2022-09-03 09:08:45 +00:00
|
|
|
import math
|
2022-09-22 09:11:48 +00:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import traceback
|
|
|
|
|
2022-09-08 02:35:26 +00:00
|
|
|
import numpy as np
|
2022-09-07 20:37:54 +00:00
|
|
|
from PIL import Image, ImageOps, ImageChops
|
2022-09-03 09:08:45 +00:00
|
|
|
|
2022-09-11 20:24:24 +00:00
|
|
|
from modules import devices
|
2022-09-03 09:08:45 +00:00
|
|
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
|
|
|
from modules.shared import opts, state
|
|
|
|
import modules.shared as shared
|
|
|
|
import modules.processing as processing
|
|
|
|
from modules.ui import plaintext_to_html
|
|
|
|
import modules.images as images
|
2022-09-03 14:21:15 +00:00
|
|
|
import modules.scripts
|
2022-09-03 09:08:45 +00:00
|
|
|
|
2022-09-22 09:11:48 +00:00
|
|
|
|
|
|
|
def process_batch(p, input_dir, output_dir, args):
|
|
|
|
processing.fix_seed(p)
|
|
|
|
|
|
|
|
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
|
|
|
|
|
|
|
|
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
|
|
|
|
2022-10-03 08:48:19 +00:00
|
|
|
save_normally = output_dir == ''
|
|
|
|
|
2022-09-22 09:11:48 +00:00
|
|
|
p.do_not_save_grid = True
|
2022-10-03 08:48:19 +00:00
|
|
|
p.do_not_save_samples = not save_normally
|
2022-09-22 09:11:48 +00:00
|
|
|
|
|
|
|
state.job_count = len(images) * p.n_iter
|
|
|
|
|
|
|
|
for i, image in enumerate(images):
|
|
|
|
state.job = f"{i+1} out of {len(images)}"
|
|
|
|
|
|
|
|
if state.interrupted:
|
|
|
|
break
|
|
|
|
|
|
|
|
img = Image.open(image)
|
|
|
|
p.init_images = [img] * p.batch_size
|
|
|
|
|
|
|
|
proc = modules.scripts.scripts_img2img.run(p, *args)
|
|
|
|
if proc is None:
|
|
|
|
proc = process_images(p)
|
|
|
|
|
|
|
|
for n, processed_image in enumerate(proc.images):
|
|
|
|
filename = os.path.basename(image)
|
|
|
|
|
|
|
|
if n > 0:
|
|
|
|
left, right = os.path.splitext(filename)
|
|
|
|
filename = f"{left}-{n}{right}"
|
|
|
|
|
2022-10-03 08:48:19 +00:00
|
|
|
if not save_normally:
|
|
|
|
processed_image.save(os.path.join(output_dir, filename))
|
2022-09-22 09:11:48 +00:00
|
|
|
|
|
|
|
|
|
|
|
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
|
2022-09-03 09:08:45 +00:00
|
|
|
is_inpaint = mode == 1
|
2022-09-22 09:11:48 +00:00
|
|
|
is_batch = mode == 2
|
2022-09-03 09:08:45 +00:00
|
|
|
|
|
|
|
if is_inpaint:
|
2022-09-09 16:43:16 +00:00
|
|
|
if mask_mode == 0:
|
|
|
|
image = init_img_with_mask['image']
|
|
|
|
mask = init_img_with_mask['mask']
|
|
|
|
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
|
|
|
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
|
|
|
image = image.convert('RGB')
|
|
|
|
else:
|
2022-09-22 09:11:48 +00:00
|
|
|
image = init_img_inpaint
|
|
|
|
mask = init_mask_inpaint
|
2022-09-03 09:08:45 +00:00
|
|
|
else:
|
|
|
|
image = init_img
|
|
|
|
mask = None
|
|
|
|
|
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
|
|
|
|
|
|
p = StableDiffusionProcessingImg2Img(
|
|
|
|
sd_model=shared.sd_model,
|
|
|
|
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
|
|
|
|
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
|
|
|
|
prompt=prompt,
|
2022-09-09 06:15:36 +00:00
|
|
|
negative_prompt=negative_prompt,
|
2022-09-14 14:56:21 +00:00
|
|
|
styles=[prompt_style, prompt_style2],
|
2022-09-03 09:08:45 +00:00
|
|
|
seed=seed,
|
2022-09-09 14:54:04 +00:00
|
|
|
subseed=subseed,
|
|
|
|
subseed_strength=subseed_strength,
|
|
|
|
seed_resize_from_h=seed_resize_from_h,
|
|
|
|
seed_resize_from_w=seed_resize_from_w,
|
2022-09-21 10:34:10 +00:00
|
|
|
seed_enable_extras=seed_enable_extras,
|
2022-09-03 09:08:45 +00:00
|
|
|
sampler_index=sampler_index,
|
|
|
|
batch_size=batch_size,
|
|
|
|
n_iter=n_iter,
|
|
|
|
steps=steps,
|
|
|
|
cfg_scale=cfg_scale,
|
|
|
|
width=width,
|
|
|
|
height=height,
|
2022-09-07 09:32:28 +00:00
|
|
|
restore_faces=restore_faces,
|
2022-09-05 00:25:37 +00:00
|
|
|
tiling=tiling,
|
2022-09-03 09:08:45 +00:00
|
|
|
init_images=[image],
|
|
|
|
mask=mask,
|
|
|
|
mask_blur=mask_blur,
|
|
|
|
inpainting_fill=inpainting_fill,
|
|
|
|
resize_mode=resize_mode,
|
|
|
|
denoising_strength=denoising_strength,
|
|
|
|
inpaint_full_res=inpaint_full_res,
|
2022-09-22 09:11:48 +00:00
|
|
|
inpaint_full_res_padding=inpaint_full_res_padding,
|
2022-09-03 18:02:38 +00:00
|
|
|
inpainting_mask_invert=inpainting_mask_invert,
|
2022-09-03 09:08:45 +00:00
|
|
|
)
|
2022-10-02 17:23:40 +00:00
|
|
|
|
|
|
|
if shared.cmd_opts.enable_console_prompts:
|
|
|
|
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
2022-09-03 09:08:45 +00:00
|
|
|
|
2022-09-20 16:07:09 +00:00
|
|
|
p.extra_generation_params["Mask blur"] = mask_blur
|
|
|
|
|
2022-09-22 09:11:48 +00:00
|
|
|
if is_batch:
|
2022-09-24 13:29:20 +00:00
|
|
|
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
|
|
|
|
|
2022-09-22 09:11:48 +00:00
|
|
|
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
|
2022-09-03 09:08:45 +00:00
|
|
|
|
2022-09-22 09:11:48 +00:00
|
|
|
processed = Processed(p, [], p.seed, "")
|
2022-09-03 09:08:45 +00:00
|
|
|
else:
|
2022-09-03 22:29:43 +00:00
|
|
|
processed = modules.scripts.scripts_img2img.run(p, *args)
|
2022-09-03 14:21:15 +00:00
|
|
|
if processed is None:
|
|
|
|
processed = process_images(p)
|
|
|
|
|
2022-09-08 13:37:13 +00:00
|
|
|
shared.total_tqdm.clear()
|
2022-09-03 09:08:45 +00:00
|
|
|
|
2022-09-22 08:47:16 +00:00
|
|
|
generation_info_js = processed.js()
|
|
|
|
if opts.samples_log_stdout:
|
|
|
|
print(generation_info_js)
|
|
|
|
|
2022-09-28 15:20:30 +00:00
|
|
|
return processed.images, generation_info_js, plaintext_to_html(processed.info)
|