Merge branch 'master' into master
This commit is contained in:
commit
0831ab476c
53 changed files with 1498 additions and 900 deletions
31
.github/workflows/run_tests.yaml
vendored
Normal file
31
.github/workflows/run_tests.yaml
vendored
Normal file
|
@ -0,0 +1,31 @@
|
|||
name: Run basic features tests on CPU with empty SD model
|
||||
|
||||
on:
|
||||
- push
|
||||
- pull_request
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Code
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.10.6
|
||||
- uses: actions/cache@v3
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: ${{ runner.os }}-pip-
|
||||
- name: Run tests
|
||||
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
|
||||
- name: Upload main app stdout-stderr
|
||||
uses: actions/upload-artifact@v3
|
||||
if: always()
|
||||
with:
|
||||
name: stdout-stderr
|
||||
path: |
|
||||
test/stdout.txt
|
||||
test/stderr.txt
|
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -1,5 +1,6 @@
|
|||
__pycache__
|
||||
*.ckpt
|
||||
*.safetensors
|
||||
*.pth
|
||||
/ESRGAN/*
|
||||
/SwinIR/*
|
||||
|
|
21
README.md
21
README.md
|
@ -84,26 +84,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||
- API
|
||||
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
||||
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
||||
|
||||
## Where are Aesthetic Gradients?!?!
|
||||
Aesthetic Gradients are now an extension. You can install it using git:
|
||||
|
||||
```commandline
|
||||
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients
|
||||
```
|
||||
|
||||
After running this command, make sure that you have `aesthetic-gradients` dir in webui's `extensions` directory and restart
|
||||
the UI. The interface for Aesthetic Gradients should appear exactly the same as it was.
|
||||
|
||||
## Where is History/Image browser?!?!
|
||||
Image browser is now an extension. You can install it using git:
|
||||
|
||||
```commandline
|
||||
git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser extensions/images-browser
|
||||
```
|
||||
|
||||
After running this command, make sure that you have `images-browser` dir in webui's `extensions` directory and restart
|
||||
the UI. The interface for Image browser should appear exactly the same as it was.
|
||||
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
|
||||
|
||||
## Installation and Running
|
||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||
|
|
|
@ -62,8 +62,8 @@ titles = {
|
|||
|
||||
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
|
||||
|
||||
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
|
||||
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
|
||||
|
||||
"Loopback": "Process an image, use it as an input, repeat.",
|
||||
|
|
|
@ -23,7 +23,7 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
|
|||
|
||||
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
|
||||
if(progressbar.innerText){
|
||||
let newtitle = 'Stable Diffusion - ' + progressbar.innerText
|
||||
let newtitle = '[' + progressbar.innerText.trim() + '] Stable Diffusion';
|
||||
if(document.title != newtitle){
|
||||
document.title = newtitle;
|
||||
}
|
||||
|
|
|
@ -8,8 +8,8 @@ function set_theme(theme){
|
|||
}
|
||||
|
||||
function selected_gallery_index(){
|
||||
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item')
|
||||
var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2')
|
||||
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
|
||||
var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
|
||||
|
||||
var result = -1
|
||||
buttons.forEach(function(v, i){ if(v==button) { result = i } })
|
||||
|
|
77
launch.py
77
launch.py
|
@ -5,6 +5,8 @@ import sys
|
|||
import importlib.util
|
||||
import shlex
|
||||
import platform
|
||||
import argparse
|
||||
import json
|
||||
|
||||
dir_repos = "repositories"
|
||||
dir_extensions = "extensions"
|
||||
|
@ -17,6 +19,19 @@ def extract_arg(args, name):
|
|||
return [x for x in args if x != name], name in args
|
||||
|
||||
|
||||
def extract_opt(args, name):
|
||||
opt = None
|
||||
is_present = False
|
||||
if name in args:
|
||||
is_present = True
|
||||
idx = args.index(name)
|
||||
del args[idx]
|
||||
if idx < len(args) and args[idx][0] != "-":
|
||||
opt = args[idx]
|
||||
del args[idx]
|
||||
return args, is_present, opt
|
||||
|
||||
|
||||
def run(command, desc=None, errdesc=None, custom_env=None):
|
||||
if desc is not None:
|
||||
print(desc)
|
||||
|
@ -119,11 +134,26 @@ def run_extension_installer(extension_dir):
|
|||
print(e, file=sys.stderr)
|
||||
|
||||
|
||||
def run_extensions_installers():
|
||||
def list_extensions(settings_file):
|
||||
settings = {}
|
||||
|
||||
try:
|
||||
if os.path.isfile(settings_file):
|
||||
with open(settings_file, "r", encoding="utf8") as file:
|
||||
settings = json.load(file)
|
||||
except Exception as e:
|
||||
print(e, file=sys.stderr)
|
||||
|
||||
disabled_extensions = set(settings.get('disabled_extensions', []))
|
||||
|
||||
return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
|
||||
|
||||
|
||||
def run_extensions_installers(settings_file):
|
||||
if not os.path.isdir(dir_extensions):
|
||||
return
|
||||
|
||||
for dirname_extension in os.listdir(dir_extensions):
|
||||
for dirname_extension in list_extensions(settings_file):
|
||||
run_extension_installer(os.path.join(dir_extensions, dirname_extension))
|
||||
|
||||
|
||||
|
@ -134,28 +164,32 @@ def prepare_enviroment():
|
|||
|
||||
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
||||
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
||||
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
|
||||
|
||||
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
|
||||
|
||||
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git")
|
||||
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
|
||||
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
|
||||
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
|
||||
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
|
||||
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
|
||||
|
||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
|
||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "60e5042ca0da89c14d1dd59d73883280f8fce991")
|
||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
|
||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||
|
||||
sys.argv += shlex.split(commandline_args)
|
||||
test_argv = [x for x in sys.argv if x != '--tests']
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
|
||||
args, _ = parser.parse_known_args(sys.argv)
|
||||
|
||||
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
|
||||
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
|
||||
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
|
||||
sys.argv, run_tests = extract_arg(sys.argv, '--tests')
|
||||
sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
|
||||
xformers = '--xformers' in sys.argv
|
||||
ngrok = '--ngrok' in sys.argv
|
||||
|
||||
|
@ -179,6 +213,9 @@ def prepare_enviroment():
|
|||
if not is_installed("clip"):
|
||||
run_pip(f"install {clip_package}", "clip")
|
||||
|
||||
if not is_installed("open_clip"):
|
||||
run_pip(f"install {openclip_package}", "open_clip")
|
||||
|
||||
if (not is_installed("xformers") or reinstall_xformers) and xformers:
|
||||
if platform.system() == "Windows":
|
||||
if platform.python_version().startswith("3.10"):
|
||||
|
@ -196,7 +233,7 @@ def prepare_enviroment():
|
|||
|
||||
os.makedirs(dir_repos, exist_ok=True)
|
||||
|
||||
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
||||
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||
|
@ -207,7 +244,7 @@ def prepare_enviroment():
|
|||
|
||||
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
||||
|
||||
run_extensions_installers()
|
||||
run_extensions_installers(settings_file=args.ui_settings_file)
|
||||
|
||||
if update_check:
|
||||
version_check(commit)
|
||||
|
@ -217,24 +254,30 @@ def prepare_enviroment():
|
|||
exit(0)
|
||||
|
||||
if run_tests:
|
||||
tests(test_argv)
|
||||
exit(0)
|
||||
exitcode = tests(test_dir)
|
||||
exit(exitcode)
|
||||
|
||||
|
||||
def tests(argv):
|
||||
if "--api" not in argv:
|
||||
argv.append("--api")
|
||||
def tests(test_dir):
|
||||
if "--api" not in sys.argv:
|
||||
sys.argv.append("--api")
|
||||
if "--ckpt" not in sys.argv:
|
||||
sys.argv.append("--ckpt")
|
||||
sys.argv.append("./test/test_files/empty.pt")
|
||||
if "--skip-torch-cuda-test" not in sys.argv:
|
||||
sys.argv.append("--skip-torch-cuda-test")
|
||||
|
||||
print(f"Launching Web UI in another process for testing with arguments: {' '.join(argv[1:])}")
|
||||
print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
|
||||
|
||||
with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
|
||||
proc = subprocess.Popen([sys.executable, *argv], stdout=stdout, stderr=stderr)
|
||||
proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
|
||||
|
||||
import test.server_poll
|
||||
test.server_poll.run_tests()
|
||||
exitcode = test.server_poll.run_tests(proc, test_dir)
|
||||
|
||||
print(f"Stopping Web UI process with id {proc.pid}")
|
||||
proc.kill()
|
||||
return exitcode
|
||||
|
||||
|
||||
def start():
|
||||
|
|
|
@ -3,7 +3,8 @@ import io
|
|||
import time
|
||||
import uvicorn
|
||||
from threading import Lock
|
||||
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
|
||||
from io import BytesIO
|
||||
from gradio.processing_utils import decode_base64_to_file
|
||||
from fastapi import APIRouter, Depends, FastAPI, HTTPException
|
||||
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||
from secrets import compare_digest
|
||||
|
@ -13,7 +14,7 @@ from modules import sd_samplers, deepbooru
|
|||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.extras import run_extras, run_pnginfo
|
||||
from PIL import PngImagePlugin
|
||||
from PIL import PngImagePlugin,Image
|
||||
from modules.sd_models import checkpoints_list
|
||||
from modules.realesrgan_model import get_realesrgan_models
|
||||
from typing import List
|
||||
|
@ -40,6 +41,10 @@ def setUpscalers(req: dict):
|
|||
reqDict.pop('upscaler_2')
|
||||
return reqDict
|
||||
|
||||
def decode_base64_to_image(encoding):
|
||||
if encoding.startswith("data:image/"):
|
||||
encoding = encoding.split(";")[1].split(",")[1]
|
||||
return Image.open(BytesIO(base64.b64decode(encoding)))
|
||||
|
||||
def encode_pil_to_base64(image):
|
||||
with io.BytesIO() as output_bytes:
|
||||
|
@ -107,11 +112,13 @@ class Api:
|
|||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_name": validate_sampler_name(txt2imgreq.sampler_index),
|
||||
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True
|
||||
}
|
||||
)
|
||||
if populate.sampler_name:
|
||||
populate.sampler_index = None # prevent a warning later on
|
||||
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
||||
# Override object param
|
||||
|
||||
|
@ -137,12 +144,14 @@ class Api:
|
|||
|
||||
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_name": validate_sampler_name(img2imgreq.sampler_index),
|
||||
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True,
|
||||
"mask": mask
|
||||
}
|
||||
)
|
||||
if populate.sampler_name:
|
||||
populate.sampler_index = None # prevent a warning later on
|
||||
p = StableDiffusionProcessingImg2Img(**vars(populate))
|
||||
|
||||
imgs = []
|
||||
|
@ -305,7 +314,7 @@ class Api:
|
|||
styleList = []
|
||||
for k in shared.prompt_styles.styles:
|
||||
style = shared.prompt_styles.styles[k]
|
||||
styleList.append({"name":style[0], "prompt": style[1], "negative_prompr": style[2]})
|
||||
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
|
||||
|
||||
return styleList
|
||||
|
||||
|
|
98
modules/call_queue.py
Normal file
98
modules/call_queue.py
Normal file
|
@ -0,0 +1,98 @@
|
|||
import html
|
||||
import sys
|
||||
import threading
|
||||
import traceback
|
||||
import time
|
||||
|
||||
from modules import shared
|
||||
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
|
||||
def wrap_queued_call(func):
|
||||
def f(*args, **kwargs):
|
||||
with queue_lock:
|
||||
res = func(*args, **kwargs)
|
||||
|
||||
return res
|
||||
|
||||
return f
|
||||
|
||||
|
||||
def wrap_gradio_gpu_call(func, extra_outputs=None):
|
||||
def f(*args, **kwargs):
|
||||
|
||||
shared.state.begin()
|
||||
|
||||
with queue_lock:
|
||||
res = func(*args, **kwargs)
|
||||
|
||||
shared.state.end()
|
||||
|
||||
return res
|
||||
|
||||
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
|
||||
|
||||
|
||||
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
||||
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
|
||||
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
|
||||
if run_memmon:
|
||||
shared.mem_mon.monitor()
|
||||
t = time.perf_counter()
|
||||
|
||||
try:
|
||||
res = list(func(*args, **kwargs))
|
||||
except Exception as e:
|
||||
# When printing out our debug argument list, do not print out more than a MB of text
|
||||
max_debug_str_len = 131072 # (1024*1024)/8
|
||||
|
||||
print("Error completing request", file=sys.stderr)
|
||||
argStr = f"Arguments: {str(args)} {str(kwargs)}"
|
||||
print(argStr[:max_debug_str_len], file=sys.stderr)
|
||||
if len(argStr) > max_debug_str_len:
|
||||
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
|
||||
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
shared.state.job = ""
|
||||
shared.state.job_count = 0
|
||||
|
||||
if extra_outputs_array is None:
|
||||
extra_outputs_array = [None, '']
|
||||
|
||||
res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
