updates
This commit is contained in:
parent
e2897de4ca
commit
100db8f8f0
5 changed files with 409 additions and 16 deletions
78
ahmed/LogicalRelations.agda
Normal file
78
ahmed/LogicalRelations.agda
Normal file
|
@ -0,0 +1,78 @@
|
|||
module Ahmed.LogicalRelations where
|
||||
|
||||
open import Data.Empty
|
||||
open import Data.Unit
|
||||
open import Data.Bool
|
||||
open import Data.Nat
|
||||
open import Data.Fin
|
||||
open import Data.Product
|
||||
open import Relation.Nullary using (Dec; yes; no)
|
||||
|
||||
data type : Set where
|
||||
bool : type
|
||||
_-→_ : type → type → type
|
||||
|
||||
data ctx : Set where
|
||||
nil : ctx
|
||||
_,_ : ctx → type → ctx
|
||||
|
||||
data var : ctx → type → Set where
|
||||
zero : ∀ {Γ τ} → var (Γ , τ) τ
|
||||
suc : ∀ {Γ τ₁ τ₂} → var Γ τ₂ → var (Γ , τ₁) τ₂
|
||||
|
||||
data term : ctx → type → Set where
|
||||
true : ∀ {Γ} → term Γ bool
|
||||
false : ∀ {Γ} → term Γ bool
|
||||
`_ : ∀ {Γ τ} → var Γ τ → term Γ τ
|
||||
λ[_]_ : ∀ {Γ τ₂} → (τ₁ : type) → (e : term (Γ , τ₁) τ₂) → term Γ (τ₁ -→ τ₂)
|
||||
_∙_ : ∀ {Γ τ₁ τ₂} → term Γ (τ₁ -→ τ₂) → term Γ τ₁ → term Γ τ₂
|
||||
|
||||
length : ctx → ℕ
|
||||
length nil = zero
|
||||
length (ctx , _) = suc (length ctx)
|
||||
|
||||
extend : ∀ {Γ Δ}
|
||||
→ (∀ {τ} → var Γ τ → var Δ τ)
|
||||
→ (∀ {τ₁ τ₂} → var (Γ , τ₂) τ₁ → var (Δ , τ₂) τ₁)
|
||||
extend ρ zero = zero
|
||||
extend ρ (suc c) = suc (ρ c)
|
||||
|
||||
rename : ∀ {Γ Δ}
|
||||
→ (∀ {τ} → var Γ τ → var Δ τ)
|
||||
→ (∀ {τ} → term Γ τ → term Δ τ)
|
||||
rename ρ true = true
|
||||
rename ρ false = false
|
||||
rename ρ (` x) = ` (ρ x)
|
||||
rename ρ (λ[ τ₁ ] c) = λ[ τ₁ ] rename (extend ρ) c
|
||||
rename ρ (c ∙ c₁) = rename ρ c ∙ rename ρ c₁
|
||||
|
||||
extends : ∀ {Γ Δ}
|
||||
→ (∀ {τ} → var Γ τ → term Δ τ)
|
||||
→ (∀ {τ₁ τ₂} → var (Γ , τ₂) τ₁ → term (Δ , τ₂) τ₁)
|
||||
extends σ zero = ` zero
|
||||
extends σ (suc x) = rename suc (σ x)
|
||||
|
||||
subst : ∀ {Γ Δ}
|
||||
→ (∀ {τ} → var Γ τ → term Δ τ)
|
||||
→ (∀ {τ} → term Γ τ → term Δ τ)
|
||||
subst ρ true = true
|
||||
subst ρ false = false
|
||||
subst ρ (` x) = ρ x
|
||||
subst ρ (λ[ τ₁ ] x) = λ[ τ₁ ] subst (extends ρ) x
|
||||
subst ρ (x ∙ x₁) = subst ρ x ∙ subst ρ x₁
|
||||
|
||||
_[_] : ∀ {Γ τ₁ τ₂} → term (Γ , τ₂) τ₁ → term Γ τ₂ → term Γ τ₁
|
||||
_[_] {Γ} {τ₁} {τ₂} e e₁ = subst σ e
|
||||
where
|
||||
σ : ∀ {τ} → var (Γ , τ₂) τ → term Γ τ
|
||||
σ zero = e₁
|
||||
σ (suc x) = ` x
|
||||
|
||||
data value : ∀ {Γ τ} → term Γ τ → Set where
|
||||
true : ∀ {Γ} → value {Γ} true
|
||||
false : ∀ {Γ} → value {Γ} false
|
||||
λ[_]_ : ∀ {Γ τ₁ τ₂} {e : term (Γ , τ₁) τ₂} → value (λ[ τ₁ ] e)
|
||||
|
||||
data step : ∀ {Γ τ} → term Γ τ → term Γ τ → Set where
|
||||
β-λ : ∀ {Γ τ₁ τ₂ v} → (e : term (Γ , τ₁) τ₂) → value v
|
||||
→ step ((λ[ τ₁ ] e) ∙ v) (e [ v ])
|
|
@ -1,26 +1,79 @@
|
|||
{-# OPTIONS --prop #-}
|
||||
module Ahmed.Day1 where
|
||||
|
||||
open import Data.Empty
|
||||
open import Data.Unit
|
||||
