lean2/library/data/nat/div.lean
2016-02-29 11:53:26 -08:00

616 lines
25 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
Definitions and properties of div and mod. Much of the development follows Isabelle's library.
-/
import data.nat.sub
open eq.ops well_founded decidable prod
namespace nat
/- div -/
-- auxiliary lemma used to justify div
private definition div_rec_lemma {x y : nat} : 0 < y ∧ y ≤ x → x - y < x :=
and.rec (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero
protected definition div := fix div.F
definition nat_has_divide [instance] [priority nat.prio] : has_div nat :=
has_div.mk nat.div
theorem div_def (x y : nat) : div x y = if 0 < y ∧ y ≤ x then div (x - y) y + 1 else 0 :=
congr_fun (fix_eq div.F x) y
protected theorem div_zero [simp] (a : ) : a / 0 = 0 :=
div_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
theorem div_eq_zero_of_lt {a b : } (h : a < b) : a / b = 0 :=
div_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
protected theorem zero_div [simp] (b : ) : 0 / b = 0 :=
div_def 0 b ⬝ if_neg (and.rec not_le_of_gt)
theorem div_eq_succ_sub_div {a b : } (h₁ : b > 0) (h₂ : a ≥ b) : a / b = succ ((a - b) / b) :=
div_def a b ⬝ if_pos (and.intro h₁ h₂)
theorem add_div_self (x : ) {z : } (H : z > 0) : (x + z) / z = succ (x / z) :=
calc
(x + z) / z = if 0 < z ∧ z ≤ x + z then (x + z - z) / z + 1 else 0 : !div_def
... = (x + z - z) / z + 1 : if_pos (and.intro H (le_add_left z x))
... = succ (x / z) : {!nat.add_sub_cancel}
theorem add_div_self_left {x : } (z : ) (H : x > 0) : (x + z) / x = succ (z / x) :=
!add.comm ▸ !add_div_self H
local attribute succ_mul [simp]
theorem add_mul_div_self {x y z : } (H : z > 0) : (x + y * z) / z = x / z + y :=
nat.induction_on y
(by simp)
(take y,
assume IH : (x + y * z) / z = x / z + y, calc
(x + succ y * z) / z = (x + y * z + z) / z : by inst_simp
... = succ ((x + y * z) / z) : !add_div_self H
... = succ (x / z + y) : IH)
theorem add_mul_div_self_left (x z : ) {y : } (H : y > 0) : (x + y * z) / y = x / y + z :=
!mul.comm ▸ add_mul_div_self H
protected theorem mul_div_cancel (m : ) {n : } (H : n > 0) : m * n / n = m :=
calc
m * n / n = (0 + m * n) / n : by simp
... = 0 / n + m : add_mul_div_self H
... = m : by simp
protected theorem mul_div_cancel_left {m : } (n : ) (H : m > 0) : m * n / m = n :=
!mul.comm ▸ !nat.mul_div_cancel H
/- mod -/
private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x
protected definition mod := fix mod.F
definition nat_has_mod [instance] [priority nat.prio] : has_mod nat :=
has_mod.mk nat.mod
notation [priority nat.prio] a ≡ b `[mod `:0 c:0 `]` := a % c = b % c
theorem mod_def (x y : nat) : mod x y = if 0 < y ∧ y ≤ x then mod (x - y) y else x :=
congr_fun (fix_eq mod.F x) y
theorem mod_zero [simp] (a : ) : a % 0 = a :=
mod_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
theorem mod_eq_of_lt {a b : } (h : a < b) : a % b = a :=
mod_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
theorem zero_mod [simp] (b : ) : 0 % b = 0 :=
mod_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
theorem mod_eq_sub_mod {a b : } (h₁ : b > 0) (h₂ : a ≥ b) : a % b = (a - b) % b :=