|
||||
|
||||
shared.state.skipped = False
|
||||
shared.state.interrupted = False
|
||||
shared.state.job_count = 0
|
||||
|
||||
if not add_stats:
|
||||
return tuple(res)
|
||||
|
||||
elapsed = time.perf_counter() - t
|
||||
elapsed_m = int(elapsed // 60)
|
||||
elapsed_s = elapsed % 60
|
||||
elapsed_text = f"{elapsed_s:.2f}s"
|
||||
if elapsed_m > 0:
|
||||
elapsed_text = f"{elapsed_m}m "+elapsed_text
|
||||
|
||||
if run_memmon:
|
||||
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
|
||||
active_peak = mem_stats['active_peak']
|
||||
reserved_peak = mem_stats['reserved_peak']
|
||||
sys_peak = mem_stats['system_peak']
|
||||
sys_total = mem_stats['total']
|
||||
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
|
||||
|
||||
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
|
||||
else:
|
||||
vram_html = ''
|
||||
|
||||
# last item is always HTML
|
||||
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
|
||||
|
||||
return tuple(res)
|
||||
|
||||
return f
|
||||
|
|
@ -36,6 +36,7 @@ def setup_model(dirname):
|
|||
from basicsr.utils.download_util import load_file_from_url
|
||||
from basicsr.utils import imwrite, img2tensor, tensor2img
|
||||
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
||||
from facelib.detection.retinaface import retinaface
|
||||
from modules.shared import cmd_opts
|
||||
|
||||
net_class = CodeFormer
|
||||
|
@ -65,6 +66,8 @@ def setup_model(dirname):
|
|||
net.load_state_dict(checkpoint)
|
||||
net.eval()
|
||||
|
||||
if hasattr(retinaface, 'device'):
|
||||
retinaface.device = devices.device_codeformer
|
||||
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
|
||||
|
||||
self.net = net
|
||||
|
|
|
@ -58,7 +58,7 @@ class DeepDanbooru:
|
|||
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
|
||||
|
||||
with torch.no_grad(), devices.autocast():
|
||||
x = torch.from_numpy(a).cuda()
|
||||
x = torch.from_numpy(a).to(devices.device)
|
||||
y = self.model(x)[0].detach().cpu().numpy()
|
||||
|
||||
probability_dict = {}
|
||||
|
|
|
@ -2,9 +2,10 @@ import sys, os, shlex
|
|||
import contextlib
|
||||
import torch
|
||||
from modules import errors
|
||||
from packaging import version
|
||||
|
||||
|
||||
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
||||
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
|
||||
# check `getattr` and try it for compatibility
|
||||
def has_mps() -> bool:
|
||||
if not getattr(torch, 'has_mps', False):
|
||||
|
@ -24,17 +25,18 @@ def extract_device_id(args, name):
|
|||
return None
|
||||
|
||||
|
||||
def get_cuda_device_string():
|
||||
from modules import shared
|
||||
|
||||
if shared.cmd_opts.device_id is not None:
|
||||
return f"cuda:{shared.cmd_opts.device_id}"
|
||||
|
||||
return "cuda"
|
||||
|
||||
|
||||
def get_optimal_device():
|
||||
if torch.cuda.is_available():
|
||||
from modules import shared
|
||||
|
||||
device_id = shared.cmd_opts.device_id
|
||||
|
||||
if device_id is not None:
|
||||
cuda_device = f"cuda:{device_id}"
|
||||
return torch.device(cuda_device)
|
||||
else:
|
||||
return torch.device("cuda")
|
||||
return torch.device(get_cuda_device_string())
|
||||
|
||||
# if has_mps():
|
||||
# return torch.device("mps")
|
||||
|
@ -44,8 +46,9 @@ def get_optimal_device():
|
|||
|
||||
def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
with torch.cuda.device(get_cuda_device_string()):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def enable_tf32():
|
||||
|
@ -97,9 +100,25 @@ def autocast(disable=False):
|
|||
|
||||
|
||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||
def mps_contiguous(input_tensor, device):
|
||||
return input_tensor.contiguous() if device.type == 'mps' else input_tensor
|
||||
orig_tensor_to = torch.Tensor.to
|
||||
def tensor_to_fix(self, *args, **kwargs):
|
||||
if self.device.type != 'mps' and \
|
||||
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
|
||||
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
|
||||
self = self.contiguous()
|
||||
return orig_tensor_to(self, *args, **kwargs)
|
||||
|
||||
|
||||
def mps_contiguous_to(input_tensor, device):
|
||||
return mps_contiguous(input_tensor, device).to(device)
|
||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
|
||||
orig_layer_norm = torch.nn.functional.layer_norm
|
||||
def layer_norm_fix(*args, **kwargs):
|
||||
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
|
||||
args = list(args)
|
||||
args[0] = args[0].contiguous()
|
||||
return orig_layer_norm(*args, **kwargs)
|
||||
|
||||
|
||||
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
|
||||
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
|
||||
torch.Tensor.to = tensor_to_fix
|
||||
torch.nn.functional.layer_norm = layer_norm_fix
|
||||
|
|
|
@ -199,7 +199,7 @@ def upscale_without_tiling(model, img):
|
|||
img = img[:, :, ::-1]
|
||||
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
|
||||
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
from __future__ import annotations
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
@ -12,7 +14,7 @@ from typing import Callable, List, OrderedDict, Tuple
|
|||
from functools import partial
|
||||
from dataclasses import dataclass
|
||||
|
||||
from modules import processing, shared, images, devices, sd_models
|
||||
from modules import processing, shared, images, devices, sd_models, sd_samplers
|
||||
from modules.shared import opts
|
||||
import modules.gfpgan_model
|
||||
from modules.ui import plaintext_to_html
|
||||
|
@ -20,7 +22,7 @@ import modules.codeformer_model
|
|||
import piexif
|
||||
import piexif.helper
|
||||
import gradio as gr
|
||||
|
||||
import safetensors.torch
|
||||
|
||||
class LruCache(OrderedDict):
|
||||
@dataclass(frozen=True)
|
||||
|
@ -213,25 +215,8 @@ def run_pnginfo(image):
|
|||
if image is None:
|
||||
return '', '', ''
|
||||
|
||||
items = image.info
|
||||
geninfo = ''
|
||||
|
||||
if "exif" in image.info:
|
||||
exif = piexif.load(image.info["exif"])
|
||||
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
||||
try:
|
||||
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
||||
except ValueError:
|
||||
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
||||
|
||||
items['exif comment'] = exif_comment
|
||||
geninfo = exif_comment
|
||||
|
||||
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
||||
'loop', 'background', 'timestamp', 'duration']:
|
||||
items.pop(field, None)
|
||||
|
||||
geninfo = items.get('parameters', geninfo)
|
||||
geninfo, items = images.read_info_from_image(image)
|
||||
items = {**{'parameters': geninfo}, **items}
|
||||
|
||||
info = ''
|
||||
for key, text in items.items():
|
||||
|
@ -249,7 +234,7 @@ def run_pnginfo(image):
|
|||
return '', geninfo, info
|
||||
|
||||
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
|
||||
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
|
||||
def weighted_sum(theta0, theta1, alpha):
|
||||
return ((1 - alpha) * theta0) + (alpha * theta1)
|
||||
|
||||
|
@ -264,19 +249,15 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
|
||||
|
||||
print(f"Loading {primary_model_info.filename}...")
|
||||
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
|
||||
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
|
||||
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
|
||||
|
||||
print(f"Loading {secondary_model_info.filename}...")
|
||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
||||
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
|
||||
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
|
||||
|
||||
if teritary_model_info is not None:
|
||||
print(f"Loading {teritary_model_info.filename}...")
|
||||
teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
|
||||
theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
|
||||
theta_2 = sd_models.read_state_dict(teritary_model_info.filename, map_location='cpu')
|
||||
else:
|
||||
teritary_model = None
|
||||
theta_2 = None
|
||||
|
||||
theta_funcs = {
|
||||
|
@ -295,7 +276,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||
theta_1[key] = theta_func1(theta_1[key], t2)
|
||||
else:
|
||||
theta_1[key] = torch.zeros_like(theta_1[key])
|
||||
del theta_2, teritary_model
|
||||
del theta_2
|
||||
|
||||
for key in tqdm.tqdm(theta_0.keys()):
|
||||
if 'model' in key and key in theta_1:
|
||||
|
@ -314,12 +295,17 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||
|
||||
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
|
||||
|
||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
|
||||
filename = filename if custom_name == '' else (custom_name + '.ckpt')
|
||||
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.' + checkpoint_format
|
||||
filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
|
||||
output_modelname = os.path.join(ckpt_dir, filename)
|
||||
|
||||
print(f"Saving to {output_modelname}...")
|
||||
torch.save(primary_model, output_modelname)
|
||||
|
||||
_, extension = os.path.splitext(output_modelname)
|
||||
if extension.lower() == ".safetensors":
|
||||
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(theta_0, output_modelname)
|
||||
|
||||
sd_models.list_models()
|
||||
|
||||
|
|
|
@ -2,6 +2,8 @@ import base64
|
|||
import io
|
||||
import os
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
import gradio as gr
|
||||
from modules.shared import script_path
|
||||
from modules import shared
|
||||
|
@ -35,9 +37,8 @@ def quote(text):
|
|||
def image_from_url_text(filedata):
|
||||
if type(filedata) == dict and filedata["is_file"]:
|
||||
filename = filedata["name"]
|
||||
tempdir = os.path.normpath(tempfile.gettempdir())
|
||||
normfn = os.path.normpath(filename)
|
||||
assert normfn.startswith(tempdir), 'trying to open image file not in temporary directory'
|
||||
is_in_right_dir = any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in shared.demo.temp_dirs)
|
||||
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
|
||||
|
||||
return Image.open(filename)
|
||||
|
||||
|
@ -75,6 +76,7 @@ def integrate_settings_paste_fields(component_dict):
|
|||
'CLIP_stop_at_last_layers': 'Clip skip',
|
||||
'inpainting_mask_weight': 'Conditional mask weight',
|
||||
'sd_model_checkpoint': 'Model hash',
|
||||
'eta_noise_seed_delta': 'ENSD',
|
||||
}
|
||||
settings_paste_fields = [
|
||||
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
|
||||
|
|
|
@ -36,7 +36,9 @@ def gfpgann():
|
|||
else:
|
||||
print("Unable to load gfpgan model!")
|
||||
return None
|
||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
|
||||
if hasattr(facexlib.detection.retinaface, 'device'):
|
||||
facexlib.detection.retinaface.device = devices.device_gfpgan
|
||||
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
|
||||
loaded_gfpgan_model = model
|
||||
|
||||
return model
|
||||
|
|
|
@ -38,7 +38,7 @@ class HypernetworkModule(torch.nn.Module):
|
|||
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
||||
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
||||
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=True):
|
||||
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
|
||||
super().__init__()
|
||||
|
||||
assert layer_structure is not None, "layer_structure must not be None"
|
||||
|
@ -154,16 +154,28 @@ class Hypernetwork:
|
|||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
|
||||
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
|
||||
)
|
||||
self.eval_mode()
|
||||
|
||||
def weights(self):
|
||||
res = []
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
res += layer.parameters()
|
||||
return res
|
||||
|
||||
def train_mode(self):
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
layer.train()
|
||||
res += layer.trainables()
|
||||
for param in layer.parameters():
|
||||
param.requires_grad = True
|
||||
|
||||
return res
|
||||
def eval_mode(self):
|
||||
for k, layers in self.layers.items():
|
||||
for layer in layers:
|
||||
layer.eval()
|
||||
for param in layer.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def save(self, filename):
|
||||
state_dict = {}
|
||||
|
@ -367,13 +379,13 @@ def report_statistics(loss_info:dict):
|
|||
|
||||
|
||||
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||
from modules import images
|
||||
|
||||
save_hypernetwork_every = save_hypernetwork_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
||||
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
||||
|
||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
|
@ -403,32 +415,30 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
hypernetwork = shared.loaded_hypernetwork
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
ititial_step = hypernetwork.step or 0
|
||||
if ititial_step >= steps:
|
||||
initial_step = hypernetwork.step or 0
|
||||
if initial_step >= steps:
|
||||
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
|
||||
|
||||
pin_memory = shared.opts.pin_memory
|
||||
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
size = len(ds.indexes)
|
||||
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||
losses = torch.zeros((size,))
|
||||
previous_mean_losses = [0]
|
||||
previous_mean_loss = 0
|
||||
print("Mean loss of {} elements".format(size))
|
||||
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
hypernetwork.train_mode()
|
||||
|
||||
# Here we use optimizer from saved HN, or we can specify as UI option.
|
||||
if hypernetwork.optimizer_name in optimizer_dict:
|
||||
|
@ -446,131 +456,156 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
print("Cannot resume from saved optimizer!")