open import Data.Bool
|
||||
open import Data.Nat
|
||||
open import Data.Fin
|
||||
open import Data.Product
|
||||
open import Relation.Nullary using (Dec; yes; no)
|
||||
import Relation.Binary.PropositionalEquality as Eq
|
||||
open Eq using (_≡_; refl; trans; sym; cong; cong-app)
|
||||
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
|
||||
|
||||
data type : Set where
|
||||
bool : type
|
||||
_-→_ : type -> type -> type
|
||||
_-→_ : type → type → type
|
||||
|
||||
data term : Set where
|
||||
true : term
|
||||
data ctx : ℕ → Set where
|
||||
nil : ctx zero
|
||||
_,_ : ∀ {n} → ctx n → type → ctx (suc n)
|
||||
|
||||
data ctx : Set where
|
||||
nil : ctx
|
||||
cons : ctx -> type -> ctx
|
||||
data term : (n : ℕ) → Set where
|
||||
`_ : ∀ {n} → (m : Fin n) → term n
|
||||
true : ∀ {n} → term n
|
||||
false : ∀ {n} → term n
|
||||
λ[_]_ : ∀ {n} → (τ₁ : type) (e : term (suc n)) → term n
|
||||
_∙_ : ∀ {n} → term n → term n → term n
|
||||
|
||||
data substitution : Set where
|
||||
nil : substitution
|
||||
cons : substitution -> term -> substitution
|
||||
postulate
|
||||
lookup : ∀ {n} → Fin n → ctx n → type
|
||||
-- lookup {n} Γ
|
||||
|
||||
isGoodSubstitution : (Γ : ctx) -> (γ : substitution) -> Set
|
||||
isGoodSubstitution nil nil = ⊤
|
||||
isGoodSubstitution nil (cons γ x) = ⊥
|
||||
isGoodSubstitution (cons Γ x) nil = ⊥
|
||||
isGoodSubstitution (cons Γ x) (cons γ x₁) = {! !}
|
||||
data typing : ∀ {n} {Γ : ctx n} → term n → type → Set where
|
||||
`_ : ∀ {n Γ τ} → (m : Fin n) → lookup m Γ ≡ τ → typing {n} {Γ} (` m) τ
|
||||
true : ∀ {n Γ} → typing {n} {Γ} true bool
|
||||
false : ∀ {n Γ} → typing {n} {Γ} false bool
|
||||
|
||||
data is-value : ∀ {n} → (e : term n) → Set where
|
||||
true : ∀ {n} → is-value {n} true
|
||||
false : ∀ {n} → is-value {n} false
|
||||
λ[_]_ : ∀ {n} → (τ : type) → (e : term (suc n)) → is-value {n} (λ[ τ ] e)
|
||||
|
||||
value = ∀ {n} → Σ (term n) (is-value)
|
||||
|
||||
lift-term : ∀ {n} → term n → term (suc n)
|
||||
lift-term {n} (` m) = ` (suc m)
|
||||
lift-term {n} true = true
|
||||
lift-term {n} false = false
|
||||
lift-term {n} (λ[ τ₁ ] e) = λ[ τ₁ ] lift-term e
|
||||
lift-term {n} (e ∙ e₁) = lift-term e ∙ lift-term e₁
|
||||
|
||||
subst : ∀ {n} → (e : term (suc n)) → (v : term n) → term n
|
||||
subst {n} (` zero) v = v
|
||||
subst {n} (` suc m) v = ` m
|
||||
subst true v = true
|
||||
subst false v = false
|
||||
subst (λ[ τ ] e) v = λ[ τ ] subst e (lift-term v)
|
||||
subst (e₁ ∙ e₂) v = subst e₁ v ∙ subst e₂ v
|
||||
|
||||
data step : ∀ {n} → term n → term n → Set where
|
||||
β-step : ∀ {n τ e e₂} → step {n} ((λ[ τ ] e) ∙ e₂) (subst e e₂)
|
||||
|
||||
-- irreducible : ∀ {n} → (e : term) → ∃[ e' ] mapsto e'
|
||||
|
||||
-- type-soundness : ∀ {e τ} →
|
||||
|
||||
value-relation : ∀ {n} → (τ : type) → (e : term n) → Set
|
||||
expr-relation : ∀ {n} → (τ : type) → (e : term n) → Set
|
||||
|
||||
value-relation bool true = ⊤
|
||||
value-relation bool false = ⊤
