64 lines
2 KiB
Text
64 lines
2 KiB
Text
import logic data.prod
|
||
open eq.ops prod tactic
|
||
|
||
inductive tree (A : Type) :=
|
||
leaf : A → tree A,
|
||
node : tree A → tree A → tree A
|
||
|
||
inductive one.{l} : Type.{max 1 l} :=
|
||
star : one
|
||
|
||
set_option pp.universes true
|
||
|
||
namespace tree
|
||
section
|
||
universe variables l₁ l₂
|
||
variable {A : Type.{l₁}}
|
||
variable (C : tree A → Type.{l₂})
|
||
definition below (t : tree A) : Type :=
|
||
rec_on t (λ a, one.{l₂}) (λ t₁ t₂ r₁ r₂, C t₁ × C t₂ × r₁ × r₂)
|
||
end
|
||
|
||
section
|
||
universe variables l₁ l₂
|
||
variable {A : Type.{l₁}}
|
||
variable {C : tree A → Type.{l₂}}
|
||
definition below_rec_on (t : tree A) (H : Π (n : tree A), below C n → C n) : C t
|
||
:= have general : C t × below C t, from
|
||
rec_on t
|
||
(λa, (H (leaf a) one.star, one.star))
|
||
(λ (l r : tree A) (Hl : C l × below C l) (Hr : C r × below C r),
|
||
have b : below C (node l r), from
|
||
(pr₁ Hl, pr₁ Hr, pr₂ Hl, pr₂ Hr),
|
||
have c : C (node l r), from
|
||
H (node l r) b,
|
||
(c, b)),
|
||
pr₁ general
|
||
end
|
||
|
||
check no_confusion
|
||
|
||
theorem leaf_ne_tree {A : Type} (a : A) (l r : tree A) : leaf a ≠ node l r :=
|
||
assume h : leaf a = node l r,
|
||
no_confusion h
|
||
|
||
constant A : Type₁
|
||
constants l₁ l₂ r₁ r₂ : tree A
|
||
axiom node_eq : node l₁ r₁ = node l₂ r₂
|
||
check no_confusion node_eq
|
||
|
||
definition tst : (l₁ = l₂ → r₁ = r₂ → l₁ = l₂) → l₁ = l₂ := no_confusion node_eq
|
||
check tst (λ e₁ e₂, e₁)
|
||
|
||
theorem node.inj1 {A : Type} (l₁ l₂ r₁ r₂ : tree A) : node l₁ r₁ = node l₂ r₂ → l₁ = l₂ :=
|
||
assume h,
|
||
have trivial : (l₁ = l₂ → r₁ = r₂ → l₁ = l₂) → l₁ = l₂, from no_confusion h,
|
||
trivial (λ e₁ e₂, e₁)
|
||
|
||
theorem node.inj2 {A : Type} (l₁ l₂ r₁ r₂ : tree A) : node l₁ r₁ = node l₂ r₂ → l₁ = l₂ :=
|
||
begin
|
||
intro h,
|
||
apply (no_confusion h),
|
||
intros, assumption
|
||
end
|
||
end tree
|