|
||||
print(e)
|
||||
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
batch_size = ds.batch_size
|
||||
gradient_step = ds.gradient_step
|
||||
# n steps = batch_size * gradient_step * n image processed
|
||||
steps_per_epoch = len(ds) // batch_size // gradient_step
|
||||
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
||||
loss_step = 0
|
||||
_loss_step = 0 #internal
|
||||
# size = len(ds.indexes)
|
||||
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||
# losses = torch.zeros((size,))
|
||||
# previous_mean_losses = [0]
|
||||
# previous_mean_loss = 0
|
||||
# print("Mean loss of {} elements".format(size))
|
||||
|
||||
steps_without_grad = 0
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
forced_filename = "<none>"
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
for i, entries in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
if len(loss_dict) > 0:
|
||||
previous_mean_losses = [i[-1] for i in loss_dict.values()]
|
||||
previous_mean_loss = mean(previous_mean_losses)
|
||||
|
||||
scheduler.apply(optimizer, hypernetwork.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
pbar = tqdm.tqdm(total=steps - initial_step)
|
||||
try:
|
||||
for i in range((steps-initial_step) * gradient_step):
|
||||
if scheduler.finished:
|
||||
break
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
for j, batch in enumerate(dl):
|
||||
# works as a drop_last=True for gradient accumulation
|
||||
if j == max_steps_per_epoch:
|
||||
break
|
||||
scheduler.apply(optimizer, hypernetwork.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
with torch.autocast("cuda"):
|
||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||
if tag_drop_out != 0 or shuffle_tags:
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
else:
|
||||
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
|
||||
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||
del x
|
||||
del c
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
|
||||
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
|
||||
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
|
||||
loss = shared.sd_model(x, c)[0]
|
||||
del x
|
||||
del c
|
||||
_loss_step += loss.item()
|
||||
scaler.scale(loss).backward()
|
||||
# go back until we reach gradient accumulation steps
|
||||
if (j + 1) % gradient_step != 0:
|
||||
continue
|
||||
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
|
||||
# scaler.unscale_(optimizer)
|
||||
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
|
||||
# torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
|
||||
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
hypernetwork.step += 1
|
||||
pbar.update()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss_step = _loss_step
|
||||
_loss_step = 0
|
||||
|
||||
losses[hypernetwork.step % losses.shape[0]] = loss.item()
|
||||
for entry in entries:
|
||||
loss_dict[entry.filename].append(loss.item())
|
||||
steps_done = hypernetwork.step + 1
|
||||
|
||||
optimizer.zero_grad()
|
||||
weights[0].grad = None
|
||||
loss.backward()
|
||||
epoch_num = hypernetwork.step // steps_per_epoch
|
||||
epoch_step = hypernetwork.step % steps_per_epoch
|
||||
|
||||
if weights[0].grad is None:
|
||||
steps_without_grad += 1
|
||||
else:
|
||||
steps_without_grad = 0
|
||||
assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
|
||||
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
if shared.opts.save_optimizer_state:
|
||||
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
|
||||
optimizer.step()
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
|
||||
"loss": f"{loss_step:.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
|
||||
steps_done = hypernetwork.step + 1
|
||||
if images_dir is not None and steps_done % create_image_every == 0:
|
||||
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||
hypernetwork.eval_mode()
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
|
||||
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
|
||||
raise RuntimeError("Loss diverged.")
|
||||
|
||||
if len(previous_mean_losses) > 1:
|
||||
std = stdev(previous_mean_losses)
|
||||
else:
|
||||
std = 0
|
||||
dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
|
||||
pbar.set_description(dataset_loss_info)
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
|
||||
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
if shared.opts.save_optimizer_state:
|
||||
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
if preview_from_txt2img:
|
||||
p.prompt = preview_prompt
|
||||
p.negative_prompt = preview_negative_prompt
|
||||
p.steps = preview_steps
|
||||
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||
p.cfg_scale = preview_cfg_scale
|
||||
p.seed = preview_seed
|
||||
p.width = preview_width
|
||||
p.height = preview_height
|
||||
else:
|
||||
p.prompt = batch.cond_text[0]
|
||||
p.steps = 20
|
||||
p.width = training_width
|
||||
p.height = training_height
|
||||
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
||||
"loss": f"{previous_mean_loss:.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
preview_text = p.prompt
|
||||
|
||||
if images_dir is not None and steps_done % create_image_every == 0:
|
||||
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0] if len(processed.images) > 0 else None
|
||||
|
||||
optimizer.zero_grad()
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
hypernetwork.train_mode()
|
||||
if image is not None:
|
||||
shared.state.current_image = image
|
||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
)
|
||||
shared.state.job_no = hypernetwork.step
|
||||
|
||||
if preview_from_txt2img:
|
||||
p.prompt = preview_prompt
|
||||
p.negative_prompt = preview_negative_prompt
|
||||
p.steps = preview_steps
|
||||
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||
p.cfg_scale = preview_cfg_scale
|
||||
p.seed = preview_seed
|
||||
p.width = preview_width
|
||||
p.height = preview_height
|
||||
else:
|
||||
p.prompt = entries[0].cond_text
|
||||
p.steps = 20
|
||||
|
||||
preview_text = p.prompt
|
||||
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0] if len(processed.images)>0 else None
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
if image is not None:
|
||||
shared.state.current_image = image
|
||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = hypernetwork.step
|
||||
|
||||
shared.state.textinfo = f"""
|
||||
shared.state.textinfo = f"""
|
||||
<p>
|
||||
Loss: {previous_mean_loss:.7f}<br/>
|
||||
Step: {hypernetwork.step}<br/>
|
||||
Last prompt: {html.escape(entries[0].cond_text)}<br/>
|
||||
Loss: {loss_step:.7f}<br/>
|
||||
Step: {steps_done}<br/>
|
||||
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
||||
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
"""
|
||||
|
||||
report_statistics(loss_dict)
|
||||
except Exception:
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
finally:
|
||||
pbar.leave = False
|
||||
pbar.close()
|
||||
hypernetwork.eval_mode()
|
||||
#report_statistics(loss_dict)
|
||||
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
|
@ -579,6 +614,9 @@ Last saved image: {html.escape(last_saved_image)}<br/>
|
|||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
||||
del optimizer
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
|
||||
return hypernetwork, filename
|
||||
|
||||
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
||||
|
|
|
@ -15,6 +15,7 @@ import piexif.helper
|
|||
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
||||
from fonts.ttf import Roboto
|
||||
import string
|
||||
import json
|
||||
|
||||
from modules import sd_samplers, shared, script_callbacks
|
||||
from modules.shared import opts, cmd_opts
|
||||
|
@ -305,6 +306,7 @@ class FilenameGenerator:
|
|||
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
||||
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
||||
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
||||
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
|
||||
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
||||
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
||||
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
|
||||
|
@ -524,6 +526,8 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||
else:
|
||||
image.save(fullfn, quality=opts.jpeg_quality)
|
||||
|
||||
image.already_saved_as = fullfn
|
||||
|
||||
target_side_length = 4000
|
||||
oversize = image.width > target_side_length or image.height > target_side_length
|
||||
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > 4 * 1024 * 1024):
|
||||
|
@ -550,10 +554,45 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||
return fullfn, txt_fullfn
|
||||
|
||||
|
||||
def read_info_from_image(image):
|
||||
items = image.info or {}
|
||||
|
||||
geninfo = items.pop('parameters', None)
|
||||
|
||||
if "exif" in items:
|
||||
exif = piexif.load(items["exif"])
|
||||
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
||||
try:
|
||||
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
||||
except ValueError:
|
||||
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
||||
|
||||
items['exif comment'] = exif_comment
|
||||
geninfo = exif_comment
|
||||
|
||||
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
||||
'loop', 'background', 'timestamp', 'duration']:
|
||||
items.pop(field, None)
|
||||
|
||||
if items.get("Software", None) == "NovelAI":
|
||||
try:
|
||||
json_info = json.loads(items["Comment"])
|
||||
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
|
||||
|
||||
geninfo = f"""{items["Description"]}
|
||||
Negative prompt: {json_info["uc"]}
|
||||
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
|
||||
except Exception:
|
||||
print(f"Error parsing NovelAI iamge generation parameters:", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
return geninfo, items
|
||||
|
||||
|
||||
def image_data(data):
|
||||
try:
|
||||
image = Image.open(io.BytesIO(data))
|
||||
textinfo = image.text["parameters"]
|
||||
textinfo, _ = read_info_from_image(image)
|
||||
return textinfo, None
|
||||
except Exception:
|
||||
pass
|
||||
|
|
|
@ -99,7 +99,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
|||
seed_resize_from_h=seed_resize_from_h,
|
||||
seed_resize_from_w=seed_resize_from_w,
|
||||
seed_enable_extras=seed_enable_extras,
|
||||
sampler_index=sd_samplers.samplers_for_img2img[sampler_index].name,
|
||||
sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
|
||||
batch_size=batch_size,
|
||||
n_iter=n_iter,
|
||||
steps=steps,
|
||||
|
|
|
@ -51,6 +51,10 @@ def setup_for_low_vram(sd_model, use_medvram):
|
|||
send_me_to_gpu(first_stage_model, None)
|
||||
return first_stage_model_decode(z)
|
||||
|
||||
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
|
||||
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
|
||||
|
||||
# remove three big modules, cond, first_stage, and unet from the model and then
|
||||
# send the model to GPU. Then put modules back. the modules will be in CPU.
|
||||
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
|
||||
|
@ -65,6 +69,10 @@ def setup_for_low_vram(sd_model, use_medvram):
|
|||
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
|
||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||
|
||||
if hasattr(sd_model.cond_stage_model, 'model'):
|
||||
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
|
||||
del sd_model.cond_stage_model.transformer
|
||||
|
||||
if use_medvram:
|
||||
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
||||
else:
|
||||
|
|
|
@ -82,6 +82,7 @@ def cleanup_models():
|
|||
src_path = models_path
|
||||
dest_path = os.path.join(models_path, "Stable-diffusion")
|
||||
move_files(src_path, dest_path, ".ckpt")
|
||||
move_files(src_path, dest_path, ".safetensors")
|
||||
src_path = os.path.join(root_path, "ESRGAN")
|
||||
dest_path = os.path.join(models_path, "ESRGAN")
|
||||
move_files(src_path, dest_path)
|
||||
|
|
|
@ -15,9 +15,9 @@ def connect(token, port, region):
|
|||
)
|
||||
try:
|
||||
if account == None:
|
||||
public_url = ngrok.connect(port, pyngrok_config=config).public_url
|
||||
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
|
||||
else:
|
||||
public_url = ngrok.connect(port, pyngrok_config=config, auth=account).public_url
|
||||
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
|
||||
except exception.PyngrokNgrokError:
|
||||
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
|
||||
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
||||
|
|
|
@ -9,7 +9,7 @@ sys.path.insert(0, script_path)
|
|||
|
||||
# search for directory of stable diffusion in following places
|
||||
sd_path = None
|
||||
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'), '.', os.path.dirname(script_path)]
|
||||
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion-stability-ai'), '.', os.path.dirname(script_path)]
|
||||
for possible_sd_path in possible_sd_paths:
|
||||
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
|
||||
sd_path = os.path.abspath(possible_sd_path)
|
||||
|
|
|
@ -74,7 +74,7 @@ class StableDiffusionProcessing():
|
|||
"""
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, sampler_index: int = None):
|
||||
if sampler_index is not None:
|
||||
warnings.warn("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name")
|
||||
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||
|
||||
self.sd_model = sd_model
|
||||
self.outpath_samples: str = outpath_samples
|
||||
|
|
|
@ -54,7 +54,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
|||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = devices.mps_contiguous_to(img.unsqueeze(0), device)
|
||||
img = img.unsqueeze(0).to(device)
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
|
|
|
@ -8,19 +8,31 @@ from torch import einsum
|
|||
from torch.nn.functional import silu
|
||||
|
||||
import modules.textual_inversion.textual_inversion
|
||||
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
|
||||
from modules import prompt_parser, devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.shared import opts, device, cmd_opts
|
||||
from modules import sd_hijack_clip, sd_hijack_open_clip
|
||||
|
||||
from modules.sd_hijack_optimizations import invokeAI_mps_available
|
||||
|
||||
import ldm.modules.attention
|
||||
import ldm.modules.diffusionmodules.model
|
||||
import ldm.models.diffusion.ddim
|
||||
import ldm.models.diffusion.plms
|
||||
import ldm.modules.encoders.modules
|
||||
|
||||
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
|
||||
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
|
||||
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
|
||||
|
||||
# new memory efficient cross attention blocks do not support hypernets and we already
|
||||
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
|
||||
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
|
||||
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
|
||||
|
||||
# silence new console spam from SD2
|
||||
