lean2/library/data/set/function.lean
2016-02-29 13:15:48 -08:00

399 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang
Functions between subsets of finite types.
-/
import .basic
open function eq.ops
namespace set
variables {X Y Z : Type}
/- preimages -/
definition preimage {A B:Type} (f : A → B) (Y : set B) : set A := { x | f x ∈ Y }
notation f ` '- ` s := preimage f s
theorem mem_preimage_iff (f : X → Y) (a : set Y) (x : X) :
f x ∈ a ↔ x ∈ f '- a :=
!iff.refl
theorem mem_preimage {f : X → Y} {a : set Y} {x : X} (H : f x ∈ a) :
x ∈ f '- a := H
theorem mem_of_mem_preimage {f : X → Y} {a : set Y} {x : X} (H : x ∈ f '- a) :
f x ∈ a :=
proof H qed
theorem preimage_comp (f : Y → Z) (g : X → Y) (a : set Z) :
(f ∘ g) '- a = g '- (f '- a) :=
ext (take x, !iff.refl)
lemma image_subset_iff {A B : Type} {f : A → B} {X : set A} {Y : set B} :
f ' X ⊆ Y ↔ X ⊆ f '- Y :=
@bounded_forall_image_iff A B f X Y
theorem preimage_subset {a b : set Y} (f : X → Y) (H : a ⊆ b) :
f '- a ⊆ f '- b :=
λ x H', proof @H (f x) H' qed
theorem preimage_id (s : set Y) : (λx, x) '- s = s :=
ext (take x, !iff.refl)
theorem preimage_union (f : X → Y) (s t : set Y) :
f '- (s t) = f '- s f '- t :=
ext (take x, !iff.refl)
theorem preimage_inter (f : X → Y) (s t : set Y) :
f '- (s ∩ t) = f '- s ∩ f '- t :=
ext (take x, !iff.refl)
theorem preimage_compl (f : X → Y) (s : set Y) :
f '- (-s) = -(f '- s) :=
ext (take x, !iff.refl)
theorem preimage_diff (f : X → Y) (s t : set Y) :
f '- (s \ t) = f '- s \ f '- t :=
ext (take x, !iff.refl)
theorem image_preimage_subset (f : X → Y) (s : set Y) :
f ' (f '- s) ⊆ s :=
take y, suppose y ∈ f ' (f '- s),
obtain x [xfis fxeqy], from this,
show y ∈ s, by rewrite -fxeqy; exact xfis
theorem subset_preimage_image (s : set X) (f : X → Y) :
s ⊆ f '- (f ' s) :=
take x, suppose x ∈ s,
show f x ∈ f ' s, from mem_image_of_mem f this
theorem inter_preimage_subset (s : set X) (t : set Y) (f : X → Y) :
s ∩ f '- t ⊆ f '- (f ' s ∩ t) :=
take x, assume H : x ∈ s ∩ f '- t,
mem_preimage (show f x ∈ f ' s ∩ t,
from and.intro (mem_image_of_mem f (and.left H)) (mem_of_mem_preimage (and.right H)))
theorem union_preimage_subset (s : set X) (t : set Y) (f : X → Y) :
s f '- t ⊆ f '- (f ' s t) :=
take x, assume H : x ∈ s f '- t,
mem_preimage (show f x ∈ f ' s t,
from or.elim H
(suppose x ∈ s, or.inl (mem_image_of_mem f this))
(suppose x ∈ f '- t, or.inr (mem_of_mem_preimage this)))
theorem image_inter (f : X → Y) (s : set X) (t : set Y) :
f ' s ∩ t = f ' (s ∩ f '- t) :=
ext (take y, iff.intro
(suppose y ∈ f ' s ∩ t,
obtain [x [xs fxeqy]] yt, from this,
have x ∈ s ∩ f '- t,
from and.intro xs (mem_preimage (show f x ∈ t, by rewrite fxeqy; exact yt)),
mem_image this fxeqy)
(suppose y ∈ f ' (s ∩ f '- t),
obtain x [[xs xfit] fxeqy], from this,
and.intro (mem_image xs fxeqy)
(show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage xfit)))
theorem image_union_supset (f : X → Y) (s : set X) (t : set Y) :
f ' s t ⊇ f ' (s f '- t) :=
take y, assume H,
obtain x [xmem fxeqy], from H,
or.elim xmem
(suppose x ∈ s, or.inl (mem_image this fxeqy))
