3213b1b3b0
Also reorder the arguments of is_equiv_compose
126 lines
4.9 KiB
Text
126 lines
4.9 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Calculating homotopy groups of spheres.
|
||
|
||
In this file we calculate
|
||
π₂(S²) = Z
|
||
πₙ(S²) = πₙ(S³) for n > 2
|
||
πₙ(Sⁿ) = Z for n > 0
|
||
π₂(S³) = Z
|
||
-/
|
||
|
||
import .homotopy_group .freudenthal
|
||
open eq group algebra is_equiv equiv fin prod chain_complex pointed fiber nat is_trunc trunc_index
|
||
sphere.ops trunc is_conn susp
|
||
|
||
namespace sphere
|
||
/- Corollaries of the complex hopf fibration combined with the LES of homotopy groups -/
|
||
open sphere sphere.ops int circle hopf
|
||
|
||
definition π2S2 : πg[1+1] (S. 2) ≃g gℤ :=
|
||
begin
|
||
refine _ ⬝g fundamental_group_of_circle,
|
||
refine _ ⬝g homotopy_group_isomorphism_of_pequiv _ pfiber_complex_phopf,
|
||
fapply isomorphism_of_equiv,
|
||
{ fapply equiv.mk,
|
||
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)},
|
||
{ refine @is_equiv_of_trivial _
|
||
_ _
|
||
(is_exact_LES_of_homotopy_groups _ (1, 1))
|
||
(is_exact_LES_of_homotopy_groups _ (1, 2))
|
||
_
|
||
_
|
||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||
_,
|
||
{ rewrite [LES_of_homotopy_groups_1, ▸*],
|
||
have H : 1 ≤[ℕ] 2, from !one_le_succ,
|
||
apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3},
|
||
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
|
||
(LES_of_homotopy_groups_1 complex_phopf 2) _,
|
||
apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3},
|
||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}}},
|
||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}
|
||
end
|
||
|
||
open circle
|
||
definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S. 3) ≃g πg[n+2 +1] (S. 2) :=
|
||
begin
|
||
fapply isomorphism_of_equiv,
|
||
{ fapply equiv.mk,
|
||
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)},
|
||
{ have H : is_trunc 1 (pfiber complex_phopf),
|
||
from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle,
|
||
refine @is_equiv_of_trivial _
|
||
_ _
|
||
(is_exact_LES_of_homotopy_groups _ (n+2, 2))
|
||
(is_exact_LES_of_homotopy_groups _ (n+3, 0))
|
||
_
|
||
_
|
||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
|
||
_,
|
||
{ rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[ℕ] 2)],
|
||
have H : 1 ≤[ℕ] n + 1, from !one_le_succ,
|
||
apply trivial_ghomotopy_group_of_is_trunc _ _ _ H},
|
||
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
|
||
(LES_of_homotopy_groups_2 complex_phopf _) _,
|
||
have H : 1 ≤[ℕ] n + 2, from !one_le_succ,
|
||
apply trivial_ghomotopy_group_of_is_trunc _ _ _ H},
|
||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}},
|
||
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
|
||
end
|
||
|
||
definition sphere_stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) :
|
||
π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
|
||
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_pequiv empty H end
|
||
|
||
definition stability_isomorphism (k n : ℕ) (H : k + 3 ≤ 2 * n)
|
||
: πg[k+1 +1] (S. (n+1)) ≃g πg[k+1] (S. n) :=
|
||
begin rewrite [+ psphere_eq_iterate_susp], exact iterate_susp_stability_isomorphism empty H end
|
||
|
||
open int circle hopf
|
||
definition πnSn (n : ℕ) : πg[n+1] (S. (succ n)) ≃g gℤ :=
|
||
begin
|
||
cases n with n IH,
|
||
{ exact fundamental_group_of_circle},
|
||
{ induction n with n IH,
|
||
{ exact π2S2},
|
||
{ refine _ ⬝g IH, apply stability_isomorphism,
|
||
rexact add_mul_le_mul_add n 1 2}}
|
||
end
|
||
|
||
theorem not_is_trunc_sphere (n : ℕ) : ¬is_trunc n (S. (succ n)) :=
|
||
begin
|
||
intro H,
|
||
note H2 := trivial_ghomotopy_group_of_is_trunc (S. (succ n)) n n !le.refl,
|
||
have H3 : is_contr ℤ, from is_trunc_equiv_closed _ (equiv_of_isomorphism (πnSn n)),
|
||
have H4 : (0 : ℤ) ≠ (1 : ℤ), from dec_star,
|
||
apply H4,
|
||
apply is_prop.elim,
|
||
end
|
||
|
||
section
|
||
open sphere_index
|
||
|
||
definition not_is_trunc_sphere' (n : ℕ₋₁) : ¬is_trunc n (S (n.+1)) :=
|
||
begin
|
||
cases n with n,
|
||
{ esimp [sphere.ops.S, sphere], intro H,
|
||
have H2 : is_prop bool, from @(is_trunc_equiv_closed -1 sphere_equiv_bool) H,
|
||
have H3 : bool.tt ≠ bool.ff, from dec_star, apply H3, apply is_prop.elim},
|
||
{ intro H, apply not_is_trunc_sphere (add_one n),
|
||
rewrite [▸*, trunc_index_of_nat_add_one, -add_one_succ,
|
||
sphere_index_of_nat_add_one],
|
||
exact H}
|
||
end
|
||
|
||
end
|
||
|
||
definition π3S2 : πg[2+1] (S. 2) ≃g gℤ :=
|
||
(πnS3_eq_πnS2 0)⁻¹ᵍ ⬝g πnSn 2
|
||
|
||
end sphere
|