ldm.modules.attention.print = lambda *args: None
|
||||
ldm.modules.diffusionmodules.model.print = lambda *args: None
|
||||
|
||||
def apply_optimizations():
|
||||
undo_optimizations()
|
||||
|
@ -49,16 +61,15 @@ def apply_optimizations():
|
|||
|
||||
|
||||
def undo_optimizations():
|
||||
from modules.hypernetworks import hypernetwork
|
||||
|
||||
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
|
||||
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
|
||||
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
|
||||
|
||||
|
||||
def get_target_prompt_token_count(token_count):
|
||||
return math.ceil(max(token_count, 1) / 75) * 75
|
||||
|
||||
def fix_checkpoint():
|
||||
ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
|
||||
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
|
||||
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
|
||||
|
||||
class StableDiffusionModelHijack:
|
||||
fixes = None
|
||||
|
@ -70,19 +81,24 @@ class StableDiffusionModelHijack:
|
|||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
||||
|
||||
def hijack(self, m):
|
||||
|
||||
if shared.text_model_name == "XLMR-Large":
|
||||
|
||||
if type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
||||
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
apply_optimizations()
|
||||
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
|
||||
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
|
||||
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
apply_optimizations()
|
||||
elif shared.text_model_name == "XLMR-Large":
|
||||
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||
else :
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embeddings, self)
|
||||
|
||||
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
|
||||
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
|
||||
self.clip = m.cond_stage_model
|
||||
|
||||
# apply_optimizations()
|
||||
|
||||
fix_checkpoint()
|
||||
|
||||
def flatten(el):
|
||||
flattened = [flatten(children) for children in el.children()]
|
||||
|
@ -94,12 +110,15 @@ class StableDiffusionModelHijack:
|
|||
self.layers = flatten(m)
|
||||
|
||||
def undo_hijack(self, m):
|
||||
if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords:
|
||||
if type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
|
||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
||||
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
||||
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
|
||||
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
||||
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
||||
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
|
||||
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
|
||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||
|
||||
self.apply_circular(False)
|
||||
self.layers = None
|
||||
|
@ -119,267 +138,8 @@ class StableDiffusionModelHijack:
|
|||
|
||||
def tokenize(self, text):
|
||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
||||
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__()
|
||||
self.wrapped = wrapped
|
||||
self.hijack: StableDiffusionModelHijack = hijack
|
||||
self.tokenizer = wrapped.tokenizer
|
||||
self.token_mults = {}
|
||||
|
||||
try:
|
||||
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
||||
except:
|
||||
self.comma_token = None
|
||||
|
||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||
for text, ident in tokens_with_parens:
|
||||
mult = 1.0
|
||||
for c in text:
|
||||
if c == '[':
|
||||
mult /= 1.1
|
||||
if c == ']':
|
||||
mult *= 1.1
|
||||
if c == '(':
|
||||
mult *= 1.1
|
||||
if c == ')':
|
||||
mult /= 1.1
|
||||
|
||||
if mult != 1.0:
|
||||
self.token_mults[ident] = mult
|
||||
|
||||
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
||||
id_end = self.wrapped.tokenizer.eos_token_id
|
||||
|
||||
if opts.enable_emphasis:
|
||||
parsed = prompt_parser.parse_prompt_attention(line)
|
||||
else:
|
||||
parsed = [[line, 1.0]]
|
||||
|
||||
tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
|
||||
|
||||
fixes = []
|
||||
remade_tokens = []
|
||||
multipliers = []
|
||||
last_comma = -1
|
||||
|
||||
for tokens, (text, weight) in zip(tokenized, parsed):
|
||||
i = 0
|
||||
while i < len(tokens):
|
||||
token = tokens[i]
|
||||
|
||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||
|
||||
if token == self.comma_token:
|
||||
last_comma = len(remade_tokens)
|
||||
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||
last_comma += 1
|
||||
reloc_tokens = remade_tokens[last_comma:]
|
||||
reloc_mults = multipliers[last_comma:]
|
||||
|
||||
remade_tokens = remade_tokens[:last_comma]
|
||||
length = len(remade_tokens)
|
||||
|
||||
rem = int(math.ceil(length / 75)) * 75 - length
|
||||
remade_tokens += [id_end] * rem + reloc_tokens
|
||||
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
|
||||
|
||||
if embedding is None:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(weight)
|
||||
i += 1
|
||||
else:
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
iteration = len(remade_tokens) // 75
|
||||
if (len(remade_tokens) + emb_len) // 75 != iteration:
|
||||
rem = (75 * (iteration + 1) - len(remade_tokens))
|
||||
remade_tokens += [id_end] * rem
|
||||
multipliers += [1.0] * rem
|
||||
iteration += 1
|
||||
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [weight] * emb_len
|
||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||
i += embedding_length_in_tokens
|
||||
|
||||
token_count = len(remade_tokens)
|
||||
prompt_target_length = get_target_prompt_token_count(token_count)
|
||||
tokens_to_add = prompt_target_length - len(remade_tokens)
|
||||
|
||||
remade_tokens = remade_tokens + [id_end] * tokens_to_add
|
||||
multipliers = multipliers + [1.0] * tokens_to_add
|
||||
|
||||
return remade_tokens, fixes, multipliers, token_count
|
||||
|
||||
def process_text(self, texts):
|
||||
used_custom_terms = []
|
||||
remade_batch_tokens = []
|
||||
hijack_comments = []
|
||||
hijack_fixes = []
|
||||
token_count = 0
|
||||
|
||||
cache = {}
|
||||
batch_multipliers = []
|
||||
for line in texts:
|
||||
if line in cache:
|
||||
remade_tokens, fixes, multipliers = cache[line]
|
||||
else:
|
||||
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
||||
token_count = max(current_token_count, token_count)
|
||||
|
||||
cache[line] = (remade_tokens, fixes, multipliers)
|
||||
|
||||
remade_batch_tokens.append(remade_tokens)
|
||||
hijack_fixes.append(fixes)
|
||||
batch_multipliers.append(multipliers)
|
||||
|
||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||
|
||||
def process_text_old(self, text):
|
||||
id_start = self.wrapped.tokenizer.bos_token_id
|
||||
id_end = self.wrapped.tokenizer.eos_token_id
|
||||
maxlen = self.wrapped.max_length # you get to stay at 77
|
||||
used_custom_terms = []
|
||||
remade_batch_tokens = []
|
||||
overflowing_words = []
|
||||
hijack_comments = []
|
||||
hijack_fixes = []
|
||||
token_count = 0
|
||||
|
||||
cache = {}
|
||||
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
|
||||
batch_multipliers = []
|
||||
for tokens in batch_tokens:
|
||||
tuple_tokens = tuple(tokens)
|
||||
|
||||
if tuple_tokens in cache:
|
||||
remade_tokens, fixes, multipliers = cache[tuple_tokens]
|
||||
else:
|
||||
fixes = []
|
||||
remade_tokens = []
|
||||
multipliers = []
|
||||
mult = 1.0
|
||||
|
||||
i = 0
|
||||
while i < len(tokens):
|
||||
token = tokens[i]
|
||||
|
||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||
|
||||
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
|
||||
if mult_change is not None:
|
||||
mult *= mult_change
|
||||
i += 1
|
||||
elif embedding is None:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(mult)
|
||||
i += 1
|
||||
else:
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
fixes.append((len(remade_tokens), embedding))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [mult] * emb_len
|
||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||
i += embedding_length_in_tokens
|
||||
|
||||
if len(remade_tokens) > maxlen - 2:
|
||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
||||
ovf = remade_tokens[maxlen - 2:]
|
||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
token_count = len(remade_tokens)
|
||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
|
||||
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
||||
|
||||
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
||||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
||||
|
||||
remade_batch_tokens.append(remade_tokens)
|
||||
hijack_fixes.append(fixes)
|
||||
batch_multipliers.append(multipliers)
|
||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||
|
||||
def forward(self, text):
|
||||
if shared.text_model_name == "XLMR-Large":
|
||||
return self.wrapped.encode(text)
|
||||
|
||||
use_old = opts.use_old_emphasis_implementation
|
||||
if use_old:
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
||||
else:
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
||||
|
||||
self.hijack.comments += hijack_comments
|
||||
|
||||
if len(used_custom_terms) > 0:
|
||||
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
||||
|
||||
if use_old:
|
||||
self.hijack.fixes = hijack_fixes
|
||||
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
||||
|
||||
z = None
|
||||
i = 0
|
||||
while max(map(len, remade_batch_tokens)) != 0:
|
||||
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
||||
rem_multipliers = [x[75:] for x in batch_multipliers]
|
||||
|
||||
self.hijack.fixes = []
|
||||
for unfiltered in hijack_fixes:
|
||||
fixes = []
|
||||
for fix in unfiltered:
|
||||
if fix[0] == i:
|
||||
fixes.append(fix[1])
|
||||
self.hijack.fixes.append(fixes)
|
||||
|
||||
tokens = []
|
||||
multipliers = []
|
||||
for j in range(len(remade_batch_tokens)):
|
||||
if len(remade_batch_tokens[j]) > 0:
|
||||
tokens.append(remade_batch_tokens[j][:75])
|
||||
multipliers.append(batch_multipliers[j][:75])
|
||||
else:
|
||||
tokens.append([self.wrapped.tokenizer.eos_token_id] * 75)
|
||||
multipliers.append([1.0] * 75)
|
||||
|
||||
z1 = self.process_tokens(tokens, multipliers)
|
||||
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
||||
|
||||
remade_batch_tokens = rem_tokens
|
||||
batch_multipliers = rem_multipliers
|
||||
i += 1
|
||||
|
||||
return z
|
||||
|
||||
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
||||
if not opts.use_old_emphasis_implementation:
|
||||
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
|
||||
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
|
||||
|
||||
tokens = torch.asarray(remade_batch_tokens).to(device)
|
||||
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||
|
||||
if opts.CLIP_stop_at_last_layers > 1:
|
||||
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
||||
else:
|
||||
z = outputs.last_hidden_state
|
||||
|
||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
|
||||
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device)
|
||||
original_mean = z.mean()
|
||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
new_mean = z.mean()
|
||||
z *= original_mean / new_mean
|
||||
|
||||
return z
|
||||
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
|
||||
|
||||
|
||||
class EmbeddingsWithFixes(torch.nn.Module):
|
||||
|
|
10
modules/sd_hijack_checkpoint.py
Normal file
10
modules/sd_hijack_checkpoint.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
def BasicTransformerBlock_forward(self, x, context=None):
|
||||
return checkpoint(self._forward, x, context)
|
||||
|
||||
def AttentionBlock_forward(self, x):
|
||||
return checkpoint(self._forward, x)
|
||||
|
||||
def ResBlock_forward(self, x, emb):
|
||||
return checkpoint(self._forward, x, emb)
|
301
modules/sd_hijack_clip.py
Normal file
301
modules/sd_hijack_clip.py
Normal file
|
@ -0,0 +1,301 @@
|
|||
import math
|
||||
|
||||
import torch
|
||||
|
||||
from modules import prompt_parser, devices
|
||||
from modules.shared import opts
|
||||
|
||||
|
||||
def get_target_prompt_token_count(token_count):
|
||||
return math.ceil(max(token_count, 1) / 75) * 75
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__()
|
||||
self.wrapped = wrapped
|
||||
self.hijack = hijack
|
||||
|
||||
def tokenize(self, texts):
|
||||
raise NotImplementedError
|
||||
|
||||
def encode_with_transformers(self, tokens):
|
||||
raise NotImplementedError
|
||||
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
raise NotImplementedError
|
||||
|
||||
def tokenize_line(self, line, used_custom_terms, hijack_comments):
|
||||
if opts.enable_emphasis:
|
||||
parsed = prompt_parser.parse_prompt_attention(line)
|
||||
else:
|
||||
parsed = [[line, 1.0]]
|
||||
|
||||
tokenized = self.tokenize([text for text, _ in parsed])
|
||||
|
||||
fixes = []
|
||||
remade_tokens = []
|
||||
multipliers = []
|
||||
last_comma = -1
|
||||
|
||||
for tokens, (text, weight) in zip(tokenized, parsed):
|
||||
i = 0
|
||||
while i < len(tokens):
|
||||
token = tokens[i]
|
||||
|
||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||
|
||||
if token == self.comma_token:
|
||||
last_comma = len(remade_tokens)
|
||||
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||
last_comma += 1
|
||||
reloc_tokens = remade_tokens[last_comma:]
|
||||
reloc_mults = multipliers[last_comma:]
|
||||
|
||||
remade_tokens = remade_tokens[:last_comma]
|
||||
length = len(remade_tokens)
|
||||
|
||||
rem = int(math.ceil(length / 75)) * 75 - length
|
||||
remade_tokens += [self.id_end] * rem + reloc_tokens
|
||||
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
|
||||
|
||||
if embedding is None:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(weight)
|
||||
i += 1
|
||||
else:
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
iteration = len(remade_tokens) // 75
|
||||
if (len(remade_tokens) + emb_len) // 75 != iteration:
|
||||
rem = (75 * (iteration + 1) - len(remade_tokens))
|
||||
remade_tokens += [self.id_end] * rem
|
||||
multipliers += [1.0] * rem
|
||||
iteration += 1
|
||||
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [weight] * emb_len
|
||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||
i += embedding_length_in_tokens
|
||||
|
||||
token_count = len(remade_tokens)
|
||||
prompt_target_length = get_target_prompt_token_count(token_count)
|
||||
tokens_to_add = prompt_target_length - len(remade_tokens)
|
||||
|
||||
remade_tokens = remade_tokens + [self.id_end] * tokens_to_add
|
||||
multipliers = multipliers + [1.0] * tokens_to_add
|
||||
|
||||
return remade_tokens, fixes, multipliers, token_count
|
||||
|
||||
def process_text(self, texts):
|
||||
used_custom_terms = []
|
||||
remade_batch_tokens = []
|
||||
hijack_comments = []
|
||||
hijack_fixes = []
|
||||
token_count = 0
|
||||
|
||||
cache = {}
|
||||
batch_multipliers = []
|
||||
for line in texts:
|
||||
if line in cache:
|
||||
remade_tokens, fixes, multipliers = cache[line]
|
||||
else:
|
||||
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
|