|
||||
value-relation (τ₁ -→ τ₂) ((λ[ τ ] e) ∙ v) = expr-relation τ₂ {! !}
|
||||
value-relation _ _ = ⊥
|
||||
|
||||
expr-relation {n} τ e = {! !}
|
||||
|
||||
semantic-soundness : ∀ {n} (Γ : ctx n) → (τ : type) → (e : term n) → Set
|
||||
-- semantic-soundness {n} Γ τ e = (γ : substitution n) → expr-relation τ {! !}
|
|
@ -3,6 +3,7 @@
|
|||
#show: doc => conf("Logical Relations", doc)
|
||||
|
||||
#let safe = $"safe"$
|
||||
#let ref = "ref"
|
||||
|
||||
== Lecture 1
|
||||
|
||||
|
@ -474,4 +475,10 @@ Type = ${ I in "Nat" -> P("CValue")}$
|
|||
|
||||
(CValue = Closed values)
|
||||
|
||||
$V_(k, S) db("ref" tau) = { l | l in V_(k-1) db(tau) }$
|
||||
$V_(k, S) db("ref" tau) = { l | l in V_(k-1) db(tau) }$
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Lecture 4
|
||||
|
||||
$V_k db(ref tau) = { l | S(L) in V db(tau)}$
|
102
bourgeat/notes.typ
Normal file
102
bourgeat/notes.typ
Normal file
|
@ -0,0 +1,102 @@
|
|||
#import "../common.typ": *
|
||||
#import "@preview/prooftrees:0.1.0": *
|
||||
#show: doc => conf("Rule-based languages from modular design to modular verification", doc)
|
||||
#import "@preview/finite:0.3.0" as finite: automaton
|
||||
|
||||
== Lecture 1
|
||||
|
||||
*Definition (module).* $(S."type", {R}_(i in S), {v m}, {a m})$
|
||||
|
||||
- States
|
||||
- $R subset S times S$. these are transitions, very similar to automata
|
||||
- $a m subset S times NN times S$. argument methods. One argument always, type natural number. "If I'm in a state, and then I call some action, then I end up in a new state"
|
||||
- $v m subset S times NN times NN$. value methods are the only way to observe anything in the system. Observations are always of type nat for now.
|
||||
|
||||
*Example (coffee-tea machine).*
|
||||
|
||||
#automaton(
|
||||
layout: finite.layout.snake.with(columns: 3),
|
||||
(
|
||||
q1: (q2: "put"),
|
||||
q2: (q3: "coffee", q4: "tea"),
|
||||
q3: (q3: "see"),
|
||||
q4: (q4: "see"),
|
||||
)
|
||||
)
|
||||
|
||||
This is encoded as:
|
||||
|
||||
$({1, 2, 3, 4}, {}, {
|
||||
"getTea" = {(2, star, 4)},
|
||||
"getCoffee" = {(2, star, 3)},
|
||||
"putMoney" = {(1, 1, 2)},
|
||||
}, {
|
||||
"see" = {(3, star, "coffee"), (4, star, "tea")}
|
||||
})$
|
||||
|
||||
Similarity to automata
|
||||
- Finite states
|
||||
Differences from automata
|
||||
- Sliced transitions between things that change the state of the system and ones that observe the state of the system
|
||||
|
||||
We are interested in modeling the basic blocks of hardware as this kind of machine.
|
||||
We will write a language to plug together these modules into bigger modules.
|
||||
|
||||
*Example (register).*
|
||||
|
||||
$ (NN, {}, &{"write" = {(x, y, y) | forall x, y in NN^2}} \
|
||||
&{"read" = {(x, z, x) | forall x, z in NN^2}}) $
|
||||
|
||||
Infinite transitions are ok but there needs to be a finite number of them.
|
||||
|
||||
*Example (infinite atomic memory).* This can't be expressed in hardware.
