lean2/examples/standard/constable.lean
Leonardo de Moura fb56767e07 doc(examples/standard): add theorems and exercises from Bob Constable
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-07-28 01:13:21 -07:00

212 lines
No EOL
6.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant"
-- by Robert L. Constable and Anne Trostle
-- http://www.nuprl.org/MathLibrary/LogicalInvestigations/
import standard
theorem thm1 {A B : Prop} : A → B → A
:= assume Ha Hb, Ha
theorem thm2 {A B C : Prop} : (A → B) → (A → B → C) → (A → C)
:= assume Hab Habc Ha,
Habc Ha (Hab Ha)
theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C)
:= assume Hab Hbc Ha,
Hbc (Hab Ha)
theorem thm4 {P Q : Prop} : ¬P → P → Q
:= assume Hnp Hp,
absurd_elim Q Hp Hnp
theorem thm5 {P : Prop} : P → ¬¬P
:= assume (Hp : P) (HnP : ¬P),
absurd Hp HnP
theorem thm6 {P Q : Prop} : (P → Q) → (¬Q → ¬P)
:= assume (Hpq : P → Q) (Hnq : ¬Q) (Hp : P),
have Hq : Q, from Hpq Hp,
show false, from absurd Hq Hnq
theorem thm7 {P Q : Prop} : (P → ¬P) → (P → Q)
:= assume Hpnp Hp,
absurd_elim Q Hp (Hpnp Hp)
theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q)
:= assume (Hn : ¬(P → Q)) (Hp : P) (Hq : Q),
-- Rermak we don't even need the hypothesis Hp
have H : P → Q, from assume H', Hq,
absurd H Hn
theorem thm9 {P : Prop} : (P ¬P) → (¬¬P → P)
:= assume (em : P ¬P) (Hnn : ¬¬P),
or_elim em
(assume Hp, Hp)
(assume Hn, absurd_elim P Hn Hnn)
theorem thm10 {P : Prop} : ¬¬(P ¬P)
:= assume Hnem : ¬(P ¬P),
have Hnp : ¬P, from
assume Hp : P,
have Hem : P ¬P, from or_inl Hp,
absurd Hem Hnem,
have Hem : P ¬P, from or_inr Hnp,
absurd Hem Hnem
theorem thm11 {P Q : Prop} : ¬P ¬Q → ¬(P ∧ Q)
:= assume (H : ¬P ¬Q) (Hn : P ∧ Q),
or_elim H
(assume Hnp : ¬P, absurd (and_elim_left Hn) Hnp)
(assume Hnq : ¬Q, absurd (and_elim_right Hn) Hnq)
theorem thm12 {P Q : Prop} : ¬(P Q) → ¬P ∧ ¬Q
:= assume H : ¬(P Q),
have Hnp : ¬P, from assume Hp : P, absurd (or_inl Hp) H,
have Hnq : ¬Q, from assume Hq : Q, absurd (or_inr Hq) H,
and_intro Hnp Hnq
theorem thm13 {P Q : Prop} : ¬P ∧ ¬Q → ¬(P Q)
:= assume (H : ¬P ∧ ¬Q) (Hn : P Q),
or_elim Hn
(assume Hp : P, absurd Hp (and_elim_left H))
(assume Hq : Q, absurd Hq (and_elim_right H))
theorem thm14 {P Q : Prop} : ¬P Q → P → Q
:= assume (Hor : ¬P Q) (Hp : P),
or_elim Hor
(assume Hnp : ¬P, absurd_elim Q Hp Hnp)
(assume Hq : Q, Hq)
theorem thm15 {P Q : Prop} : (P → Q) → ¬¬(¬P Q)
:= assume (Hpq : P → Q) (Hn : ¬(¬P Q)),
have H1 : ¬¬P ∧ ¬Q, from thm12 Hn,
have Hnp : ¬P, from mt Hpq (and_elim_right H1),
absurd Hnp (and_elim_left H1)
theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ¬P) (Q ¬Q)) → ¬P Q
:= assume H : (P → Q) ∧ ((P ¬P) (Q ¬Q)),
have Hpq : P → Q, from and_elim_left H,
or_elim (and_elim_right H)
(assume Hem1 : P ¬P, or_elim Hem1
(assume Hp : P, or_inr (Hpq Hp))
(assume Hnp : ¬P, or_inl Hnp))
(assume Hem2 : Q ¬Q, or_elim Hem2
(assume Hq : Q, or_inr Hq)
(assume Hnq : ¬Q, or_inl (mt Hpq Hnq)))
section
parameters {T : Type} {C : Prop} {P : T → Prop}
theorem thm17a : (C → ∀x, P x) → (∀x, C → P x)
:= assume H : C → ∀x, P x,