mod_def a b ⬝ if_pos (and.intro h₁ h₂)
theorem add_mod_self [simp] (x z : ) : (x + z) % z = x % z :=
by_cases_zero_pos z
(by rewrite add_zero)
(take z, assume H : z > 0,
calc
(x + z) % z = if 0 < z ∧ z ≤ x + z then (x + z - z) % z else _ : mod_def
... = (x + z - z) % z : if_pos (and.intro H (le_add_left z x))
... = x % z : nat.add_sub_cancel)
theorem add_mod_self_left [simp] (x z : ) : (x + z) % x = z % x :=
!add.comm ▸ !add_mod_self
local attribute succ_mul [simp]
theorem add_mul_mod_self [simp] (x y z : ) : (x + y * z) % z = x % z :=
nat.induction_on y (by simp) (by inst_simp)
theorem add_mul_mod_self_left [simp] (x y z : ) : (x + y * z) % y = x % y :=
by inst_simp
theorem mul_mod_left [simp] (m n : ) : (m * n) % n = 0 :=
calc (m * n) % n = (0 + m * n) % n : by simp
... = 0 : by inst_simp
theorem mul_mod_right [simp] (m n : ) : (m * n) % m = 0 :=
by inst_simp
theorem mod_lt (x : ) {y : } (H : y > 0) : x % y < y :=
nat.case_strong_induction_on x
(show 0 % y < y, from !zero_mod⁻¹ ▸ H)
(take x,
assume IH : ∀x', x' ≤ x → x' % y < y,
show succ x % y < y, from
by_cases -- (succ x < y)
(assume H1 : succ x < y,
have succ x % y = succ x, from mod_eq_of_lt H1,
show succ x % y < y, from this⁻¹ ▸ H1)
(assume H1 : ¬ succ x < y,
have y ≤ succ x, from le_of_not_gt H1,
have h : succ x % y = (succ x - y) % y, from mod_eq_sub_mod H this,
have succ x - y < succ x, from sub_lt !succ_pos H,
have succ x - y ≤ x, from le_of_lt_succ this,
show succ x % y < y, from h⁻¹ ▸ IH _ this))
theorem mod_one (n : ) : n % 1 = 0 :=
have H1 : n % 1 < 1, from !mod_lt !succ_pos,
eq_zero_of_le_zero (le_of_lt_succ H1)
/- properties of div and mod -/
-- the quotient - remainder theorem
theorem eq_div_mul_add_mod (x y : ) : x = x / y * y + x % y :=
begin
eapply by_cases_zero_pos y,
show x = x / 0 * 0 + x % 0, from
(calc
x / 0 * 0 + x % 0 = 0 + x % 0 : mul_zero
... = x % 0 : zero_add
... = x : mod_zero)⁻¹,
intro y H,
show x = x / y * y + x % y,
begin
eapply nat.case_strong_induction_on x,
show 0 = (0 / y) * y + 0 % y, by rewrite [zero_mod, add_zero, nat.zero_div, zero_mul],
intro x IH,
show succ x = succ x / y * y + succ x % y, from
if H1 : succ x < y then
have H2 : succ x / y = 0, from div_eq_zero_of_lt H1,
have H3 : succ x % y = succ x, from mod_eq_of_lt H1,
begin rewrite [H2, H3, zero_mul, zero_add] end
else
have H2 : y ≤ succ x, from le_of_not_gt H1,
have H3 : succ x / y = succ ((succ x - y) / y), from div_eq_succ_sub_div H H2,
have H4 : succ x % y = (succ x - y) % y, from mod_eq_sub_mod H H2,
have H5 : succ x - y < succ x, from sub_lt !succ_pos H,
have H6 : succ x - y ≤ x, from le_of_lt_succ H5,
(calc
succ x / y * y + succ x % y =
succ ((succ x - y) / y) * y + succ x % y : by rewrite H3
... = ((succ x - y) / y) * y + y + succ x % y : by rewrite succ_mul
... = ((succ x - y) / y) * y + y + (succ x - y) % y : by rewrite H4
... = ((succ x - y) / y) * y + (succ x - y) % y + y : add.right_comm
... = succ x - y + y : by rewrite -(IH _ H6)
... = succ x : nat.sub_add_cancel H2)⁻¹
end
end
theorem mod_eq_sub_div_mul (x y : ) : x % y = x - x / y * y :=