|
||||
|
||||
$ (NN -> NN, {}, &{"write" = {(f, ("idx", v), f') | forall y. "idx" = j -> f j = f' j, f' "idx" = v}}, \
|
||||
&{"read" = {(f, "arg", f("arg")) | forall f, "arg"}})
|
||||
$
|
||||
|
||||
*Example (queue).* $([NN], {}, {"enqueue", "dequeue"}, {"first"})$
|
||||
|
||||
== #strike[Equivalence] Refinement
|
||||
|
||||
If both sides can be refined into each other then they are equivalent.
|
||||
|
||||
- One way is to construct the language of the automata
|
||||
|
||||
*Definition (traces of a module/behaviors).*
|
||||
|
||||
Silent transition: $s_0 mapsto s_1$
|
||||
|
||||
Observations about the state must be added to the trace as well.
|
||||
Trace looks like $["enqueue" (1), "first" () -> 1]$ for a queue.
|
||||
|
||||
*Definition (Refinement).* A module $M$ refines $M'$ iff $db(M) subset.eq db(M')$.
|
||||
|
||||
*Definition (weak simulation).* A module $M$ simulates $M'$
|
||||
|
||||
$ M op(subset.sq.eq)_phi M'$
|
||||
|
||||
s.t $phi : S_M times S_M'$ (relation between state of $M$ and state of $M'$).
|
||||
|
||||
$phi$ witnesses that $M'$ simulates $M$ iff $(m_0, m'_0) in phi$
|
||||
|
||||
#let arg = "arg"
|
||||
#let sset = "set"
|
||||
- Base case: $forall v in cal(V), forall arg, forall sset, (m_0, arg, sset) in v ==> (m'_0, arg, sset)$
|
||||
- Inductive case: $forall m in S_M, m' in S_M', (m, m') in phi ==> forall "am" in a_m, forall arg, m mapsto^("am"(arg)) m_2 ==> (m' mapsto^("am"(arg)) m'_2)$
|
||||
|
||||
$ (M op(subset.sq.eq)_phi M') ==> db(M) subset db(M') $
|
||||
|
||||
=== Composing
|
||||
|
||||
Compose $M_1$, $M_2$, and $M_3$ into a bigger module.
|
||||
|
||||
#tree(
|
||||
axi[$(m, f("arg"), m') in "enq"_M$],
|
||||
uni[$m."enqE"("arg") --> m'$],
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[$(m, f("arg"), m') in "enq"_M$],
|
||||
uni[$m."deq"("arg") --> m'$],
|
||||
)
|
|
@ -481,4 +481,157 @@ Pointer:
|
|||
axi[$Delta tack.r e : arrow.b^k_m A_k$],
|
||||
axi[$Gamma , x : A_k tack.r e' : C_r$],
|
||||
nary(3)[$Delta Gamma tack.r "match" e with wrap(x) => e' : C_r$],
|
||||
)
|
||||
)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Lecture 4
|
||||
|
||||
SAX : Semi-Axiomatic Sequence Calculus
|
||||
|
||||
$ f : A_L -> B_L , x : A_L tack.r C_U $
|
||||
|
||||
So we are using linear resources to create an unrestricted resource.
|
||||
Can't actually build this because $Gamma >= m$ and $U > L$.