||||
token_count = max(current_token_count, token_count)
|
||||
|
||||
cache[line] = (remade_tokens, fixes, multipliers)
|
||||
|
||||
remade_batch_tokens.append(remade_tokens)
|
||||
hijack_fixes.append(fixes)
|
||||
batch_multipliers.append(multipliers)
|
||||
|
||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||
|
||||
def process_text_old(self, texts):
|
||||
id_start = self.id_start
|
||||
id_end = self.id_end
|
||||
maxlen = self.wrapped.max_length # you get to stay at 77
|
||||
used_custom_terms = []
|
||||
remade_batch_tokens = []
|
||||
hijack_comments = []
|
||||
hijack_fixes = []
|
||||
token_count = 0
|
||||
|
||||
cache = {}
|
||||
batch_tokens = self.tokenize(texts)
|
||||
batch_multipliers = []
|
||||
for tokens in batch_tokens:
|
||||
tuple_tokens = tuple(tokens)
|
||||
|
||||
if tuple_tokens in cache:
|
||||
remade_tokens, fixes, multipliers = cache[tuple_tokens]
|
||||
else:
|
||||
fixes = []
|
||||
remade_tokens = []
|
||||
multipliers = []
|
||||
mult = 1.0
|
||||
|
||||
i = 0
|
||||
while i < len(tokens):
|
||||
token = tokens[i]
|
||||
|
||||
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
|
||||
|
||||
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
|
||||
if mult_change is not None:
|
||||
mult *= mult_change
|
||||
i += 1
|
||||
elif embedding is None:
|
||||
remade_tokens.append(token)
|
||||
multipliers.append(mult)
|
||||
i += 1
|
||||
else:
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
fixes.append((len(remade_tokens), embedding))
|
||||
remade_tokens += [0] * emb_len
|
||||
multipliers += [mult] * emb_len
|
||||
used_custom_terms.append((embedding.name, embedding.checksum()))
|
||||
i += embedding_length_in_tokens
|
||||
|
||||
if len(remade_tokens) > maxlen - 2:
|
||||
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
|
||||
ovf = remade_tokens[maxlen - 2:]
|
||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
token_count = len(remade_tokens)
|
||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
|
||||
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
||||
|
||||
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
|
||||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
||||
|
||||
remade_batch_tokens.append(remade_tokens)
|
||||
hijack_fixes.append(fixes)
|
||||
batch_multipliers.append(multipliers)
|
||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||
|
||||
def forward(self, text):
|
||||
use_old = opts.use_old_emphasis_implementation
|
||||
if use_old:
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
|
||||
else:
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
||||
|
||||
self.hijack.comments += hijack_comments
|
||||
|
||||
if len(used_custom_terms) > 0:
|
||||
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
||||
|
||||
if use_old:
|
||||
self.hijack.fixes = hijack_fixes
|
||||
return self.process_tokens(remade_batch_tokens, batch_multipliers)
|
||||
|
||||
z = None
|
||||
i = 0
|
||||
while max(map(len, remade_batch_tokens)) != 0:
|
||||
rem_tokens = [x[75:] for x in remade_batch_tokens]
|
||||
rem_multipliers = [x[75:] for x in batch_multipliers]
|
||||
|
||||
self.hijack.fixes = []
|
||||
for unfiltered in hijack_fixes:
|
||||
fixes = []
|
||||
for fix in unfiltered:
|
||||
if fix[0] == i:
|
||||
fixes.append(fix[1])
|
||||
self.hijack.fixes.append(fixes)
|
||||
|
||||
tokens = []
|
||||
multipliers = []
|
||||
for j in range(len(remade_batch_tokens)):
|
||||
if len(remade_batch_tokens[j]) > 0:
|
||||
tokens.append(remade_batch_tokens[j][:75])
|
||||
multipliers.append(batch_multipliers[j][:75])
|
||||
else:
|
||||
tokens.append([self.id_end] * 75)
|
||||
multipliers.append([1.0] * 75)
|
||||
|
||||
z1 = self.process_tokens(tokens, multipliers)
|
||||
z = z1 if z is None else torch.cat((z, z1), axis=-2)
|
||||
|
||||
remade_batch_tokens = rem_tokens
|
||||
batch_multipliers = rem_multipliers
|
||||
i += 1
|
||||
|
||||
return z
|
||||
|
||||
def process_tokens(self, remade_batch_tokens, batch_multipliers):
|
||||
if not opts.use_old_emphasis_implementation:
|
||||
remade_batch_tokens = [[self.id_start] + x[:75] + [self.id_end] for x in remade_batch_tokens]
|
||||
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
|
||||
|
||||
tokens = torch.asarray(remade_batch_tokens).to(devices.device)
|
||||
|
||||
if self.id_end != self.id_pad:
|
||||
for batch_pos in range(len(remade_batch_tokens)):
|
||||
index = remade_batch_tokens[batch_pos].index(self.id_end)
|
||||
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
|
||||
|
||||
z = self.encode_with_transformers(tokens)
|
||||
|
||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
|
||||
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(devices.device)
|
||||
original_mean = z.mean()
|
||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
new_mean = z.mean()
|
||||
z *= original_mean / new_mean
|
||||
|
||||
return z
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__(wrapped, hijack)
|
||||
self.tokenizer = wrapped.tokenizer
|
||||
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
|
||||
|
||||
self.token_mults = {}
|
||||
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
|
||||
for text, ident in tokens_with_parens:
|
||||
mult = 1.0
|
||||
for c in text:
|
||||
if c == '[':
|
||||
mult /= 1.1
|
||||
if c == ']':
|
||||
mult *= 1.1
|
||||
if c == '(':
|
||||
mult *= 1.1
|
||||
if c == ')':
|
||||
mult /= 1.1
|
||||
|
||||
if mult != 1.0:
|
||||
self.token_mults[ident] = mult
|
||||
|
||||
self.id_start = self.wrapped.tokenizer.bos_token_id
|
||||
self.id_end = self.wrapped.tokenizer.eos_token_id
|
||||
self.id_pad = self.id_end
|
||||
|
||||
def tokenize(self, texts):
|
||||
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
|
||||
|
||||
return tokenized
|
||||
|
||||
def encode_with_transformers(self, tokens):
|
||||
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||
|
||||
if opts.CLIP_stop_at_last_layers > 1:
|
||||
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
||||
else:
|
||||
z = outputs.last_hidden_state
|
||||
|
||||
return z
|
||||
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
embedding_layer = self.wrapped.transformer.text_model.embeddings
|
||||
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||
|
||||
return embedded
|
|
@ -199,8 +199,8 @@ def sample_plms(self,
|
|||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
|
@ -249,6 +249,8 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
|
|||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
if dynamic_threshold is not None:
|
||||
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
|
@ -321,12 +323,16 @@ def should_hijack_inpainting(checkpoint_info):
|
|||
|
||||
|
||||
def do_inpainting_hijack():
|
||||
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
|
||||
# most of this stuff seems to no longer be needed because it is already included into SD2.0
|
||||
# LatentInpaintDiffusion remains because SD2.0's LatentInpaintDiffusion can't be loaded without specifying a checkpoint
|
||||
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
|
||||
# this file should be cleaned up later if weverything tuens out to work fine
|
||||
|
||||
# ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
|
||||
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
|
||||
|
||||
ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
|
||||
ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
|
||||
# ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
|
||||
# ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
|
||||
|
||||
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
|
||||
ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
|
||||
|
||||
# ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
|
||||
|
|
37
modules/sd_hijack_open_clip.py
Normal file
37
modules/sd_hijack_open_clip.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
import open_clip.tokenizer
|
||||
import torch
|
||||
|
||||
from modules import sd_hijack_clip, devices
|
||||
from modules.shared import opts
|
||||
|
||||
tokenizer = open_clip.tokenizer._tokenizer
|
||||
|
||||
|
||||
class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
|
||||
def __init__(self, wrapped, hijack):
|
||||
super().__init__(wrapped, hijack)
|
||||
|
||||
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
|
||||
self.id_start = tokenizer.encoder["<start_of_text>"]
|
||||
self.id_end = tokenizer.encoder["<end_of_text>"]
|
||||
self.id_pad = 0
|
||||
|
||||
def tokenize(self, texts):
|
||||
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
|
||||
|
||||
tokenized = [tokenizer.encode(text) for text in texts]
|
||||
|
||||
return tokenized
|
||||
|
||||
def encode_with_transformers(self, tokens):
|
||||
# set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
|
||||
z = self.wrapped.encode_with_transformer(tokens)
|
||||
|
||||
return z
|
||||
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
ids = tokenizer.encode(init_text)
|
||||
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
|
||||
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
|
||||
|
||||
return embedded
|
|
@ -5,6 +5,7 @@ import gc
|
|||
from collections import namedtuple
|
||||
import torch
|
||||
import re
|
||||
import safetensors.torch
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
@ -45,7 +46,7 @@ def checkpoint_tiles():
|
|||
|
||||
def list_models():
|
||||
checkpoints_list.clear()
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
|
||||
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
|
||||
|
||||
def modeltitle(path, shorthash):
|
||||
abspath = os.path.abspath(path)
|
||||
|
@ -143,8 +144,8 @@ def transform_checkpoint_dict_key(k):
|
|||
|
||||
|
||||
def get_state_dict_from_checkpoint(pl_sd):
|
||||
if "state_dict" in pl_sd:
|
||||
pl_sd = pl_sd["state_dict"]
|
||||
pl_sd = pl_sd.pop("state_dict", pl_sd)
|
||||
pl_sd.pop("state_dict", None)
|
||||
|
||||
sd = {}
|
||||
for k, v in pl_sd.items():
|
||||
|
@ -159,6 +160,20 @@ def get_state_dict_from_checkpoint(pl_sd):
|
|||
return pl_sd
|
||||
|
||||
|
||||
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
|
||||
_, extension = os.path.splitext(checkpoint_file)
|
||||
if extension.lower() == ".safetensors":
|
||||
pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location)
|
||||
else:
|
||||
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
|
||||
|
||||
if print_global_state and "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
|
||||
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||
return sd
|
||||
|
||||
|
||||
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
sd_model_hash = checkpoint_info.hash
|
||||
|
@ -173,12 +188,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
|||
# load from file
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
|
||||
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||
del pl_sd
|
||||
sd = read_state_dict(checkpoint_file)
|
||||
model.load_state_dict(sd, strict=False)
|
||||
del sd
|
||||
|
||||
|
@ -244,6 +254,9 @@ def load_model(checkpoint_info=None):
|
|||
|
||||
do_inpainting_hijack()
|
||||
|
||||
if shared.cmd_opts.no_half:
|
||||
sd_config.model.params.unet_config.params.use_fp16 = False
|
||||
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from collections import namedtuple
|
||||
from collections import namedtuple, deque
|
||||
import numpy as np
|
||||
from math import floor
|
||||
import torch
|
||||
|
@ -18,7 +18,7 @@ from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
|||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
|
||||
|
||||
samplers_k_diffusion = [
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}),
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
|
||||
('Euler', 'sample_euler', ['k_euler'], {}),
|
||||
('LMS', 'sample_lms', ['k_lms'], {}),
|
||||
('Heun', 'sample_heun', ['k_heun'], {}),
|
||||
|
@ -26,6 +26,7 @@ samplers_k_diffusion = [
|
|||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}),
|
||||
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
|
||||
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
|
||||
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
|
||||
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
||||
|
@ -33,6 +34,7 @@ samplers_k_diffusion = [
|
|||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
|
||||
]
|
||||
|
||||
samplers_data_k_diffusion = [
|
||||
|
@ -50,6 +52,7 @@ all_samplers_map = {x.name: x for x in all_samplers}
|
|||
|
||||
samplers = []
|
||||
samplers_for_img2img = []
|
||||
samplers_map = {}
|
||||
|
||||
|
||||
def create_sampler(name, model):
|
||||
|
@ -75,6 +78,12 @@ def set_samplers():
|
|||
samplers = [x for x in all_samplers if x.name not in hidden]
|
||||
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
|
||||
|
||||
samplers_map.clear()
|
||||
for sampler in all_samplers:
|
||||
samplers_map[sampler.name.lower()] = sampler.name
|
||||
for alias in sampler.aliases:
|
||||
samplers_map[alias.lower()] = sampler.name
|
||||
|
||||
|
||||
set_samplers()
|
||||
|
||||
|
@ -127,7 +136,8 @@ class InterruptedException(BaseException):
|
|||
class VanillaStableDiffusionSampler:
|
||||
def __init__(self, constructor, sd_model):
|
||||
self.sampler = constructor(sd_model)
|
||||
self.orig_p_sample_ddim = self.sampler.p_sample_ddim if hasattr(self.sampler, 'p_sample_ddim') else self.sampler.p_sample_plms
|
||||
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
|
||||
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
|
@ -218,7 +228,6 @@ class VanillaStableDiffusionSampler:
|
|||
self.mask = p.mask if hasattr(p, 'mask') else None
|
||||
self.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||
|
||||
|
||||
def adjust_steps_if_invalid(self, p, num_steps):
|
||||
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
|
||||
valid_step = 999 / (1000 // num_steps)
|
||||
|
@ -227,7 +236,6 @@ class VanillaStableDiffusionSampler:
|
|||
|
||||
return num_steps
|
||||
|
||||
|
||||
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
|
||||
steps, t_enc = setup_img2img_steps(p, steps)
|
||||
steps = self.adjust_steps_if_invalid(p, steps)
|
||||
|
@ -260,9 +268,10 @@ class VanillaStableDiffusionSampler:
|
|||
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
|
||||
|
||||
# Wrap the conditioning models with additional image conditioning for inpainting model
|
||||
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
|
||||
if image_conditioning is not None:
|
||||
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
|
||||
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
||||
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
|
||||
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
|
||||
|
||||
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
|
||||
|
||||
|
@ -335,28 +344,39 @@ class CFGDenoiser(torch.nn.Module):
|
|||
|
||||
|
||||
class TorchHijack:
|
||||
def __init__(self, kdiff_sampler):
|
||||
self.kdiff_sampler = kdiff_sampler
|
||||
def __init__(self, sampler_noises):