(suppose x ∈ f '- t, or.inr (show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage this))
/- maps to -/
definition maps_to [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := ∀⦃x⦄, x ∈ a → f x ∈ b
theorem maps_to_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_on_a : eq_on f1 f2 a)
(maps_to_f1 : maps_to f1 a b) :
maps_to f2 a b :=
take x,
assume xa : x ∈ a,
have H : f1 x ∈ b, from maps_to_f1 xa,
show f2 x ∈ b, from eq_on_a xa ▸ H
theorem maps_to_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(H1 : maps_to g b c) (H2 : maps_to f a b) : maps_to (g ∘ f) a c :=
take x, assume H : x ∈ a, H1 (H2 H)
theorem maps_to_univ_univ (f : X → Y) : maps_to f univ univ :=
take x, assume H, trivial
theorem image_subset_of_maps_to_of_subset {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b)
{c : set X} (csuba : c ⊆ a) :
f ' c ⊆ b :=
take y,
suppose y ∈ f ' c,
obtain x [(xc : x ∈ c) (yeq : f x = y)], from this,
have x ∈ a, from csuba `x ∈ c`,
have f x ∈ b, from mfab this,
show y ∈ b, from yeq ▸ this
theorem image_subset_of_maps_to {f : X → Y} {a : set X} {b : set Y} (mfab : maps_to f a b) :
f ' a ⊆ b :=
image_subset_of_maps_to_of_subset mfab (subset.refl a)
/- injectivity -/
definition inj_on [reducible] (f : X → Y) (a : set X) : Prop :=
∀⦃x1 x2 : X⦄, x1 ∈ a → x2 ∈ a → f x1 = f x2 → x1 = x2
theorem inj_on_empty (f : X → Y) : inj_on f ∅ :=
take x₁ x₂, assume H₁ H₂ H₃, false.elim H₁
theorem inj_on_of_eq_on {f1 f2 : X → Y} {a : set X} (eq_f1_f2 : eq_on f1 f2 a)
(inj_f1 : inj_on f1 a) :
inj_on f2 a :=
take x1 x2 : X,
assume ax1 : x1 ∈ a,
assume ax2 : x2 ∈ a,
assume H : f2 x1 = f2 x2,
have H' : f1 x1 = f1 x2, from eq_f1_f2 ax1 ⬝ H ⬝ (eq_f1_f2 ax2)⁻¹,
show x1 = x2, from inj_f1 ax1 ax2 H'
theorem inj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y}
(fab : maps_to f a b) (Hg : inj_on g b) (Hf: inj_on f a) :
inj_on (g ∘ f) a :=
take x1 x2 : X,
assume x1a : x1 ∈ a,
assume x2a : x2 ∈ a,
have fx1b : f x1 ∈ b, from fab x1a,
have fx2b : f x2 ∈ b, from fab x2a,
assume H1 : g (f x1) = g (f x2),
have H2 : f x1 = f x2, from Hg fx1b fx2b H1,
show x1 = x2, from Hf x1a x2a H2
theorem inj_on_of_inj_on_of_subset {f : X → Y} {a b : set X} (H1 : inj_on f b) (H2 : a ⊆ b) :
inj_on f a :=
take x1 x2 : X, assume (x1a : x1 ∈ a) (x2a : x2 ∈ a),
assume H : f x1 = f x2,
show x1 = x2, from H1 (H2 x1a) (H2 x2a) H
lemma injective_iff_inj_on_univ {f : X → Y} : injective f ↔ inj_on f univ :=
iff.intro
(assume H, take x₁ x₂, assume ax₁ ax₂, H x₁ x₂)
(assume H : inj_on f univ,
take x₁ x₂ Heq,
show x₁ = x₂, from H trivial trivial Heq)
/- surjectivity -/
definition surj_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop := b ⊆ f ' a
theorem surj_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eq_f1_f2 : eq_on f1 f2 a)
(surj_f1 : surj_on f1 a b) :
surj_on f2 a b :=
take y, assume H : y ∈ b,
obtain x (H1 : x ∈ a ∧ f1 x = y), from surj_f1 H,
have H2 : x ∈ a, from and.left H1,
have H3 : f2 x = y, from (eq_f1_f2 H2)⁻¹ ⬝ and.right H1,
exists.intro x (and.intro H2 H3)
theorem surj_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(Hg : surj_on g b c) (Hf: surj_on f a b) :
surj_on (g ∘ f) a c :=
take z,