|
||||
|
||||
So in this case we woudl want to build:
|
||||
|
||||
$ f : A_L -> B_L , x : A_L tack.r arrow.b^U_L C_U $
|
||||
|
||||
=== Linear logic
|
||||
|
||||
Two modes: $U > L$, $!A = op(arrow.b)^U_L op(arrow.t)^U_L A$
|
||||
|
||||
Linear + non-linear logic (LNL) (Benton '95)
|
||||
|
||||
#let downshift(a, b) = $op(arrow.b)^#a_#b$
|
||||
#let upshift(a, b) = $op(arrow.t)^#b_#a$
|
||||
|
||||
JS$._4$ $V > T : square A = op(arrow.b)^V_T op(arrow.t)^V_T A$ (comonad) \
|
||||
Lax logic: $T > L : circle A = op(arrow.t)^T_L op(arrow.b)^T_L A$ (monad)
|
||||
|
||||
If you wanted proof irrelevance, you would have proof relevance and proof irrelevance as modes.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Lecture 5
|
||||
|
||||
#let cell(a,V) = $"cell" #a " " #V$
|
||||
#let proc = "proc"
|
||||
#let cut = "cut"
|
||||
#let write = "write"
|
||||
#let read = "read"
|
||||
#let call = "call"
|
||||
|
||||
Recall:
|
||||
|
||||
Types:
|
||||
|
||||
$A times B, & A -> B \
|
||||
1, \
|
||||
+{l: A_l}, & \&{l : A_l} \
|
||||
arrow.b A, & arrow.t A $
|
||||
|
||||
Continuations: $K ::= (x, y) => P | () => P | (l(x) => P_l)_(l in L) | wrap(x) => P$
|
||||
|
||||
Values: $V ::= (a, b) | () | k(a) | wrap(a)$
|
||||
|
||||
Programs: $P ::= write c S | read c S | cut x P ; Q | id a " " b | call f " " a$
|
||||
|
||||
Storable: $S ::= V | K$
|
||||
|
||||
=== Dynamics
|
||||
|
||||
Format: $cell a_1 V_1, cell a_2 V_2, ..., proc P_1, proc P_2$
|
||||
|
||||
- Cells are not ordered, but the procedures are ordered
|
||||
- Only writing to empty cells, mutating a cell is a different process
|
||||
|
||||
Rules:
|
||||
|
||||
- $proc (cut x P(x); Q(x)) mapsto cell(a, square), proc (P(a)), proc (Q(a))$
|
||||
- $cell(a, square), proc (write a S) mapsto cell(a, S)$
|
||||
- $cell(a, square), cell(b, S) , proc (id a b) mapsto cell(a, V)$
|
||||
- $cell(c, S), proc (read c k) mapsto proc (S triangle.r S)$
|
||||
- where
|
||||
- $(a, b) &triangle.r ((x, y) => P(x, y)) = P(a, b) \
|
||||
() &triangle.r (() => P) = P \
|
||||
k(a) &triangle.r (l(x) => P_l(x))_(l in L) \
|
||||
wrap(a) &triangle.r (wrap(x) => P(x)) = P(a)
|
||||
$
|
||||
|
||||
Remarks: this is substructural because if you have the left side, then the arrow is a linear arrow.
|
||||
|
||||
#let linarrow = $multimap$
|
||||
|
||||
#tree(
|
||||
axi[$Gamma,A tack.r B$],
|
||||
uni[$Gamma tack.r A linarrow B$]
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[$Gamma, x tack.r P :: (y : B)$],
|
||||
uni[$Gamma tack.r write c ((x, y) => P) :: (c : A linarrow B)$],
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[],
|
||||
uni[$A, A linarrow B tack.r B$]
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[],
|
||||
uni[$a : A, c : A linarrow B tack.r read c (a,b) :: (b : B)$]
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[$Gamma tack.r A$],
|
||||
axi[$Gamma tack.r B$],
|
||||
bin[$Gamma tack.r A & B$],
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[],
|
||||
uni[$A & B tack.r A$],
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[],
|
||||
uni[$A & B tack.r B$],
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[$(forall l in L) (Gamma tack.r P_l : (x : A_l))$],
|
||||
uni[$Gamma tack.r write c (l(x) => P) :: (c : &{l : A_l}_(l in L))$],
|
||||
)
|
||||
|
||||
#tree(
|
||||
axi[$k in L$],
|
||||
uni[$c : &{l:A_l}_(l in L) tack.r read c (k(a)) :: (a : A_k)$]
|
||||
)
|
||||
|
||||
The final configuration of a program is all programs are used, all cells are used
|
||||
|
||||
$ dot tack.r P :: (d_0 : A) $
|
||||
|
||||
Cut elimination is not compatible with some semi-axiomatic sequent calculus.
|
||||
|
||||
=== Recover from cut elimination
|
||||
|
||||
https://www.cs.cmu.edu/~fp/papers/fscd20a.pdf \
|
||||
https://www.cs.cmu.edu/~fp/papers/mfps22.pdf
|
||||
|
||||
Can't eliminate all cuts, cannot eliminate cuts that are subformulas (SNIPS) of the things you're trying to prove.
|
||||
|
||||
snip rule
|
||||
|
||||
#tree(axi[], uni[$underline(A), underline(B) tack.r A times.circle B$])
|
||||
|
||||
#tree(axi[], uni[$underline(A) tack.r A plus.circle B$])
|
||||
#tree(axi[], uni[$underline(B) tack.r A plus.circle B$])
|
||||
|
||||
#tree(
|
||||
axi[$Delta tack.r A$],
|
||||
axi[$Gamma , underline(A) tack.r C$],
|
||||
bin[$Delta, Gamma tack.r C$]
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue