sstill working

This commit is contained in:
Michael Zhang 2024-06-12 15:23:54 -04:00
parent c0191ea593
commit c790f7bfc3
2 changed files with 100 additions and 16 deletions

View file

@ -50,7 +50,7 @@ subst (x ∙ x₁) v = (subst x v) ∙ (subst x₁ v)
data value-rel : type term Set where
v-`true : value-rel bool `true
v-`false : value-rel bool `false
v-`λ[_]_ : {τ e} value-rel τ (`λ[ τ ] e)
v-`λ[_]_ : {τ τ₂ e} value-rel (τ₁ -→ τ₂) (`λ[ τ₁ ] e)
data good-subst : ctx sub Set where
nil : good-subst nil nil
@ -60,14 +60,20 @@ data good-subst : ctx → sub → Set where
good-subst (cons ctx τ) γ
data step : term term Set where
step-if-e : {e e' e₁ e₂} step e e' step (`if e then e₁ else e₂) (`if e' then e₁ else e₂)
step-if-1 : {e₁ e₂} step (`if `true then e₁ else e₂) e₁
step-if-2 : {e₁ e₂} step (`if `false then e₁ else e₂) e₂
step-`λ : {τ e v} step ((`λ[ τ ] e) v) (subst e v)
step-`λ-1 : {e₁ e₁' e₂} step e₁ e₁' step (e₁ e₂) (e₁' e₂)
step-`λ-2 : {τ e₁ e₂ e₂'} step e₂ e₂' step ((`λ[ τ ] e₁) e₂) ((`λ[ τ ] e₁) e₂')
step-`λ-β : {τ e v} step ((`λ[ τ ] e) v) (subst e v)
data steps : term term Set where
zero : {e} steps zero e e
suc : {e e' e''} (n : ) step e e' steps n e' e'' steps (suc n) e e''
safe : (τ : type) (e : term) Set
safe τ e = {n} (e' : term) steps n e e' (value-rel τ e') ( λ e'' step e' e'')
data _⊢__ : ctx term type Set where
type-`true : {ctx} ctx `true bool
type-`false : {ctx} ctx `false bool
@ -79,9 +85,9 @@ data _⊢__ : ctx → term → type → Set where
type-`x : {ctx x}
(p : Is-just (lookup ctx x))
ctx (` x) (to-witness p)
type-`λ : {ctx τ τ₂ e}
(cons ctx τ) e τ₂
ctx (`λ[ τ ] e) (τ -→ τ₂)
type-`λ : {ctx τ τ₂ e}
(cons ctx τ) e τ₂
ctx (`λ[ τ ] e) (τ -→ τ₂)
type-∙ : {ctx τ₁ τ₂ e₁ e₂}
ctx e₁ (τ₁ -→ τ₂)
ctx e₂ τ₂
@ -90,19 +96,81 @@ data _⊢__ : ctx → term → type → Set where
irreducible : term Set
irreducible e = ¬ ( λ e' step e e')
data term-relation : type term Set where
data term-rel : type term Set where
e-term : {τ e}
( {n} (e' : term) steps n e e' irreducible e' value-rel τ e')
term-relation τ e
term-rel τ e
type-sound : {Γ e τ} Γ e τ Set
type-sound {Γ} {e} {τ} s = {n} (e' : term) steps n e e' value-rel τ e' λ e'' step e' e''
type-soundness : {Γ e τ} Γ e τ Set
type-soundness {Γ} {e} {τ} s = {n} (e' : term) steps n e e' (value-rel τ e') ( λ e'' step e' e'')
type-sound : (e : term) (τ : type) (p : nil e τ) type-soundness p
type-sound .`true .bool type-`true .`true zero = inj₁ v-`true
type-sound .`false .bool type-`false .`false zero = inj₁ v-`false
type-sound .(`if _ then _ else _) τ (type-`ifthenelse p p₁ p₂) e' steps = {! !}
type-sound .(`λ[ _ ] _) .(_ -→ _) (type-`λ p) e' steps = {! !}
type-sound .(_ _) τ (type-∙ p p₁) e' steps = {! !}
_⊨__ : (Γ : ctx) (e : term) (τ : type) Set
_⊨__ Γ e τ = (γ : sub) (good-subst Γ γ) term-relation τ e
_⊨__ Γ e τ = (γ : sub) (good-subst Γ γ) term-rel τ e
fundamental : {Γ e τ} (well-typed : Γ e τ) type-sound well-typed Γ e τ
fundamental {Γ} {e} {τ} well-typed type-sound γ good-sub = e-term f
fundamental : {Γ e τ} (well-typed : Γ e τ) type-soundness well-typed Γ e τ
fundamental {Γ} {e} {τ} well-typed tsound γ good-sub = e-term f
where
f : {n : } (e' : term) steps n e e' irreducible e' value-rel τ e'
f e' steps irred = [ id , (λ exists ⊥-elim (irred exists)) ] (type-sound e' steps)
f e' steps irred = [ id , (λ exists ⊥-elim (irred exists)) ] (tsound e' steps)
module semantic-type-soundness where
part1 : (e : term) (τ : type) nil e τ term-rel τ e
part1 (` x) _ (type-`x ())
part1 `true bool p = e-term f
where
f : {n : } (e' : term) steps n `true e' irreducible e' value-rel bool e'
f {.zero} .`true zero irred = v-`true
part1 `false bool p = e-term f
where
f : {n : } (e' : term) steps n `false e' irreducible e' value-rel bool e'
f {zero} .`false zero irred = v-`false
part1 (`λ[ τ₁ ] e) (.τ₁ -→ τ₂) (type-`λ p) = e-term f
where
f : {n : } (e' : term) steps n (`λ[ τ₁ ] e) e' irreducible e' value-rel (τ₁ -→ τ₂) e'
f .(`λ[ τ₁ ] e) zero irred = v-`λ[_]_
part1 (`if e then e₁ else e₂) τ (type-`ifthenelse p p₁ p₂) = e-term f
where
v : {n} (e' : term) steps n e e' value-rel bool e' (step (`if e then e₁ else e₂))
v .`true zero v-`true = e₁ , step-if-1
v .`false zero v-`false = e₂ , step-if-2
v e' (suc {_} {e''} n step steps) val =
(`if e'' then e₁ else e₂) , step-if-e step
f : {n : } (e' : term) steps n (`if e then e₁ else e₂) e' irreducible e' value-rel τ e'
f .(`if e then e₁ else e₂) zero irred with part1 e bool p
f .(`if e then e₁ else e₂) zero irred | e-term f' =
let
wtf = v e zero {! !}
wtf3 = {! irred ? !}
-- wtf2 = v e wtf
-- wtf3 = irred wtf2
-- in ⊥-elim wtf3
in {! !}
f e' (suc n (step-if-e step) steps) irred = {! !}
f e' (suc n step-if-1 steps) irred with part1 e₁ τ p₁
f e' (suc n step-if-1 steps) irred | e-term f' = f' e' steps irred
f e' (suc n step-if-2 steps) irred with part1 e₂ τ p₂
f e' (suc n step-if-2 steps) irred | e-term f' = f' e' steps irred
part1 (e₁ e₂) τ₂ (type-∙ {_} {τ₁} p₁ p₂) = e-term f
where
f : {n : } (e' : term) steps n (e₁ e₂) e' irreducible e' value-rel τ₂ e'
f .(e₁ e₂) zero irred = {! !}
f e' (suc n (step-`λ-1 step) steps) irred with part1 e₁ (τ₁ -→ τ₂) p₁
f e' (suc _ (step-`λ-1 step) steps) irred | e-term f' = {! !}
f e' (suc n (step-`λ-2 step) steps) irred = {! !}
f e' (suc n step-`λ-β steps) irred = {! !}
part2 : (e : term) (τ : type) term-rel τ e safe τ e
part2 e τ (e-term p) .e zero =
inj₁ (p e zero λ q {! !})
where
v :
v = {! !}
part2 e τ (e-term p) e' (suc {f} {g} n step steps) = inj₂ ({! !} , {! step !})

View file

@ -196,3 +196,19 @@ ret z$
You can draw a search tree of probabilities. Add up the probabilities to get the probability that a program returns a specific value.
You can share $z$ since it doesn't depend directly on $x$. This builds a *binary decision diagram*.
=== Knowledge compilation
https://en.wikipedia.org/wiki/Knowledge_compilation
Relationship between hardness of propositional reasoning tasks and its syntax of the formula
SAT for DNF is easy. What kinds of structure enables efficient reasoning?
==== Succinctness
$cal(L)_1$ is more succinct than $cal(L)_2$ if it's efficient (polynomial-time) to translate (in a semantics-preserving way) programs written in $cal(L)_2$ to programs written in $cal(L)_1$
==== Canonicity of BDDs
There is only 1 structural BDD for any particular formula.