assume zc : z ∈ c,
obtain y (H1 : y ∈ b ∧ g y = z), from Hg zc,
obtain x (H2 : x ∈ a ∧ f x = y), from Hf (and.left H1),
show ∃x, x ∈ a ∧ g (f x) = z, from
exists.intro x
(and.intro
(and.left H2)
(calc
g (f x) = g y : {and.right H2}
... = z : and.right H1))
lemma surjective_iff_surj_on_univ {f : X → Y} : surjective f ↔ surj_on f univ univ :=
iff.intro
(assume H, take y, assume Hy,
obtain x Hx, from H y,
mem_image trivial Hx)
(assume H, take y,
obtain x H1x H2x, from H y trivial,
exists.intro x H2x)
lemma image_eq_of_maps_to_of_surj_on {f : X → Y} {a : set X} {b : set Y}
(H1 : maps_to f a b) (H2 : surj_on f a b) :
f ' a = b :=
eq_of_subset_of_subset (image_subset_of_maps_to H1) H2
/- bijectivity -/
definition bij_on [reducible] (f : X → Y) (a : set X) (b : set Y) : Prop :=
maps_to f a b ∧ inj_on f a ∧ surj_on f a b
lemma maps_to_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
maps_to f a b :=
and.left H
lemma inj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
inj_on f a :=
and.left (and.right H)
lemma surj_on_of_bij_on {f : X → Y} {a : set X} {b : set Y} (H : bij_on f a b) :
surj_on f a b :=
and.right (and.right H)
lemma bij_on.mk {f : X → Y} {a : set X} {b : set Y}
(H₁ : maps_to f a b) (H₂ : inj_on f a) (H₃ : surj_on f a b) :
bij_on f a b :=
and.intro H₁ (and.intro H₂ H₃)
theorem bij_on_of_eq_on {f1 f2 : X → Y} {a : set X} {b : set Y} (eqf : eq_on f1 f2 a)
(H : bij_on f1 a b) : bij_on f2 a b :=
match H with and.intro Hmap (and.intro Hinj Hsurj) :=
and.intro
(maps_to_of_eq_on eqf Hmap)
(and.intro
(inj_on_of_eq_on eqf Hinj)
(surj_on_of_eq_on eqf Hsurj))
end
lemma image_eq_of_bij_on {f : X → Y} {a : set X} {b : set Y} (bfab : bij_on f a b) :
f ' a = b :=
image_eq_of_maps_to_of_surj_on (and.left bfab) (and.right (and.right bfab))
theorem bij_on_compose {g : Y → Z} {f : X → Y} {a : set X} {b : set Y} {c : set Z}
(Hg : bij_on g b c) (Hf: bij_on f a b) :
bij_on (g ∘ f) a c :=
match Hg with and.intro Hgmap (and.intro Hginj Hgsurj) :=
match Hf with and.intro Hfmap (and.intro Hfinj Hfsurj) :=
and.intro
(maps_to_compose Hgmap Hfmap)
(and.intro
(inj_on_compose Hfmap Hginj Hfinj)
(surj_on_compose Hgsurj Hfsurj))
end
end
lemma bijective_iff_bij_on_univ {f : X → Y} : bijective f ↔ bij_on f univ univ :=
iff.intro
(assume H,
obtain Hinj Hsurj, from H,
and.intro (maps_to_univ_univ f)
(and.intro
(iff.mp !injective_iff_inj_on_univ Hinj)
(iff.mp !surjective_iff_surj_on_univ Hsurj)))
(assume H,
obtain Hmaps Hinj Hsurj, from H,
(and.intro
(iff.mpr !injective_iff_inj_on_univ Hinj)
(iff.mpr !surjective_iff_surj_on_univ Hsurj)))
/- left inverse -/
-- g is a left inverse to f on a
definition left_inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) : Prop :=
∀₀ x ∈ a, g (f x) = x
theorem left_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
(fab : maps_to f a b) (eqg : eq_on g1 g2 b) (H : left_inv_on g1 f a) : left_inv_on g2 f a :=
take x,
assume xa : x ∈ a,
calc
g2 (f x) = g1 (f x) : (eqg (fab xa))⁻¹
... = x : H xa
theorem left_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X}
(eqf : eq_on f1 f2 a) (H : left_inv_on g f1 a) : left_inv_on g f2 a :=
take x,
assume xa : x ∈ a,
calc
g (f2 x) = g (f1 x) : {(eqf xa)⁻¹}
... = x : H xa
theorem inj_on_of_left_inv_on {g : Y → X} {f : X → Y} {a : set X} (H : left_inv_on g f a) :
inj_on f a :=
take x1 x2,
assume x1a : x1 ∈ a,
assume x2a : x2 ∈ a,
assume H1 : f x1 = f x2,
calc
x1 = g (f x1) : H x1a
... = g (f x2) : H1
... = x2 : H x2a
theorem left_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
{a : set X} {b : set Y} (fab : maps_to f a b)
(Hf : left_inv_on f' f a) (Hg : left_inv_on g' g b) : left_inv_on (f' ∘ g') (g ∘ f) a :=
take x : X,
assume xa : x ∈ a,
have fxb : f x ∈ b, from fab xa,
calc
f' (g' (g (f x))) = f' (f x) : Hg fxb
... = x : Hf xa
/- right inverse -/
-- g is a right inverse to f on a
definition right_inv_on [reducible] (g : Y → X) (f : X → Y) (b : set Y) : Prop :=
left_inv_on f g b
theorem right_inv_on_of_eq_on_left {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
(eqg : eq_on g1 g2 b) (H : right_inv_on g1 f b) : right_inv_on g2 f b :=
left_inv_on_of_eq_on_right eqg H
theorem right_inv_on_of_eq_on_right {g : Y → X} {f1 f2 : X → Y} {a : set X} {b : set Y}
(gba : maps_to g b a) (eqf : eq_on f1 f2 a) (H : right_inv_on g f1 b) : right_inv_on g f2 b :=
left_inv_on_of_eq_on_left gba eqf H
theorem surj_on_of_right_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y}
(gba : maps_to g b a) (H : right_inv_on g f b) :
surj_on f a b :=
take y,
assume yb : y ∈ b,
have gya : g y ∈ a, from gba yb,
have H1 : f (g y) = y, from H yb,
exists.intro (g y) (and.intro gya H1)
theorem right_inv_on_compose {f' : Y → X} {g' : Z → Y} {g : Y → Z} {f : X → Y}
{c : set Z} {b : set Y} (g'cb : maps_to g' c b)
(Hf : right_inv_on f' f b) (Hg : right_inv_on g' g c) : right_inv_on (f' ∘ g') (g ∘ f) c :=
left_inv_on_compose g'cb Hg Hf
theorem right_inv_on_of_inj_on_of_left_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y}
(fab : maps_to f a b) (gba : maps_to g b a) (injf : inj_on f a) (lfg : left_inv_on f g b) :
right_inv_on f g a :=
take x, assume xa : x ∈ a,
have H : f (g (f x)) = f x, from lfg (fab xa),
injf (gba (fab xa)) xa H
theorem eq_on_of_left_inv_of_right_inv {g1 g2 : Y → X} {f : X → Y} {a : set X} {b : set Y}
(g2ba : maps_to g2 b a) (Hg1 : left_inv_on g1 f a) (Hg2 : right_inv_on g2 f b) : eq_on g1 g2 b :=
take y,
assume yb : y ∈ b,
calc
g1 y = g1 (f (g2 y)) : {(Hg2 yb)⁻¹}
... = g2 y : Hg1 (g2ba yb)
theorem left_inv_on_of_surj_on_right_inv_on {f : X → Y} {g : Y → X} {a : set X} {b : set Y}
(surjf : surj_on f a b) (rfg : right_inv_on f g a) :
left_inv_on f g b :=
take y, assume yb : y ∈ b,
obtain x (xa : x ∈ a) (Hx : f x = y), from surjf yb,
calc
f (g y) = f (g (f x)) : Hx
... = f x : rfg xa
... = y : Hx
/- inverses -/
-- g is an inverse to f viewed as a map from a to b
definition inv_on [reducible] (g : Y → X) (f : X → Y) (a : set X) (b : set Y) : Prop :=
left_inv_on g f a ∧ right_inv_on g f b
theorem bij_on_of_inv_on {g : Y → X} {f : X → Y} {a : set X} {b : set Y} (fab : maps_to f a b)
(gba : maps_to g b a) (H : inv_on g f a b) : bij_on f a b :=
and.intro fab
(and.intro
(inj_on_of_left_inv_on (and.left H))
(surj_on_of_right_inv_on gba (and.right H)))
end set