33 lines
870 B
Python
33 lines
870 B
Python
|
import html
|
||
|
|
||
|
import gradio as gr
|
||
|
|
||
|
import modules.textual_inversion.textual_inversion as ti
|
||
|
from modules import sd_hijack, shared
|
||
|
|
||
|
|
||
|
def create_embedding(name, nvpt):
|
||
|
filename = ti.create_embedding(name, nvpt)
|
||
|
|
||
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||
|
|
||
|
return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
|
||
|
|
||
|
|
||
|
def train_embedding(*args):
|
||
|
|
||
|
try:
|
||
|
sd_hijack.undo_optimizations()
|
||
|
|
||
|
embedding, filename = ti.train_embedding(*args)
|
||
|
|
||
|
res = f"""
|
||
|
Training {'interrupted' if shared.state.interrupted else 'finished'} after {embedding.step} steps.
|
||
|
Embedding saved to {html.escape(filename)}
|
||
|
"""
|
||
|
return res, ""
|
||
|
except Exception:
|
||
|
raise
|
||
|
finally:
|
||
|
sd_hijack.apply_optimizations()
|