|
||||
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
|
||||
# implementation.
|
||||
self.sampler_noises = deque(sampler_noises)
|
||||
|
||||
def __getattr__(self, item):
|
||||
if item == 'randn_like':
|
||||
return self.kdiff_sampler.randn_like
|
||||
return self.randn_like
|
||||
|
||||
if hasattr(torch, item):
|
||||
return getattr(torch, item)
|
||||
|
||||
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
|
||||
|
||||
def randn_like(self, x):
|
||||
if self.sampler_noises:
|
||||
noise = self.sampler_noises.popleft()
|
||||
if noise.shape == x.shape:
|
||||
return noise
|
||||
|
||||
return torch.randn_like(x)
|
||||
|
||||
|
||||
class KDiffusionSampler:
|
||||
def __init__(self, funcname, sd_model):
|
||||
self.model_wrap = k_diffusion.external.CompVisDenoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
|
||||
|
||||
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||
self.funcname = funcname
|
||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
self.sampler_noises = None
|
||||
self.sampler_noise_index = 0
|
||||
self.stop_at = None
|
||||
self.eta = None
|
||||
self.default_eta = 1.0
|
||||
|
@ -389,26 +409,14 @@ class KDiffusionSampler:
|
|||
def number_of_needed_noises(self, p):
|
||||
return p.steps
|
||||
|
||||
def randn_like(self, x):
|
||||
noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
|
||||
|
||||
if noise is not None and x.shape == noise.shape:
|
||||
res = noise
|
||||
else:
|
||||
res = torch.randn_like(x)
|
||||
|
||||
self.sampler_noise_index += 1
|
||||
return res
|
||||
|
||||
def initialize(self, p):
|
||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||
self.model_wrap.step = 0
|
||||
self.sampler_noise_index = 0
|
||||
self.eta = p.eta or opts.eta_ancestral
|
||||
|
||||
if self.sampler_noises is not None:
|
||||
k_diffusion.sampling.torch = TorchHijack(self)
|
||||
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises)
|
||||
|
||||
extra_params_kwargs = {}
|
||||
for param_name in self.extra_params:
|
||||
|
|
|
@ -11,13 +11,14 @@ import tqdm
|
|||
import modules.artists
|
||||
import modules.interrogate
|
||||
import modules.memmon
|
||||
import modules.sd_models
|
||||
import modules.styles
|
||||
import modules.devices as devices
|
||||
from modules import sd_samplers, sd_models, localization, sd_vae, extensions, script_loading
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules import localization, sd_vae, extensions, script_loading
|
||||
from modules.paths import models_path, script_path, sd_path
|
||||
|
||||
|
||||
demo = None
|
||||
|
||||
sd_model_file = os.path.join(script_path, 'model.ckpt')
|
||||
default_sd_model_file = sd_model_file
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -80,13 +81,14 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help=
|
|||
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
||||
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
|
||||
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
||||
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
|
||||
parser.add_argument("--api-auth", type=str, help='Set authentication for api like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
||||
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
|
||||
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
|
||||
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
|
||||
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
|
||||
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
|
||||
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
|
||||
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
|
||||
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origins", default=None)
|
||||
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origin(s) in the form of a comma-separated list (no spaces)", default=None)
|
||||
parser.add_argument("--cors-allow-origins-regex", type=str, help="Allowed CORS origin(s) in the form of a single regular expression", default=None)
|
||||
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
|
||||
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
|
||||
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
|
||||
|
@ -125,10 +127,12 @@ xformers_available = False
|
|||
config_filename = cmd_opts.ui_settings_file
|
||||
|
||||
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
hypernetworks = {}
|
||||
loaded_hypernetwork = None
|
||||
|
||||
|
||||
def reload_hypernetworks():
|
||||
from modules.hypernetworks import hypernetwork
|
||||
global hypernetworks
|
||||
|
||||
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
|
||||
|
@ -210,10 +214,11 @@ class State:
|
|||
if self.current_latent is None:
|
||||
return
|
||||
|
||||
import modules.sd_samplers
|
||||
if opts.show_progress_grid:
|
||||
self.current_image = sd_samplers.samples_to_image_grid(self.current_latent)
|
||||
self.current_image = modules.sd_samplers.samples_to_image_grid(self.current_latent)
|
||||
else:
|
||||
self.current_image = sd_samplers.sample_to_image(self.current_latent)
|
||||
self.current_image = modules.sd_samplers.sample_to_image(self.current_latent)
|
||||
|
||||
self.current_image_sampling_step = self.sampling_step
|
||||
|
||||
|
@ -252,6 +257,21 @@ def options_section(section_identifier, options_dict):
|
|||
return options_dict
|
||||
|
||||
|
||||
def list_checkpoint_tiles():
|
||||
import modules.sd_models
|
||||
return modules.sd_models.checkpoint_tiles()
|
||||
|
||||
|
||||
def refresh_checkpoints():
|
||||
import modules.sd_models
|
||||
return modules.sd_models.list_models()
|
||||
|
||||
|
||||
def list_samplers():
|
||||
import modules.sd_samplers
|
||||
return modules.sd_samplers.all_samplers
|
||||
|
||||
|
||||
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
|
||||
|
||||
options_templates = {}
|
||||
|
@ -280,6 +300,10 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
|
|||
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
|
||||
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
||||
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
|
||||
|
||||
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
|
||||
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
|
||||
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
|
||||
|
@ -304,7 +328,7 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo
|
|||
options_templates.update(options_section(('upscaling', "Upscaling"), {
|
||||
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
|
||||
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
||||
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN x4+", "R-ESRGAN x4+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
|
||||
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
|
||||
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
|
||||
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
||||
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
|
||||
|
@ -326,8 +350,7 @@ options_templates.update(options_section(('system', "System"), {
|
|||
|
||||
options_templates.update(options_section(('training', "Training"), {
|
||||
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
|
||||
"shuffle_tags": OptionInfo(False, "Shuffleing tags by ',' when create texts."),
|
||||
"tag_drop_out": OptionInfo(0, "Dropout tags when create texts", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.1}),
|
||||
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
|
||||
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
|
||||
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||
|
@ -337,7 +360,7 @@ options_templates.update(options_section(('training', "Training"), {
|
|||
}))
|
||||
|
||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
|
||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
|
||||
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
|
||||
|
@ -389,7 +412,7 @@ options_templates.update(options_section(('ui', "User interface"), {
|
|||
}))
|
||||
|
||||
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
||||
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in sd_samplers.all_samplers]}),
|
||||
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
|
||||
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
|
||||
|
|
|
@ -111,7 +111,7 @@ def upscale(
|
|||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
|
||||
img = img.unsqueeze(0).to(devices.device_swinir)
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
_, _, h_old, w_old = img.size()
|
||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||
|
|
|
@ -3,7 +3,7 @@ import numpy as np
|
|||
import PIL
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torchvision import transforms
|
||||
|
||||
import random
|
||||
|
@ -11,25 +11,28 @@ import tqdm
|
|||
from modules import devices, shared
|
||||
import re
|
||||
|
||||
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
|
||||
|
||||
|
||||
class DatasetEntry:
|
||||
def __init__(self, filename=None, latent=None, filename_text=None):
|
||||
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
|
||||
self.filename = filename
|
||||
self.latent = latent
|
||||
self.filename_text = filename_text
|
||||
self.cond = None
|
||||
self.cond_text = None
|
||||
self.latent_dist = latent_dist
|
||||
self.latent_sample = latent_sample
|
||||
self.cond = cond
|
||||
self.cond_text = cond_text
|
||||
self.pixel_values = pixel_values
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
|
||||
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):
|
||||
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
|
||||
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.batch_size = batch_size
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
@ -45,11 +48,16 @@ class PersonalizedBase(Dataset):
|
|||
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
||||
assert os.listdir(data_root), "Dataset directory is empty"
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
|
||||
|
||||
|
||||
self.shuffle_tags = shuffle_tags
|
||||
self.tag_drop_out = tag_drop_out
|
||||
|
||||
print("Preparing dataset...")
|
||||
for path in tqdm.tqdm(self.image_paths):
|
||||
if shared.state.interrupted:
|
||||
raise Exception("inturrupted")
|
||||
try:
|
||||
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
|
||||
except Exception:
|
||||
|
@ -71,58 +79,94 @@ class PersonalizedBase(Dataset):
|
|||
npimage = np.array(image).astype(np.uint8)
|
||||
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
|
||||
|
||||
torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
|
||||
torchdata = torch.moveaxis(torchdata, 2, 0)
|
||||
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
|
||||
latent_sample = None
|
||||
|
||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
|
||||
init_latent = init_latent.to(devices.cpu)
|
||||
with torch.autocast("cuda"):
|
||||
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
|
||||
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
|
||||
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
|
||||
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
||||
latent_sampling_method = "once"
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
|
||||
elif latent_sampling_method == "deterministic":
|
||||
# Works only for DiagonalGaussianDistribution
|
||||
latent_dist.std = 0
|
||||
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
|
||||
elif latent_sampling_method == "random":
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
|
||||
|
||||
if include_cond:
|
||||
if not (self.tag_drop_out != 0 or self.shuffle_tags):
|
||||
entry.cond_text = self.create_text(filename_text)
|
||||
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
||||
|
||||
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
|
||||
with torch.autocast("cuda"):
|
||||
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
||||
|
||||
self.dataset.append(entry)
|
||||
del torchdata
|
||||
del latent_dist
|
||||
del latent_sample
|
||||
|
||||
assert len(self.dataset) > 0, "No images have been found in the dataset."
|
||||
self.length = len(self.dataset) * repeats // batch_size
|
||||
|
||||
self.dataset_length = len(self.dataset)
|
||||
self.indexes = None
|
||||
self.shuffle()
|
||||
|
||||
def shuffle(self):
|
||||
self.indexes = np.random.permutation(self.dataset_length)
|
||||
self.length = len(self.dataset)
|
||||
assert self.length > 0, "No images have been found in the dataset."
|
||||
self.batch_size = min(batch_size, self.length)
|
||||
self.gradient_step = min(gradient_step, self.length // self.batch_size)
|
||||
self.latent_sampling_method = latent_sampling_method
|
||||
|
||||
def create_text(self, filename_text):
|
||||
text = random.choice(self.lines)
|
||||
text = text.replace("[name]", self.placeholder_token)
|
||||
tags = filename_text.split(',')
|
||||
if shared.opts.tag_drop_out != 0:
|
||||
tags = [t for t in tags if random.random() > shared.opts.tag_drop_out]
|
||||
if shared.opts.shuffle_tags:
|
||||
if self.tag_drop_out != 0:
|
||||
tags = [t for t in tags if random.random() > self.tag_drop_out]
|
||||
if self.shuffle_tags:
|
||||
random.shuffle(tags)
|
||||
text = text.replace("[filewords]", ','.join(tags))
|
||||
text = text.replace("[name]", self.placeholder_token)
|
||||
return text
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
def __getitem__(self, i):
|
||||
res = []
|
||||
entry = self.dataset[i]
|
||||
if self.tag_drop_out != 0 or self.shuffle_tags:
|
||||
entry.cond_text = self.create_text(entry.filename_text)
|
||||
if self.latent_sampling_method == "random":
|
||||
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
|
||||
return entry
|
||||
|
||||
for j in range(self.batch_size):
|
||||
position = i * self.batch_size + j
|
||||
if position % len(self.indexes) == 0:
|
||||
self.shuffle()
|
||||
class PersonalizedDataLoader(DataLoader):
|
||||
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
|
||||
super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
|
||||
if latent_sampling_method == "random":
|
||||
self.collate_fn = collate_wrapper_random
|
||||
else:
|
||||
self.collate_fn = collate_wrapper
|
||||
|
||||
|
||||
index = self.indexes[position % len(self.indexes)]
|
||||
entry = self.dataset[index]
|
||||
class BatchLoader:
|
||||
def __init__(self, data):
|
||||
self.cond_text = [entry.cond_text for entry in data]
|
||||
self.cond = [entry.cond for entry in data]
|
||||
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
|
||||
#self.emb_index = [entry.emb_index for entry in data]
|
||||
#print(self.latent_sample.device)
|
||||
|
||||
if entry.cond is None:
|
||||
entry.cond_text = self.create_text(entry.filename_text)
|
||||
def pin_memory(self):
|
||||
self.latent_sample = self.latent_sample.pin_memory()
|
||||
return self
|
||||
|
||||
res.append(entry)
|
||||
def collate_wrapper(batch):
|
||||
return BatchLoader(batch)
|
||||
|
||||
return res
|
||||
class BatchLoaderRandom(BatchLoader):
|
||||
def __init__(self, data):
|
||||
super().__init__(data)
|
||||
|
||||
def pin_memory(self):
|
||||
return self
|
||||
|
||||
def collate_wrapper_random(batch):
|
||||
return BatchLoaderRandom(batch)
|
|
@ -64,7 +64,8 @@ class EmbeddingDatabase:
|
|||
|
||||
self.word_embeddings[embedding.name] = embedding
|
||||
|
||||
ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0]
