From 03d62538aebeff51713619fe808c953bdb70193d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 14 Oct 2022 22:43:55 +0300 Subject: [PATCH] remove duplicate code for log loss, add step, make it read from options rather than gradio input --- modules/hypernetworks/hypernetwork.py | 20 +++------ modules/shared.py | 3 +- .../textual_inversion/textual_inversion.py | 44 +++++++++++++------ modules/ui.py | 3 -- 4 files changed, 38 insertions(+), 32 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index edb8cba1..59c7ac6e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -15,6 +15,7 @@ import torch from torch import einsum from einops import rearrange, repeat import modules.textual_inversion.dataset +from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler @@ -210,7 +211,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) @@ -263,19 +264,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) - if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0: - write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True - - with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout: - - csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss", "learn_rate"]) - - if write_csv_header: - csv_writer.writeheader() - - csv_writer.writerow({"step": hypernetwork.step, - "loss": f"{losses.mean():.7f}", - "learn_rate": scheduler.learn_rate}) + textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate + }) if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') diff --git a/modules/shared.py b/modules/shared.py index 695d29b6..d41a7ab3 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -236,7 +236,8 @@ options_templates.update(options_section(('training', "Training"), { "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), - "training_image_repeats_per_epoch": OptionInfo(100, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), + "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), + "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), })) options_templates.update(options_section(('sd', "Stable Diffusion"), { diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 1f5ace6f..da0d77a0 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -173,6 +173,32 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn +def write_loss(log_directory, filename, step, epoch_len, values): + if shared.opts.training_write_csv_every == 0: + return + + if step % shared.opts.training_write_csv_every != 0: + return + + write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True + + with open(os.path.join(log_directory, filename), "a+", newline='') as fout: + csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())]) + + if write_csv_header: + csv_writer.writeheader() + + epoch = step // epoch_len + epoch_step = step - epoch * epoch_len + + csv_writer.writerow({ + "step": step + 1, + "epoch": epoch + 1, + "epoch_step": epoch_step + 1, + **values, + }) + + def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' @@ -257,20 +283,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') embedding.save(last_saved_file) - if write_csv_every > 0 and log_directory is not None and embedding.step % write_csv_every == 0: - write_csv_header = False if os.path.exists(os.path.join(log_directory, "textual_inversion_loss.csv")) else True - - with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout: - - csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss", "learn_rate"]) - - if write_csv_header: - csv_writer.writeheader() - - csv_writer.writerow({"epoch": epoch_num + 1, - "epoch_step": epoch_step - 1, - "loss": f"{losses.mean():.7f}", - "learn_rate": scheduler.learn_rate}) + write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate + }) if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') diff --git a/modules/ui.py b/modules/ui.py index be4a43a7..a08ffc9b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1172,7 +1172,6 @@ def create_ui(wrap_gradio_gpu_call): training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) - write_csv_every = gr.Number(label='Save an csv containing the loss to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) @@ -1251,7 +1250,6 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, - write_csv_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, @@ -1274,7 +1272,6 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, - write_csv_every, template_file, preview_from_txt2img, *txt2img_preview_params,