nat.eq_sub_of_add_eq (!add.comm ▸ !eq_div_mul_add_mod)⁻¹
theorem mod_add_mod (m n k : ) : (m % n + k) % n = (m + k) % n :=
by rewrite [eq_div_mul_add_mod m n at {2}, add.assoc, add.comm (m / n * n), add_mul_mod_self]
theorem add_mod_mod (m n k : ) : (m + n % k) % k = (m + n) % k :=
by rewrite [add.comm, mod_add_mod, add.comm]
theorem add_mod_eq_add_mod_right {m n k : } (i : ) (H : m % n = k % n) :
(m + i) % n = (k + i) % n :=
by rewrite [-mod_add_mod, -mod_add_mod k, H]
theorem add_mod_eq_add_mod_left {m n k : } (i : ) (H : m % n = k % n) :
(i + m) % n = (i + k) % n :=
by rewrite [add.comm, add_mod_eq_add_mod_right _ H, add.comm]
theorem mod_eq_mod_of_add_mod_eq_add_mod_right {m n k i : } :
(m + i) % n = (k + i) % n → m % n = k % n :=
by_cases_zero_pos n
(by rewrite [*mod_zero]; apply eq_of_add_eq_add_right)
(take n,
assume npos : n > 0,
assume H1 : (m + i) % n = (k + i) % n,
have H2 : (m + i % n) % n = (k + i % n) % n, by rewrite [*add_mod_mod, H1],
have H3 : (m + i % n + (n - i % n)) % n = (k + i % n + (n - i % n)) % n,
from add_mod_eq_add_mod_right _ H2,
begin
revert H3,
rewrite [*add.assoc, add_sub_of_le (le_of_lt (!mod_lt npos)), *add_mod_self],
intros, assumption
end)
theorem mod_eq_mod_of_add_mod_eq_add_mod_left {m n k i : } :
(i + m) % n = (i + k) % n → m % n = k % n :=
by rewrite [add.comm i m, add.comm i k]; apply mod_eq_mod_of_add_mod_eq_add_mod_right
theorem mod_le {x y : } : x % y ≤ x :=
!eq_div_mul_add_mod⁻¹ ▸ !le_add_left
theorem eq_remainder {q1 r1 q2 r2 y : } (H1 : r1 < y) (H2 : r2 < y)
(H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 :=
calc
r1 = r1 % y : mod_eq_of_lt H1
... = (r1 + q1 * y) % y : !add_mul_mod_self⁻¹
... = (q1 * y + r1) % y : add.comm
... = (r2 + q2 * y) % y : by rewrite [H3, add.comm]
... = r2 % y : !add_mul_mod_self
... = r2 : mod_eq_of_lt H2
theorem eq_quotient {q1 r1 q2 r2 y : } (H1 : r1 < y) (H2 : r2 < y)
(H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 :=
have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H1 H2 H3) ▸ H3,
have H5 : q1 * y = q2 * y, from add.right_cancel H4,
have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
protected theorem mul_div_mul_left {z : } (x y : ) (zpos : z > 0) :
(z * x) / (z * y) = x / y :=
if H : y = 0 then
by rewrite [H, mul_zero, *nat.div_zero]
else
have ypos : y > 0, from pos_of_ne_zero H,
have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) % (z * y) < z * y, from !mod_lt zypos,
have H2 : z * (x % y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
eq_quotient H1 H2
(calc
((z * x) / (z * y)) * (z * y) + (z * x) % (z * y) = z * x : eq_div_mul_add_mod
... = z * (x / y * y + x % y) : eq_div_mul_add_mod
... = z * (x / y * y) + z * (x % y) : left_distrib
... = (x / y) * (z * y) + z * (x % y) : mul.left_comm)
protected theorem mul_div_mul_right {x z y : } (zpos : z > 0) : (x * z) / (y * z) = x / y :=
!mul.comm ▸ !mul.comm ▸ !nat.mul_div_mul_left zpos
theorem mul_mod_mul_left (z x y : ) : (z * x) % (z * y) = z * (x % y) :=
or.elim (eq_zero_or_pos z)
(assume H : z = 0, H⁻¹ ▸ calc
(0 * x) % (z * y) = 0 % (z * y) : zero_mul
... = 0 : zero_mod
... = 0 * (x % y) : zero_mul)
