim g p t)⁻¹ (e_closure.elimo (λa a' r, ap g (p r)) po t)) =
|
|
e_closure.elimo p (λa a' s, pathover_of_pathover_ap Q g (po s)) t :=
|
|
sorry
|
|
-/
|
|
|
|
end
|
|
end relation
|