|
||||
# TODO changing between clip and open clip changes tokenization, which will cause embeddings to stop working
|
||||
ids = model.cond_stage_model.tokenize([embedding.name])[0]
|
||||
|
||||
first_id = ids[0]
|
||||
if first_id not in self.ids_lookup:
|
||||
|
@ -155,13 +156,11 @@ class EmbeddingDatabase:
|
|||
|
||||
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
|
||||
|
||||
with devices.autocast():
|
||||
cond_model([""]) # will send cond model to GPU if lowvram/medvram is active
|
||||
|
||||
ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"]
|
||||
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
|
||||
embedded = cond_model.encode_embedding_init_text(init_text, num_vectors_per_token)
|
||||
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)
|
||||
|
||||
for i in range(num_vectors_per_token):
|
||||
|
@ -184,7 +183,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|||
if shared.opts.training_write_csv_every == 0:
|
||||
return
|
||||
|
||||
if (step + 1) % shared.opts.training_write_csv_every != 0:
|
||||
if step % shared.opts.training_write_csv_every != 0:
|
||||
return
|
||||
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
|
||||
|
||||
|
@ -194,21 +193,23 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|||
if write_csv_header:
|
||||
csv_writer.writeheader()
|
||||
|
||||
epoch = step // epoch_len
|
||||
epoch_step = step % epoch_len
|
||||
epoch = (step - 1) // epoch_len
|
||||
epoch_step = (step - 1) % epoch_len
|
||||
|
||||
csv_writer.writerow({
|
||||
"step": step + 1,
|
||||
"step": step,
|
||||
"epoch": epoch,
|
||||
"epoch_step": epoch_step + 1,
|
||||
"epoch_step": epoch_step,
|
||||
**values,
|
||||
})
|
||||
|
||||
def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
||||
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
||||
assert model_name, f"{name} not selected"
|
||||
assert learn_rate, "Learning rate is empty or 0"
|
||||
assert isinstance(batch_size, int), "Batch size must be integer"
|
||||
assert batch_size > 0, "Batch size must be positive"
|
||||
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
|
||||
assert gradient_step > 0, "Gradient accumulation step must be positive"
|
||||
assert data_root, "Dataset directory is empty"
|
||||
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
||||
assert os.listdir(data_root), "Dataset directory is empty"
|
||||
|
@ -224,10 +225,10 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat
|
|||
if save_model_every or create_image_every:
|
||||
assert log_directory, "Log directory is empty"
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
save_embedding_every = save_embedding_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
||||
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
shared.state.job_count = steps
|
||||
|
@ -255,161 +256,200 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
else:
|
||||
images_embeds_dir = None
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
hijack = sd_hijack.model_hijack
|
||||
|
||||
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
ititial_step = embedding.step or 0
|
||||
if ititial_step >= steps:
|
||||
initial_step = embedding.step or 0
|
||||
if initial_step >= steps:
|
||||
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||
return embedding, filename
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
|
||||
|
||||
pin_memory = shared.opts.pin_memory
|
||||
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||
|
||||
if unload:
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
embedding.vec.requires_grad = True
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
|
||||
scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
losses = torch.zeros((32,))
|
||||
batch_size = ds.batch_size
|
||||
gradient_step = ds.gradient_step
|
||||
# n steps = batch_size * gradient_step * n image processed
|
||||
steps_per_epoch = len(ds) // batch_size // gradient_step
|
||||
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
|
||||
loss_step = 0
|
||||
_loss_step = 0 #internal
|
||||
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
forced_filename = "<none>"
|
||||
embedding_yet_to_be_embedded = False
|
||||
|
||||
pbar = tqdm.tqdm(total=steps - initial_step)
|
||||
try:
|
||||
for i in range((steps-initial_step) * gradient_step):
|
||||
if scheduler.finished:
|
||||
break
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
for j, batch in enumerate(dl):
|
||||
# works as a drop_last=True for gradient accumulation
|
||||
if j == max_steps_per_epoch:
|
||||
break
|
||||
scheduler.apply(optimizer, embedding.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
for i, entries in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
with torch.autocast("cuda"):
|
||||
# c = stack_conds(batch.cond).to(devices.device)
|
||||
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
|
||||
# print(mask)
|
||||
# c[:, 1:1+embedding.vec.shape[0]] = embedding.vec.to(devices.device, non_blocking=pin_memory)
|
||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
||||
loss = shared.sd_model(x, c)[0] / gradient_step
|
||||
del x
|
||||
|
||||
_loss_step += loss.item()
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# go back until we reach gradient accumulation steps
|
||||
if (j + 1) % gradient_step != 0:
|
||||
continue
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
embedding.step += 1
|
||||
pbar.update()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss_step = _loss_step
|
||||
_loss_step = 0
|
||||
|
||||
scheduler.apply(optimizer, embedding.step)
|
||||
if scheduler.finished:
|
||||
break
|
||||
steps_done = embedding.step + 1
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
epoch_num = embedding.step // steps_per_epoch
|
||||
epoch_step = embedding.step % steps_per_epoch
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
c = cond_model([entry.cond_text for entry in entries])
|
||||
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
|
||||
loss = shared.sd_model(x, c)[0]
|
||||
del x
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
|
||||
if embedding_dir is not None and steps_done % save_embedding_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
embedding_name_every = f'{embedding_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
|
||||
#if shared.opts.save_optimizer_state:
|
||||
#embedding.optimizer_state_dict = optimizer.state_dict()
|
||||
save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
|
||||
embedding_yet_to_be_embedded = True
|
||||
|
||||
losses[embedding.step % losses.shape[0]] = loss.item()
|
||||
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
|
||||
"loss": f"{loss_step:.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if images_dir is not None and steps_done % create_image_every == 0:
|
||||
forced_filename = f'{embedding_name}-{steps_done}'
|
||||
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||
|
||||
steps_done = embedding.step + 1
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
|
||||
epoch_num = embedding.step // len(ds)
|
||||
epoch_step = embedding.step % len(ds)
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
do_not_reload_embeddings=True,
|
||||
)
|
||||
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
|
||||
if preview_from_txt2img:
|
||||
p.prompt = preview_prompt
|
||||
p.negative_prompt = preview_negative_prompt
|
||||
p.steps = preview_steps
|
||||
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||
p.cfg_scale = preview_cfg_scale
|
||||
p.seed = preview_seed
|
||||
p.width = preview_width
|
||||
p.height = preview_height
|
||||
else:
|
||||
p.prompt = batch.cond_text[0]
|
||||
p.steps = 20
|
||||
p.width = training_width
|
||||
p.height = training_height
|
||||
|
||||
if embedding_dir is not None and steps_done % save_embedding_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
embedding_name_every = f'{embedding_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
|
||||
save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
|
||||
embedding_yet_to_be_embedded = True
|
||||
preview_text = p.prompt
|
||||
|
||||
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
|
||||
"loss": f"{losses.mean():.7f}",
|
||||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0] if len(processed.images) > 0 else None
|
||||
|
||||
if images_dir is not None and steps_done % create_image_every == 0:
|
||||
forced_filename = f'{embedding_name}-{steps_done}'
|
||||
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||
if unload:
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
if image is not None:
|
||||
shared.state.current_image = image
|
||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
do_not_save_grid=True,
|
||||
do_not_save_samples=True,
|
||||
do_not_reload_embeddings=True,
|
||||
)
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
|
||||
|
||||
if preview_from_txt2img:
|
||||
p.prompt = preview_prompt
|
||||
p.negative_prompt = preview_negative_prompt
|
||||
p.steps = preview_steps
|
||||
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||
p.cfg_scale = preview_cfg_scale
|
||||
p.seed = preview_seed
|
||||
p.width = preview_width
|
||||
p.height = preview_height
|
||||
else:
|
||||
p.prompt = entries[0].cond_text
|
||||
p.steps = 20
|
||||
p.width = training_width
|
||||
p.height = training_height
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
|
||||
|
||||
preview_text = p.prompt
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
||||
|
||||
processed = processing.process_images(p)
|
||||
image = processed.images[0]
|
||||
title = "<{}>".format(data.get('name', '???'))
|
||||
|
||||
if unload:
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
try:
|
||||
vectorSize = list(data['string_to_param'].values())[0].shape[0]
|
||||
except Exception as e:
|
||||
vectorSize = '?'
|
||||
|
||||
shared.state.current_image = image
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}v {}s'.format(vectorSize, steps_done)
|
||||
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
|
||||
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
||||
embedding_yet_to_be_embedded = False
|
||||
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
info.add_text("sd-ti-embedding", embedding_to_b64(data))
|
||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
title = "<{}>".format(data.get('name', '???'))
|
||||
shared.state.job_no = embedding.step
|
||||
|
||||
try:
|
||||
vectorSize = list(data['string_to_param'].values())[0].shape[0]
|
||||
except Exception as e:
|
||||
vectorSize = '?'
|
||||
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}v {}s'.format(vectorSize, steps_done)
|
||||
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
||||
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
|
||||
embedding_yet_to_be_embedded = False
|
||||
|
||||
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
|
||||
last_saved_image += f", prompt: {preview_text}"
|
||||
|
||||
shared.state.job_no = embedding.step
|
||||
|
||||
shared.state.textinfo = f"""
|
||||
shared.state.textinfo = f"""
|
||||
<p>
|
||||
Loss: {losses.mean():.7f}<br/>
|
||||
Step: {embedding.step}<br/>
|
||||
Last prompt: {html.escape(entries[0].cond_text)}<br/>
|
||||
Loss: {loss_step:.7f}<br/>
|
||||
Step: {steps_done}<br/>
|
||||
Last prompt: {html.escape(batch.cond_text[0])}<br/>
|
||||
Last saved embedding: {html.escape(last_saved_file)}<br/>
|
||||
Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
</p>
|
||||
"""
|
||||
|
||||
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
||||
save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
||||
save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
|
||||
except Exception:
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
pass
|
||||
finally:
|
||||
pbar.leave = False
|
||||
pbar.close()
|
||||
shared.sd_model.first_stage_model.to(devices.device)
|
||||
|
||||
return embedding, filename
|
||||
|
||||
|
|
124
modules/ui.py
124
modules/ui.py
|
@ -17,7 +17,7 @@ import gradio.routes
|
|||
import gradio.utils
|
||||
import numpy as np
|
||||
from PIL import Image, PngImagePlugin
|
||||
|
||||
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
|
||||
|
||||
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru
|
||||
from modules.paths import script_path
|
||||
|
@ -157,84 +157,7 @@ def save_files(js_data, images, do_make_zip, index):
|
|||
|
||||
return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}")
|
||||
|
||||
def save_pil_to_file(pil_image, dir=None):
|
||||
use_metadata = False
|
||||
metadata = PngImagePlugin.PngInfo()
|
||||
for key, value in pil_image.info.items():
|
||||
if isinstance(key, str) and isinstance(value, str):
|
||||
metadata.add_text(key, value)
|
||||
use_metadata = True
|
||||
|
||||
file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=dir)
|
||||
pil_image.save(file_obj, pnginfo=(metadata if use_metadata else None))
|
||||
return file_obj
|
||||
|
||||
|
||||
# override save to file function so that it also writes PNG info
|
||||
gr.processing_utils.save_pil_to_file = save_pil_to_file
|
||||
|
||||
|
||||
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
||||
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
|
||||
run_memmon = opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
|
||||
if run_memmon:
|
||||
shared.mem_mon.monitor()
|
||||
t = time.perf_counter()
|
||||
|
||||
try:
|
||||
res = list(func(*args, **kwargs))
|
||||
except Exception as e:
|
||||
# When printing out our debug argument list, do not print out more than a MB of text
|
||||
max_debug_str_len = 131072 # (1024*1024)/8
|
||||
|
||||
print("Error completing request", file=sys.stderr)
|
||||
argStr = f"Arguments: {str(args)} {str(kwargs)}"
|
||||
print(argStr[:max_debug_str_len], file=sys.stderr)
|
||||
if len(argStr) > max_debug_str_len:
|
||||
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
|
||||
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
shared.state.job = ""
|
||||
shared.state.job_count = 0
|
||||
|
||||
if extra_outputs_array is None:
|
||||
extra_outputs_array = [None, '']
|
||||
|
||||
res = extra_outputs_array + [f"<div class='error'>{plaintext_to_html(type(e).__name__+': '+str(e))}</div>"]
|
||||
|
||||
shared.state.skipped = False
|
||||
shared.state.interrupted = False
|
||||
shared.state.job_count = 0
|
||||
|
||||
if not add_stats:
|
||||
return tuple(res)
|
||||
|
||||
elapsed = time.perf_counter() - t
|
||||
elapsed_m = int(elapsed // 60)
|
||||
elapsed_s = elapsed % 60
|
||||
elapsed_text = f"{elapsed_s:.2f}s"
|
||||
if elapsed_m > 0:
|
||||
elapsed_text = f"{elapsed_m}m "+elapsed_text
|
||||
|
||||
if run_memmon:
|
||||
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
|
||||
active_peak = mem_stats['active_peak']
|
||||
reserved_peak = mem_stats['reserved_peak']
|
||||
sys_peak = mem_stats['system_peak']
|
||||
sys_total = mem_stats['total']
|
||||
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
|
||||
|
||||
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
|
||||
else:
|
||||
vram_html = ''
|
||||
|
||||
# last item is always HTML
|
||||
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
|
||||
|
||||
return tuple(res)
|
||||
|
||||
return f
|
||||
|
||||
|
||||
def calc_time_left(progress, threshold, label, force_display):
|
||||
|