(assume zpos : z > 0,
or.elim (eq_zero_or_pos y)
(assume H : y = 0, by rewrite [H, mul_zero, *mod_zero])
(assume ypos : y > 0,
have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) % (z * y) < z * y, from !mod_lt zypos,
have H2 : z * (x % y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
eq_remainder H1 H2
(calc
((z * x) / (z * y)) * (z * y) + (z * x) % (z * y) = z * x : eq_div_mul_add_mod
... = z * (x / y * y + x % y) : eq_div_mul_add_mod
... = z * (x / y * y) + z * (x % y) : left_distrib
... = (x / y) * (z * y) + z * (x % y) : mul.left_comm)))
theorem mul_mod_mul_right (x z y : ) : (x * z) % (y * z) = (x % y) * z :=
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
theorem mod_self (n : ) : n % n = 0 :=
nat.cases_on n (by rewrite zero_mod)
(take n, by rewrite [-zero_add (succ n) at {1}, add_mod_self])
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) % k = ((m % k) * n) % k :=
calc
(m * n) % k = (((m / k) * k + m % k) * n) % k : eq_div_mul_add_mod
... = ((m % k) * n) % k :
by rewrite [right_distrib, mul.right_comm, add.comm, add_mul_mod_self]
theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) % k = (m * (n % k)) % k :=
!mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod
protected theorem div_one (n : ) : n / 1 = n :=
have n / 1 * 1 + n % 1 = n, from !eq_div_mul_add_mod⁻¹,
begin rewrite [-this at {2}, mul_one, mod_one] end
protected theorem div_self {n : } (H : n > 0) : n / n = 1 :=
have (n * 1) / (n * 1) = 1 / 1, from !nat.mul_div_mul_left H,
by rewrite [nat.div_one at this, -this, *mul_one]
theorem div_mul_cancel_of_mod_eq_zero {m n : } (H : m % n = 0) : m / n * n = m :=
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]
theorem mul_div_cancel_of_mod_eq_zero {m n : } (H : m % n = 0) : n * (m / n) = m :=
!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H
/- dvd -/
theorem dvd_of_mod_eq_zero {m n : } (H : n % m = 0) : m n :=
dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H)
theorem mod_eq_zero_of_dvd {m n : } (H : m n) : n % m = 0 :=
dvd.elim H (take z, assume H1 : n = m * z, H1⁻¹ ▸ !mul_mod_right)
theorem dvd_iff_mod_eq_zero (m n : ) : m n ↔ n % m = 0 :=
iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero
definition dvd.decidable_rel [instance] : decidable_rel dvd :=
take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero)
protected theorem div_mul_cancel {m n : } (H : n m) : m / n * n = m :=
div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H)
protected theorem mul_div_cancel' {m n : } (H : n m) : n * (m / n) = m :=
!mul.comm ▸ nat.div_mul_cancel H
theorem dvd_of_dvd_add_left {m n₁ n₂ : } (H₁ : m n₁ + n₂) (H₂ : m n₁) : m n₂ :=
obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁,
obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂,
have aux : m * (c₁ - c₂) = n₂, from calc
m * (c₁ - c₂) = m * c₁ - m * c₂ : nat.mul_sub_left_distrib
... = n₁ + n₂ - m * c₂ : Hc₁
... = n₁ + n₂ - n₁ : Hc₂
... = n₂ : nat.add_sub_cancel_left,
dvd.intro aux
theorem dvd_of_dvd_add_right {m n₁ n₂ : } (H : m n₁ + n₂) : m n₂ → m n₁ :=
nat.dvd_of_dvd_add_left (!add.comm ▸ H)