take x : T, assume Hc : C,
H Hc x
theorem thm17b : (∀x, C → P x) → (C → ∀x, P x)
:= assume (H : ∀x, C → P x) (Hc : C),
take x : T,
H x Hc
theorem thm18a : ((∃x, P x) → C) → (∀x, P x → C)
:= assume H : (∃x, P x) → C,
take x, assume Hp : P x,
have Hex : ∃x, P x, from exists_intro x Hp,
H Hex
theorem thm18b : (∀x, P x → C) → (∃x, P x) → C
:= assume (H1 : ∀x, P x → C) (H2 : ∃x, P x),
obtain (w : T) (Hw : P w), from H2,
H1 w Hw
theorem thm19a : (C ¬C) → (∃x : T, true) → (C → (∃x, P x)) → (∃x, C → P x)
:= assume (Hem : C ¬C) (Hin : ∃x : T, true) (H1 : C → ∃x, P x),
or_elim Hem
(assume Hc : C,
obtain (w : T) (Hw : P w), from H1 Hc,
have Hr : C → P w, from assume Hc, Hw,
exists_intro w Hr)
(assume Hnc : ¬C,
obtain (w : T) (Hw : true), from Hin,
have Hr : C → P w, from assume Hc, absurd_elim (P w) Hc Hnc,
exists_intro w Hr)
theorem thm19b : (∃x, C → P x) → C → (∃x, P x)
:= assume (H : ∃x, C → P x) (Hc : C),
obtain (w : T) (Hw : C → P w), from H,
exists_intro w (Hw Hc)
theorem thm20a : (C ¬C) → (∃x : T, true) → ((¬∀x, P x) → ∃x, ¬P x) → ((∀x, P x) → C) → (∃x, P x → C)
:= assume Hem Hin Hnf H,
or_elim Hem
(assume Hc : C,
obtain (w : T) (Hw : true), from Hin,
exists_intro w (assume H : P w, Hc))
(assume Hnc : ¬C,
have H1 : ¬(∀x, P x), from mt H Hnc,
have H2 : ∃x, ¬P x, from Hnf H1,
obtain (w : T) (Hw : ¬P w), from H2,
exists_intro w (assume H : P w, absurd_elim C H Hw))
theorem thm20b : (∃x, P x → C) → (∀ x, P x) → C
:= assume Hex Hall,
obtain (w : T) (Hw : P w → C), from Hex,
Hw (Hall w)
theorem thm21a : (∃x : T, true) → ((∃x, P x) C) → (∃x, P x C)
:= assume Hin H,
or_elim H
(assume Hex : ∃x, P x,
obtain (w : T) (Hw : P w), from Hex,
exists_intro w (or_inl Hw))
(assume Hc : C,
obtain (w : T) (Hw : true), from Hin,
exists_intro w (or_inr Hc))
theorem thm21b : (∃x, P x C) → ((∃x, P x) C)
:= assume H,
obtain (w : T) (Hw : P w C), from H,
or_elim Hw
(assume H : P w, or_inl (exists_intro w H))
(assume Hc : C, or_inr Hc)
theorem thm22a : (∀x, P x) C → ∀x, P x C
:= assume H, take x,
or_elim H
(assume Hl, or_inl (Hl x))
(assume Hr, or_inr Hr)
theorem thm22b : (C ¬C) → (∀x, P x C) → ((∀x, P x) C)
:= assume Hem H1,
or_elim Hem
(assume Hc : C, or_inr Hc)
(assume Hnc : ¬C,
have Hx : ∀x, P x, from
take x,
have H1 : P x C, from H1 x,
resolve_left H1 Hnc,
or_inl Hx)
theorem thm23a : (∃x, P x) ∧ C → (∃x, P x ∧ C)
:= assume H,
have Hex : ∃x, P x, from and_elim_left H,
have Hc : C, from and_elim_right H,
obtain (w : T) (Hw : P w), from Hex,
exists_intro w (and_intro Hw Hc)
theorem thm23b : (∃x, P x ∧ C) → (∃x, P x) ∧ C
:= assume H,
obtain (w : T) (Hw : P w ∧ C), from H,
have Hex : ∃x, P x, from exists_intro w (and_elim_left Hw),
and_intro Hex (and_elim_right Hw)
theorem thm24a : (∀x, P x) ∧ C → (∀x, P x ∧ C)
:= assume H, take x,
and_intro (and_elim_left H x) (and_elim_right H)
theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C
:= assume Hin H,
obtain (w : T) (Hw : true), from Hin,
have Hc : C, from and_elim_right (H w),
have Hx : ∀x, P x, from take x, and_elim_left (H x),
and_intro Hx Hc
end -- of section