135 lines
4.4 KiB
Agda
135 lines
4.4 KiB
Agda
module Ahmed.Day2 where
|
||
|
||
open import Agda.Builtin.Sigma
|
||
open import Data.Bool
|
||
open import Data.Empty
|
||
open import Data.Fin hiding (fold)
|
||
open import Data.Maybe
|
||
open import Data.Nat
|
||
open import Data.Product
|
||
open import Data.Sum
|
||
open import Relation.Nullary
|
||
|
||
id : {A : Set} → A → A
|
||
id {A} x = x
|
||
|
||
data type : Set where
|
||
unit : type
|
||
bool : type
|
||
_-→_ : type → type → type
|
||
`_ : ℕ → type
|
||
μ_ : type → type
|
||
|
||
data term : Set where
|
||
`_ : ℕ → term
|
||
`true : term
|
||
`false : term
|
||
`if_then_else_ : term → term → term → term
|
||
`λ[_]_ : (τ : type) → (e : term) → term
|
||
_∙_ : term → term → term
|
||
`fold : term → term
|
||
`unfold : term → term
|
||
|
||
data ctx : Set where
|
||
nil : ctx
|
||
cons : ctx → type → ctx
|
||
|
||
lookup : ctx → ℕ → Maybe type
|
||
lookup nil _ = nothing
|
||
lookup (cons ctx₁ x) zero = just x
|
||
lookup (cons ctx₁ x) (suc n) = lookup ctx₁ n
|
||
|
||
data type-sub : Set where
|
||
nil : type-sub
|
||
|
||
type-subst : type → type → type
|
||
type-subst unit v = unit
|
||
type-subst bool v = bool
|
||
type-subst (τ -→ τ₁) v = (type-subst τ v) -→ (type-subst τ₁ v)
|
||
type-subst (` zero) v = v
|
||
type-subst (` suc x) v = ` x
|
||
type-subst (μ τ) v = μ (type-subst τ v)
|
||
|
||
data sub : Set where
|
||
nil : sub
|
||
cons : sub → term → sub
|
||
|
||
subst : term → term → term
|
||
subst (` zero) v = v
|
||
subst (` suc x) v = ` x
|
||
subst `true v = `true
|
||
subst `false v = `false
|
||
subst (`if x then x₁ else x₂) v = `if (subst x v) then (subst x₁ v) else (subst x₂ v)
|
||
subst (`λ[ τ ] x) v = `λ[ τ ] subst x v
|
||
subst (x ∙ x₁) v = (subst x v) ∙ (subst x₁ v)
|
||
subst (`fold x) v = `fold (subst x v)
|
||
subst (`unfold x) v = `unfold (subst x v)
|
||
|
||
data value-rel : type → term → Set where
|
||
v-`true : value-rel bool `true
|
||
v-`false : value-rel bool `false
|
||
v-`λ[_]_ : ∀ {τ e} → value-rel τ (`λ[ τ ] e)
|
||
v-`fold : ∀ {τ e} → value-rel (type-subst τ (μ τ)) e → value-rel (μ τ) (`fold e)
|
||
|
||
data good-subst : ctx → sub → Set where
|
||
nil : good-subst nil nil
|
||
cons : ∀ {ctx τ γ v}
|
||
→ good-subst ctx γ
|
||
→ value-rel τ v
|
||
→ good-subst (cons ctx τ) γ
|
||
|
||
data step : term → term → Set where
|
||
step-if-1 : ∀ {e₁ e₂} → step (`if `true then e₁ else e₂) e₁
|
||
step-if-2 : ∀ {e₁ e₂} → step (`if `false then e₁ else e₂) e₂
|
||
step-`λ : ∀ {τ e v} → step ((`λ[ τ ] e) ∙ v) (subst e v)
|
||
step-`fold : ∀ {v} → step (`unfold (`fold v)) v
|
||
|
||
data steps : ℕ → term → term → Set where
|
||
zero : ∀ {e} → steps zero e e
|
||
suc : ∀ {e e' e''} → (n : ℕ) → step e e' → steps n e' e'' → steps (suc n) e e''
|
||
|
||
data _⊢_∶_ : ctx → term → type → Set where
|
||
type-`true : ∀ {ctx} → ctx ⊢ `true ∶ bool
|
||
type-`false : ∀ {ctx} → ctx ⊢ `false ∶ bool
|
||
type-`ifthenelse : ∀ {ctx e e₁ e₂ τ}
|
||
→ ctx ⊢ e ∶ bool
|
||
→ ctx ⊢ e₁ ∶ τ
|
||
→ ctx ⊢ e₂ ∶ τ
|
||
→ ctx ⊢ (`if e then e₁ else e₂) ∶ τ
|
||
type-`x : ∀ {ctx x}
|
||
→ (p : Is-just (lookup ctx x))
|
||
→ ctx ⊢ (` x) ∶ (to-witness p)
|
||
type-`λ : ∀ {ctx τ τ₂ e}
|
||
→ (cons ctx τ) ⊢ e ∶ τ₂
|
||
→ ctx ⊢ (`λ[ τ ] e) ∶ (τ -→ τ₂)
|
||
type-∙ : ∀ {ctx τ₁ τ₂ e₁ e₂}
|
||
→ ctx ⊢ e₁ ∶ (τ₁ -→ τ₂)
|
||
→ ctx ⊢ e₂ ∶ τ₂
|
||
→ ctx ⊢ (e₁ ∙ e₂) ∶ τ₂
|
||
|
||
type-`fold : ∀ {ctx τ e}
|
||
→ ctx ⊢ e ∶ (type-subst τ (μ τ))
|
||
→ ctx ⊢ (`fold e) ∶ (μ τ)
|
||
type-`unfold : ∀ {ctx τ e}
|
||
→ ctx ⊢ e ∶ (μ τ)
|
||
→ ctx ⊢ (`unfold e) ∶ (type-subst τ (μ τ))
|
||
|
||
irreducible : term → Set
|
||
irreducible e = ¬ (∃ λ e' → step e e')
|
||
|
||
data term-relation : type → term → Set where
|
||
e-term : ∀ {τ e}
|
||
→ (∀ {n} → (e' : term) → steps n e e' → irreducible e' → value-rel τ e')
|
||
→ term-relation τ e
|
||
|
||
type-sound : ∀ {Γ e τ} → Γ ⊢ e ∶ τ → Set
|
||
type-sound {Γ} {e} {τ} s = ∀ {n} → (e' : term) → steps n e e' → value-rel τ e' ⊎ ∃ λ e'' → step e' e''
|
||
|
||
_⊨_∶_ : (Γ : ctx) → (e : term) → (τ : type) → Set
|
||
_⊨_∶_ Γ e τ = (γ : sub) → (good-subst Γ γ) → term-relation τ e
|
||
|
||
fundamental : ∀ {Γ e τ} → (well-typed : Γ ⊢ e ∶ τ) → type-sound well-typed → Γ ⊨ e ∶ τ
|
||
fundamental {Γ} {e} {τ} well-typed type-sound γ good-sub = e-term f
|
||
where
|
||
f : {n : ℕ} (e' : term) → steps n e e' → irreducible e' → value-rel τ e'
|
||
f e' steps irred = [ id , (λ exists → ⊥-elim (irred exists)) ] (type-sound e' steps)
|