theorem dvd_sub {m n₁ n₂ : } (H1 : m n₁) (H2 : m n₂) : m n₁ - n₂ :=
by_cases
(assume H3 : n₁ ≥ n₂,
have H4 : n₁ = n₁ - n₂ + n₂, from (nat.sub_add_cancel H3)⁻¹,
show m n₁ - n₂, from nat.dvd_of_dvd_add_right (H4 ▸ H1) H2)
(assume H3 : ¬ (n₁ ≥ n₂),
have H4 : n₁ - n₂ = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_ge H3)),
show m n₁ - n₂, from H4⁻¹ ▸ dvd_zero _)
theorem dvd.antisymm {m n : } : m n → n m → m = n :=
by_cases_zero_pos n
(assume H1, assume H2 : 0 m, eq_zero_of_zero_dvd H2)
(take n,
assume Hpos : n > 0,
assume H1 : m n,
assume H2 : n m,
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
have n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
have l * k = 1, from eq_one_of_mul_eq_self_right Hpos this,
have k = 1, from eq_one_of_mul_eq_one_left this,
show m = n, from (mul_one m)⁻¹ ⬝ (this ▸ Hk⁻¹))
protected theorem mul_div_assoc (m : ) {n k : } (H : k n) : m * n / k = m * (n / k) :=
or.elim (eq_zero_or_pos k)
(assume H1 : k = 0,
calc
m * n / k = m * n / 0 : H1
... = 0 : nat.div_zero
... = m * 0 : mul_zero m
... = m * (n / 0) : nat.div_zero
... = m * (n / k) : H1)
(assume H1 : k > 0,
have H2 : n = n / k * k, from (nat.div_mul_cancel H)⁻¹,
calc
m * n / k = m * (n / k * k) / k : H2
... = m * (n / k) * k / k : mul.assoc
... = m * (n / k) : nat.mul_div_cancel _ H1)
theorem dvd_of_mul_dvd_mul_left {m n k : } (kpos : k > 0) (H : k * m k * n) : m n :=
dvd.elim H
(take l,
assume H1 : k * n = k * m * l,
have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc),
dvd.intro H2⁻¹)
theorem dvd_of_mul_dvd_mul_right {m n k : } (kpos : k > 0) (H : m * k n * k) : m n :=
nat.dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H)
lemma dvd_of_eq_mul (i j n : nat) : n = j*i → j n :=
begin intros, subst n, apply dvd_mul_right end
theorem div_dvd_div {k m n : } (H1 : k m) (H2 : m n) : m / k n / k :=
have H3 : m = m / k * k, from (nat.div_mul_cancel H1)⁻¹,
have H4 : n = n / k * k, from (nat.div_mul_cancel (dvd.trans H1 H2))⁻¹,
or.elim (eq_zero_or_pos k)
(assume H5 : k = 0,
have H6: n / k = 0, from (congr_arg _ H5 ⬝ !nat.div_zero),
H6⁻¹ ▸ !dvd_zero)
(assume H5 : k > 0,
nat.dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2))
protected theorem div_eq_iff_eq_mul_right {m n : } (k : ) (H : n > 0) (H' : n m) :
m / n = k ↔ m = n * k :=
iff.intro
(assume H1, by rewrite [-H1, nat.mul_div_cancel' H'])
(assume H1, by rewrite [H1, !nat.mul_div_cancel_left H])
protected theorem div_eq_iff_eq_mul_left {m n : } (k : ) (H : n > 0) (H' : n m) :
m / n = k ↔ m = k * n :=
!mul.comm ▸ !nat.div_eq_iff_eq_mul_right H H'
protected theorem eq_mul_of_div_eq_right {m n k : } (H1 : n m) (H2 : m / n = k) :
m = n * k :=
calc
m = n * (m / n) : nat.mul_div_cancel' H1
... = n * k : H2
protected theorem div_eq_of_eq_mul_right {m n k : } (H1 : n > 0) (H2 : m = n * k) :
m / n = k :=
calc
m / n = n * k / n : H2
... = k : !nat.mul_div_cancel_left H1
protected theorem eq_mul_of_div_eq_left {m n k : } (H1 : n m) (H2 : m / n = k) :
m = k * n :=
!mul.comm ▸ !nat.eq_mul_of_div_eq_right H1 H2
protected theorem div_eq_of_eq_mul_left {m n k : } (H1 : n > 0) (H2 : m = k * n) :
m / n = k :=
