lean2/hott/equiv_precomp.hlean
2014-12-16 13:11:32 -08:00

81 lines
3.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
open eq function funext
namespace is_equiv
context
--Precomposition of arbitrary functions with f
definition precomp {A B : Type} (f : A → B) (C : Type) (h : B → C) : A → C := h ∘ f
--Postcomposition of arbitrary functions with f
definition postcomp {A B : Type} (f : A → B) (C : Type) (l : C → A) : C → B := f ∘ l
--Precomposing with an equivalence is an equivalence
definition precomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
: is_equiv (precomp f C) :=
adjointify (precomp f C) (λh, h ∘ f⁻¹)
(λh, path_pi (λx, ap h (sect f x)))
(λg, path_pi (λy, ap g (retr f y)))
--Postcomposing with an equivalence is an equivalence
definition postcomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
: is_equiv (postcomp f C) :=
adjointify (postcomp f C) (λl, f⁻¹ ∘ l)
(λh, path_pi (λx, retr f (h x)))
(λg, path_pi (λy, sect f (g y)))
--Conversely, if pre- or post-composing with a function is always an equivalence,
--then that function is also an equivalence. It's convenient to know
--that we only need to assume the equivalence when the other type is
--the domain or the codomain.
protected definition isequiv_precompose_eq {A B : Type} (f : A → B) (C D : Type)
(Ceq : is_equiv (precomp f C)) (Deq : is_equiv (precomp f D)) (k : C → D) (h : A → C) :
k ∘ (inv (precomp f C)) h = (inv (precomp f D)) (k ∘ h) :=
let invD := inv (precomp f D) in
let invC := inv (precomp f C) in
have eq1 : invD (k ∘ h) = k ∘ (invC h),
from calc invD (k ∘ h) = invD (k ∘ (precomp f C (invC h))) : retr (precomp f C) h
... = k ∘ (invC h) : !sect,
eq1⁻¹
definition from_isequiv_precomp {A B : Type} (f : A → B) (Aeq : is_equiv (precomp f A))
(Beq : is_equiv (precomp f B)) : (is_equiv f) :=
let invA := inv (precomp f A) in
let invB := inv (precomp f B) in
let sect' : f ∘ (invA id) id := (λx,
calc f (invA id x) = (f ∘ invA id) x : idp
... = invB (f ∘ id) x : apD10 (!isequiv_precompose_eq)
... = invB (precomp f B id) x : idp
... = x : apD10 (sect (precomp f B) id))
in
let retr' : (invA id) ∘ f id := (λx,
calc invA id (f x) = precomp f A (invA id) x : idp
... = x : apD10 (retr (precomp f A) id)) in
adjointify f (invA id) sect' retr'
end
end is_equiv
--Bundled versions of the previous theorems
namespace equiv
definition precomp_closed [F : funext] {A B C : Type} {eqf : A ≃ B}
: (B → C) ≃ (A → C) :=
let f := to_fun eqf in
let Hf := to_is_equiv eqf in
equiv.mk (is_equiv.precomp f C)
(@is_equiv.precomp_closed A B f F Hf C)
definition postcomp_closed [F : funext] {A B C : Type} {eqf : A ≃ B}
: (C → A) ≃ (C → B) :=
let f := to_fun eqf in
let Hf := to_is_equiv eqf in
equiv.mk (is_equiv.postcomp f C)
(@is_equiv.postcomp_closed A B f F Hf C)
end equiv