Merge pull request #3722 from evshiron/feat/progress-api

prototype progress api
This commit is contained in:
AUTOMATIC1111 2022-10-30 09:02:01 +03:00 committed by GitHub
commit 060ee5d3a7
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 108 additions and 27 deletions

View file

@ -1,12 +1,40 @@
import time
import uvicorn
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
from fastapi import APIRouter, HTTPException
from fastapi import APIRouter, Depends, HTTPException
import modules.shared as shared
from modules import devices
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers
from modules.extras import run_extras, run_pnginfo
# copy from wrap_gradio_gpu_call of webui.py
# because queue lock will be acquired in api handlers
# and time start needs to be set
# the function has been modified into two parts
def before_gpu_call():
devices.torch_gc()
shared.state.sampling_step = 0
shared.state.job_count = -1
shared.state.job_no = 0
shared.state.job_timestamp = shared.state.get_job_timestamp()
shared.state.current_latent = None
shared.state.current_image = None
shared.state.current_image_sampling_step = 0
shared.state.skipped = False
shared.state.interrupted = False
shared.state.textinfo = None
shared.state.time_start = time.time()
def after_gpu_call():
shared.state.job = ""
shared.state.job_count = 0
devices.torch_gc()
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
@ -33,15 +61,16 @@ class Api:
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
raise HTTPException(status_code=404, detail="Sampler not found")
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True
@ -49,34 +78,36 @@ class Api:
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
before_gpu_call()
with self.queue_lock:
processed = process_images(p)
after_gpu_call()
b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
sampler_index = sampler_to_index(img2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
raise HTTPException(status_code=404, detail="Init image not found")
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True,
"do_not_save_grid": True,
"mask": mask
}
)
@ -89,15 +120,17 @@ class Api:
p.init_images = imgs
# Override object param
before_gpu_call()
with self.queue_lock:
processed = process_images(p)
after_gpu_call()
b64images = list(map(encode_pil_to_base64, processed.images))
if (not img2imgreq.include_init_images):
img2imgreq.init_images = None
img2imgreq.mask = None
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
@ -125,7 +158,7 @@ class Api:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
def pnginfoapi(self, req: PNGInfoRequest):
if(not req.image.strip()):
return PNGInfoResponse(info="")
@ -134,6 +167,32 @@ class Api:
return PNGInfoResponse(info=result[1])
def progressapi(self, req: ProgressRequest = Depends()):
# copy from check_progress_call of ui.py
if shared.state.job_count == 0:
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict())
# avoid dividing zero
progress = 0.01
if shared.state.job_count > 0:
progress += shared.state.job_no / shared.state.job_count
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
progress = min(progress, 1)
current_image = None
if shared.state.current_image and not req.skip_current_image:
current_image = encode_pil_to_base64(shared.state.current_image)
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)

View file

@ -52,17 +52,17 @@ class PydanticModelGenerator:
# field_type = str if not overrides.get(k) else overrides[k]["type"]
# print(k, v.annotation, v.default)
field_type = v.annotation
return Optional[field_type]
def merge_class_params(class_):
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
parameters = {}
for classes in all_classes:
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
return parameters
self._model_name = model_name
self._class_data = merge_class_params(class_instance)
self._model_def = [
@ -74,11 +74,11 @@ class PydanticModelGenerator:
)
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
]
for fields in additional_fields:
self._model_def.append(ModelDef(
field=underscore(fields["key"]),
field_alias=fields["key"],
field=underscore(fields["key"]),
field_alias=fields["key"],
field_type=fields["type"],
field_value=fields["default"],
field_exclude=fields["exclude"] if "exclude" in fields else False))
@ -95,15 +95,15 @@ class PydanticModelGenerator:
DynamicModel.__config__.allow_population_by_field_name = True
DynamicModel.__config__.allow_mutation = True
return DynamicModel
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
).generate_model()
@ -155,4 +155,13 @@ class PNGInfoRequest(BaseModel):
image: str = Field(title="Image", description="The base64 encoded PNG image")
class PNGInfoResponse(BaseModel):
info: str = Field(title="Image info", description="A string with all the info the image had")
info: str = Field(title="Image info", description="A string with all the info the image had")
class ProgressRequest(BaseModel):
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
class ProgressResponse(BaseModel):
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
eta_relative: float = Field(title="ETA in secs")
state: dict = Field(title="State", description="The current state snapshot")
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")

View file

@ -147,6 +147,19 @@ class State:
def get_job_timestamp(self):
return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
def dict(self):
obj = {
"skipped": self.skipped,
"interrupted": self.skipped,
"job": self.job,
"job_count": self.job_count,
"job_no": self.job_no,
"sampling_step": self.sampling_step,
"sampling_steps": self.sampling_steps,
}
return obj
state = State()