!nat.div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2)
lemma add_mod_eq_of_dvd (i j n : nat) : n j → (i + j) % n = i % n :=
assume h,
obtain k (hk : j = n * k), from exists_eq_mul_right_of_dvd h,
begin
subst j, rewrite mul.comm,
apply add_mul_mod_self
end
/- / and ordering -/
lemma le_of_dvd {m n : nat} : n > 0 → m n → m ≤ n :=
assume (h₁ : n > 0) (h₂ : m n),
have h₃ : n % m = 0, from mod_eq_zero_of_dvd h₂,
by_contradiction
(λ nle : ¬ m ≤ n,
have h₄ : m > n, from lt_of_not_ge nle,
have h₅ : n % m = n, from mod_eq_of_lt h₄,
begin
rewrite h₃ at h₅, subst n,
exact absurd h₁ (lt.irrefl 0)
end)
theorem div_mul_le (m n : ) : m / n * n ≤ m :=
calc
m = m / n * n + m % n : eq_div_mul_add_mod
... ≥ m / n * n : le_add_right
protected theorem div_le_of_le_mul {m n k : } (H : m ≤ n * k) : m / k ≤ n :=
or.elim (eq_zero_or_pos k)
(assume H1 : k = 0,
calc
m / k = m / 0 : H1
... = 0 : nat.div_zero
... ≤ n : zero_le)
(assume H1 : k > 0,
le_of_mul_le_mul_right (calc
m / k * k ≤ m / k * k + m % k : le_add_right
... = m : eq_div_mul_add_mod
... ≤ n * k : H) H1)
protected theorem div_le_self (m n : ) : m / n ≤ m :=
nat.cases_on n (!nat.div_zero⁻¹ ▸ !zero_le)
take n,
have H : m ≤ m * succ n, from calc
m = m * 1 : mul_one
... ≤ m * succ n : !mul_le_mul_left (succ_le_succ !zero_le),
nat.div_le_of_le_mul H
protected theorem mul_le_of_le_div {m n k : } (H : m ≤ n / k) : m * k ≤ n :=
calc
m * k ≤ n / k * k : !mul_le_mul_right H
... ≤ n : div_mul_le
protected theorem le_div_of_mul_le {m n k : } (H1 : k > 0) (H2 : m * k ≤ n) : m ≤ n / k :=
have H3 : m * k < (succ (n / k)) * k, from
calc
m * k ≤ n : H2
... = n / k * k + n % k : eq_div_mul_add_mod
... < n / k * k + k : add_lt_add_left (!mod_lt H1)
... = (succ (n / k)) * k : succ_mul,
le_of_lt_succ (lt_of_mul_lt_mul_right H3)
protected theorem le_div_iff_mul_le {m n k : } (H : k > 0) : m ≤ n / k ↔ m * k ≤ n :=
iff.intro !nat.mul_le_of_le_div (!nat.le_div_of_mul_le H)
protected theorem div_le_div {m n : } (k : ) (H : m ≤ n) : m / k ≤ n / k :=
by_cases_zero_pos k
(by rewrite [*nat.div_zero])
(take k, assume H1 : k > 0, nat.le_div_of_mul_le H1 (le.trans !div_mul_le H))
protected theorem div_lt_of_lt_mul {m n k : } (H : m < n * k) : m / k < n :=
lt_of_mul_lt_mul_right (calc
m / k * k ≤ m / k * k + m % k : le_add_right
... = m : eq_div_mul_add_mod
... < n * k : H)
protected theorem lt_mul_of_div_lt {m n k : } (H1 : k > 0) (H2 : m / k < n) : m < n * k :=
have H3 : succ (m / k) * k ≤ n * k, from !mul_le_mul_right (succ_le_of_lt H2),
have H4 : m / k * k + k ≤ n * k, by rewrite [succ_mul at H3]; apply H3,
calc
m = m / k * k + m % k : eq_div_mul_add_mod
... < m / k * k + k : add_lt_add_left (!mod_lt H1)
... ≤ n * k : H4
protected theorem div_lt_iff_lt_mul {m n k : } (H : k > 0) : m / k < n ↔ m < n * k :=
iff.intro (!nat.lt_mul_of_div_lt H) !nat.div_lt_of_lt_mul
protected theorem div_le_iff_le_mul_of_div {m n : } (k : ) (H : n > 0) (H' : n m) :
m / n ≤ k ↔ m ≤ k * n :=
by rewrite [propext (!le_iff_mul_le_mul_right H), !nat.div_mul_cancel H']
protected theorem le_mul_of_div_le_of_div {m n k : } (H1 : n > 0) (H2 : n m) (H3 : m / n ≤ k) :
m ≤ k * n :=
iff.mp (!nat.div_le_iff_le_mul_of_div H1 H2) H3
-- needed for integer division
theorem mul_sub_div_of_lt {m n k : } (H : k < m * n) :
(m * n - (k + 1)) / m = n - k / m - 1 :=
begin
have H1 : k / m < n, from nat.div_lt_of_lt_mul (!mul.comm ▸ H),
have H2 : n - k / m ≥ 1, from
nat.le_sub_of_add_le (calc
1 + k / m = succ (k / m) : add.comm
... ≤ n : succ_le_of_lt H1),
have H3 : n - k / m = n - k / m - 1 + 1, from (nat.sub_add_cancel H2)⁻¹,
have H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero k (begin rewrite [H' at H, zero_mul at H], exact H end)),
have H5 : k % m + 1 ≤ m, from succ_le_of_lt (!mod_lt H4),
have H6 : m - (k % m + 1) < m, from nat.sub_lt_self H4 !succ_pos,
calc
(m * n - (k + 1)) / m = (m * n - (k / m * m + k % m + 1)) / m : eq_div_mul_add_mod
... = (m * n - k / m * m - (k % m + 1)) / m : by rewrite [*nat.sub_sub]
... = ((n - k / m) * m - (k % m + 1)) / m :
by rewrite [mul.comm m, nat.mul_sub_right_distrib]
... = ((n - k / m - 1) * m + m - (k % m + 1)) / m :
by rewrite [H3 at {1}, right_distrib, nat.one_mul]
... = ((n - k / m - 1) * m + (m - (k % m + 1))) / m : {nat.add_sub_assoc H5 _}
... = (m - (k % m + 1)) / m + (n - k / m - 1) :
by rewrite [add.comm, (add_mul_div_self H4)]
... = n - k / m - 1 :
by rewrite [div_eq_zero_of_lt H6, zero_add]
end
private lemma div_div_aux (a b c : nat) : b > 0 → c > 0 → (a / b) / c = a / (b * c) :=
suppose b > 0, suppose c > 0,
nat.strong_induction_on a
(λ a ih,
let k₁ := a / (b*c) in
let k₂ := a %(b*c) in
have bc_pos : b*c > 0, from mul_pos `b > 0` `c > 0`,
have k₂ < b * c, from mod_lt _ bc_pos,
have k₂ ≤ a, from !mod_le,
or.elim (eq_or_lt_of_le this)
(suppose k₂ = a,
have i₁ : a < b * c, by rewrite -this; assumption,
have k₁ = 0, from div_eq_zero_of_lt i₁,
have a / b < c, by rewrite [mul.comm at i₁]; exact nat.div_lt_of_lt_mul i₁,
begin
rewrite [`k₁ = 0`],
show (a / b) / c = 0, from div_eq_zero_of_lt `a / b < c`
end)
(suppose k₂ < a,
have a = k₁*(b*c) + k₂, from eq_div_mul_add_mod a (b*c),
have a / b = k₁*c + k₂ / b, by
rewrite [this at {1}, mul.comm b c at {2}, -mul.assoc,
add.comm, add_mul_div_self `b > 0`, add.comm],
have e₁ : (a / b) / c = k₁ + (k₂ / b) / c, by
rewrite [this, add.comm, add_mul_div_self `c > 0`, add.comm],
have e₂ : (k₂ / b) / c = k₂ / (b * c), from ih k₂ `k₂ < a`,
have e₃ : k₂ / (b * c) = 0, from div_eq_zero_of_lt `k₂ < b * c`,
have (k₂ / b) / c = 0, by rewrite [e₂, e₃],
show (a / b) / c = k₁, by rewrite [e₁, this]))
protected lemma div_div_eq_div_mul (a b c : nat) : (a / b) / c = a / (b * c) :=
begin
cases b with b,
rewrite [zero_mul, *nat.div_zero, nat.zero_div],
cases c with c,
rewrite [mul_zero, *nat.div_zero],
apply div_div_aux a (succ b) (succ c) dec_trivial dec_trivial
end
lemma div_lt_of_ne_zero : ∀ {n : nat}, n ≠ 0 → n / 2 < n
| 0 h := absurd rfl h
| (succ n) h :=
begin
apply nat.div_lt_of_lt_mul,
rewrite [-add_one, right_distrib],
change n + 1 < (n * 1 + n) + (1 + 1),
rewrite [mul_one, -add.assoc],
apply add_lt_add_right,
show n < n + n + 1,
begin
rewrite [add.assoc, -add_zero n at {1}],
apply add_lt_add_left,
apply zero_lt_succ
end
end
end nat