@ -478,9 +401,7 @@ def create_toprow(is_img2img):
|
|||
if is_img2img:
|
||||
with gr.Column(scale=1, elem_id="interrogate_col"):
|
||||
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
|
||||
|
||||
if cmd_opts.deepdanbooru:
|
||||
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
|
||||
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
|
||||
|
||||
with gr.Column(scale=1):
|
||||
with gr.Row():
|
||||
|
@ -684,7 +605,7 @@ Requested path was: {f}
|
|||
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info
|
||||
|
||||
|
||||
def create_ui(wrap_gradio_gpu_call):
|
||||
def create_ui():
|
||||
import modules.img2img
|
||||
import modules.txt2img
|
||||
|
||||
|
@ -844,7 +765,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
height,
|
||||
]
|
||||
|
||||
token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
|
||||
token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter])
|
||||
|
||||
modules.scripts.scripts_current = modules.scripts.scripts_img2img
|
||||
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
|
||||
|
@ -1004,11 +925,10 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
outputs=[img2img_prompt],
|
||||
)
|
||||
|
||||
if cmd_opts.deepdanbooru:
|
||||
img2img_deepbooru.click(
|
||||
fn=interrogate_deepbooru,
|
||||
inputs=[init_img],
|
||||
outputs=[img2img_prompt],
|
||||
img2img_deepbooru.click(
|
||||
fn=interrogate_deepbooru,
|
||||
inputs=[init_img],
|
||||
outputs=[img2img_prompt],
|
||||
)
|
||||
|
||||
|
||||
|
@ -1063,6 +983,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
(seed_resize_from_w, "Seed resize from-1"),
|
||||
(seed_resize_from_h, "Seed resize from-2"),
|
||||
(denoising_strength, "Denoising strength"),
|
||||
(mask_blur, "Mask blur"),
|
||||
*modules.scripts.scripts_img2img.infotext_fields
|
||||
]
|
||||
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
|
||||
|
@ -1183,7 +1104,11 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
custom_name = gr.Textbox(label="Custom Name (Optional)")
|
||||
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
|
||||
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
|
||||
save_as_half = gr.Checkbox(value=False, label="Save as float16")
|
||||
|
||||
with gr.Row():
|
||||
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format")
|
||||
save_as_half = gr.Checkbox(value=False, label="Save as float16")
|
||||
|
||||
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary')
|
||||
|
||||
with gr.Column(variant='panel'):
|
||||
|
@ -1213,7 +1138,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
|
||||
with gr.Tab(label="Create hypernetwork"):
|
||||
new_hypernetwork_name = gr.Textbox(label="Name")
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"])
|
||||
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys)
|
||||
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
|
||||
|
@ -1240,7 +1165,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
process_split = gr.Checkbox(label='Split oversized images')
|
||||
process_focal_crop = gr.Checkbox(label='Auto focal point crop')
|
||||
process_caption = gr.Checkbox(label='Use BLIP for caption')
|
||||
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False)
|
||||
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True)
|
||||
|
||||
with gr.Row(visible=False) as process_split_extra_row:
|
||||
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
|
||||
|
@ -1259,7 +1184,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
with gr.Column():
|
||||
with gr.Row():
|
||||
interrupt_preprocessing = gr.Button("Interrupt")
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||
|
||||
process_split.change(
|
||||
fn=lambda show: gr_show(show),
|
||||
|
@ -1286,6 +1211,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
|
||||
|
||||
batch_size = gr.Number(label='Batch size', value=1, precision=0)
|
||||
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0)
|
||||
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
|
||||
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
|
||||
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
|
||||
|
@ -1296,6 +1222,11 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
|
||||
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
|
||||
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
|
||||
with gr.Row():
|
||||
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False)
|
||||
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0)
|
||||
with gr.Row():
|
||||
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'])
|
||||
|
||||
with gr.Row():
|
||||
interrupt_training = gr.Button(value="Interrupt")
|
||||
|
@ -1384,11 +1315,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
train_embedding_name,
|
||||
embedding_learn_rate,
|
||||
batch_size,
|
||||
gradient_step,
|
||||
dataset_directory,
|
||||
log_directory,
|
||||
training_width,
|
||||
training_height,
|
||||
steps,
|
||||
shuffle_tags,
|
||||
tag_drop_out,
|
||||
latent_sampling_method,
|
||||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
|
@ -1409,11 +1344,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
train_hypernetwork_name,
|
||||
hypernetwork_learn_rate,
|
||||
batch_size,
|
||||
gradient_step,
|
||||
dataset_directory,
|
||||
log_directory,
|
||||
training_width,
|
||||
training_height,
|
||||
steps,
|
||||
shuffle_tags,
|
||||
tag_drop_out,
|
||||
latent_sampling_method,
|
||||
create_image_every,
|
||||
save_embedding_every,
|
||||
template_file,
|
||||
|
@ -1697,6 +1636,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||
interp_amount,
|
||||
save_as_half,
|
||||
custom_name,
|
||||
checkpoint_format,
|
||||
],
|
||||
outputs=[
|
||||
submit_result,
|
||||
|
|
62
modules/ui_tempdir.py
Normal file
62
modules/ui_tempdir.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
import os
|
||||
import tempfile
|
||||
from collections import namedtuple
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from PIL import PngImagePlugin
|
||||
|
||||
from modules import shared
|
||||
|
||||
|
||||
Savedfile = namedtuple("Savedfile", ["name"])
|
||||
|
||||
|
||||
def save_pil_to_file(pil_image, dir=None):
|
||||
already_saved_as = getattr(pil_image, 'already_saved_as', None)
|
||||
if already_saved_as and os.path.isfile(already_saved_as):
|
||||
shared.demo.temp_dirs = shared.demo.temp_dirs | {os.path.abspath(os.path.dirname(already_saved_as))}
|
||||
file_obj = Savedfile(already_saved_as)
|
||||
return file_obj
|
||||
|
||||
if shared.opts.temp_dir != "":
|
||||
dir = shared.opts.temp_dir
|
||||
|
||||
use_metadata = False
|
||||
metadata = PngImagePlugin.PngInfo()
|
||||
for key, value in pil_image.info.items():
|
||||
if isinstance(key, str) and isinstance(value, str):
|
||||
metadata.add_text(key, value)
|
||||
use_metadata = True
|
||||
|
||||
file_obj = tempfile.NamedTemporaryFile(delete=False, suffix=".png", dir=dir)
|
||||
pil_image.save(file_obj, pnginfo=(metadata if use_metadata else None))
|
||||
return file_obj
|
||||
|
||||
|
||||
# override save to file function so that it also writes PNG info
|
||||
gr.processing_utils.save_pil_to_file = save_pil_to_file
|
||||
|
||||
|
||||
def on_tmpdir_changed():
|
||||
if shared.opts.temp_dir == "" or shared.demo is None:
|
||||
return
|
||||
|
||||
os.makedirs(shared.opts.temp_dir, exist_ok=True)
|
||||
|
||||
shared.demo.temp_dirs = shared.demo.temp_dirs | {os.path.abspath(shared.opts.temp_dir)}
|
||||
|
||||
|
||||
def cleanup_tmpdr():
|
||||
temp_dir = shared.opts.temp_dir
|
||||
if temp_dir == "" or not os.path.isdir(temp_dir):
|
||||
return
|
||||
|
||||
for root, dirs, files in os.walk(temp_dir, topdown=False):
|
||||
for name in files:
|
||||
_, extension = os.path.splitext(name)
|
||||
if extension != ".png":
|
||||
continue
|
||||
|
||||
filename = os.path.join(root, name)
|
||||
os.remove(filename)
|
|
@ -28,3 +28,5 @@ kornia
|
|||
lark
|
||||
inflection
|
||||
GitPython
|
||||
torchsde
|
||||
safetensors
|
||||
|
|
|
@ -25,3 +25,5 @@ kornia==0.6.7
|
|||
lark==1.1.2
|
||||
inflection==0.5.1
|
||||
GitPython==3.1.27
|
||||
torchsde==0.2.5
|
||||
safetensors==0.2.5
|
||||
|
|
|
@ -58,29 +58,19 @@ def apply_order(p, x, xs):
|
|||
prompt_tmp += part
|
||||
prompt_tmp += x[idx]
|
||||
p.prompt = prompt_tmp + p.prompt
|
||||
|
||||
|
||||
def build_samplers_dict():
|
||||
samplers_dict = {}
|
||||
for i, sampler in enumerate(sd_samplers.all_samplers):
|
||||
samplers_dict[sampler.name.lower()] = i
|
||||
for alias in sampler.aliases:
|
||||
samplers_dict[alias.lower()] = i
|
||||
return samplers_dict
|
||||
|
||||
|
||||
def apply_sampler(p, x, xs):
|
||||
sampler_index = build_samplers_dict().get(x.lower(), None)
|
||||
if sampler_index is None:
|
||||
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
|
||||
if sampler_name is None:
|
||||
raise RuntimeError(f"Unknown sampler: {x}")
|
||||
|
||||
p.sampler_index = sampler_index
|
||||
p.sampler_name = sampler_name
|
||||
|
||||
|
||||
def confirm_samplers(p, xs):
|
||||
samplers_dict = build_samplers_dict()
|
||||
for x in xs:
|
||||
if x.lower() not in samplers_dict.keys():
|
||||
if x.lower() not in sd_samplers.samplers_map:
|
||||
raise RuntimeError(f"Unknown sampler: {x}")
|
||||
|
||||
|
||||
|
|
0
test/advanced_features/__init__.py
Normal file
0
test/advanced_features/__init__.py
Normal file
|
@ -11,8 +11,8 @@ class TestExtrasWorking(unittest.TestCase):
|
|||
"codeformer_visibility": 0,
|
||||
"codeformer_weight": 0,
|
||||
"upscaling_resize": 2,
|
||||
"upscaling_resize_w": 512,
|
||||
"upscaling_resize_h": 512,
|
||||
"upscaling_resize_w": 128,
|
||||
"upscaling_resize_h": 128,
|
||||
"upscaling_crop": True,
|
||||
"upscaler_1": "None",
|
||||
"upscaler_2": "None",
|
47
test/advanced_features/txt2img_test.py
Normal file
47
test/advanced_features/txt2img_test.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import unittest
|
||||
import requests
|
||||
|
||||
|
||||
class TestTxt2ImgWorking(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.url_txt2img = "http://localhost:7860/sdapi/v1/txt2img"
|
||||
self.simple_txt2img = {
|
||||
"enable_hr": False,
|
||||
"denoising_strength": 0,
|
||||
"firstphase_width": 0,
|
||||
"firstphase_height": 0,
|
||||
"prompt": "example prompt",
|
||||
"styles": [],
|
||||
"seed": -1,
|
||||
"subseed": -1,
|
||||
"subseed_strength": 0,
|
||||
"seed_resize_from_h": -1,
|
||||
"seed_resize_from_w": -1,
|
||||
"batch_size": 1,
|
||||
"n_iter": 1,
|
||||
"steps": 3,
|
||||
"cfg_scale": 7,
|
||||
"width": 64,
|
||||
"height": 64,
|
||||
"restore_faces": False,
|
||||
"tiling": False,
|
||||
"negative_prompt": "",
|
||||
"eta": 0,
|
||||
"s_churn": 0,
|
||||
"s_tmax": 0,
|
||||
"s_tmin": 0,
|
||||
"s_noise": 1,
|
||||
"sampler_index": "Euler a"
|
||||
}
|
||||
|
||||
def test_txt2img_with_restore_faces_performed(self):
|
||||
self.simple_txt2img["restore_faces"] = True
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
|
||||
class TestTxt2ImgCorrectness(unittest.TestCase):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
0
test/basic_features/__init__.py
Normal file
0
test/basic_features/__init__.py
Normal file
|
@ -51,9 +51,5 @@ class TestImg2ImgWorking(unittest.TestCase):
|
|||
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
|
||||
|
||||
|
||||
class TestImg2ImgCorrectness(unittest.TestCase):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -49,26 +49,20 @@ class TestTxt2ImgWorking(unittest.TestCase):
|
|||
self.simple_txt2img["enable_hr"] = True
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
def test_txt2img_with_restore_faces_performed(self):
|
||||
self.simple_txt2img["restore_faces"] = True
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
def test_txt2img_with_tiling_faces_performed(self):
|
||||
def test_txt2img_with_tiling_performed(self):
|
||||
self.simple_txt2img["tiling"] = True
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
def test_txt2img_with_vanilla_sampler_performed(self):
|
||||
self.simple_txt2img["sampler_index"] = "PLMS"
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
self.simple_txt2img["sampler_index"] = "DDIM"
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
def test_txt2img_multiple_batches_performed(self):
|
||||
self.simple_txt2img["n_iter"] = 2
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
|
||||
class TestTxt2ImgCorrectness(unittest.TestCase):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -18,20 +18,6 @@ class UtilsTests(unittest.TestCase):
|
|||
def test_options_get(self):
|
||||
self.assertEqual(requests.get(self.url_options).status_code, 200)
|
||||
|
||||
def test_options_write(self):
|
||||
response = requests.get(self.url_options)
|
||||
self.assertEqual(response.status_code, 200)
|
||||
|
||||
pre_value = response.json()["send_seed"]
|
||||
|
||||
self.assertEqual(requests.post(self.url_options, json={"send_seed":not pre_value}).status_code, 200)
|
||||
|
||||
response = requests.get(self.url_options)
|
||||
self.assertEqual(response.status_code, 200)
|
||||
self.assertEqual(response.json()["send_seed"], not pre_value)
|
||||
|
||||
requests.post(self.url_options, json={"send_seed": pre_value})
|
||||
|
||||
def test_cmd_flags(self):
|
||||
self.assertEqual(requests.get(self.url_cmd_flags).status_code, 200)
|
||||
|
||||
|
@ -60,4 +46,8 @@ class UtilsTests(unittest.TestCase):
|
|||
self.assertEqual(requests.get(self.url_artist_categories).status_code, 200)
|
||||
|
||||
def test_artists(self):
|
||||
self.assertEqual(requests.get(self.url_artists).status_code, 200)
|
||||
self.assertEqual(requests.get(self.url_artists).status_code, 200)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -3,7 +3,7 @@ import requests
|
|||
import time
|
||||
|
||||
|
||||
def run_tests():
|
||||
def run_tests(proc, test_dir):
|
||||
timeout_threshold = 240
|
||||
start_time = time.time()
|
||||
while time.time()-start_time < timeout_threshold:
|
||||
|
@ -11,9 +11,14 @@ def run_tests():
|
|||
requests.head("http://localhost:7860/")
|
||||
break
|
||||
except requests.exceptions.ConnectionError:
|
||||
pass
|
||||
if time.time()-start_time < timeout_threshold:
|
||||
suite = unittest.TestLoader().discover('', pattern='*_test.py')
|
||||
if proc.poll() is not None:
|
||||
break
|
||||
if proc.poll() is None:
|
||||
if test_dir is None:
|
||||
test_dir = ""
|
||||
suite = unittest.TestLoader().discover(test_dir, pattern="*_test.py", top_level_dir="test")
|
||||
result = unittest.TextTestRunner(verbosity=2).run(suite)
|
||||
return len(result.failures) + len(result.errors)
|
||||
else:
|
||||
print("Launch unsuccessful")
|
||||
return 1
|
||||
|
|
BIN
test/test_files/empty.pt
Normal file
BIN
test/test_files/empty.pt
Normal file
Binary file not shown.
70
v1-inference.yaml
Normal file
70
v1-inference.yaml
Normal file
|
@ -0,0 +1,70 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
51
webui.py
51
webui.py
|
@ -8,9 +8,10 @@ from fastapi import FastAPI
|
|||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
|
||||
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
|
||||
from modules.paths import script_path
|
||||
|
||||
from modules import devices, sd_samplers, upscaler, extensions, localization
|
||||
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir
|
||||
import modules.codeformer_model as codeformer
|
||||
import modules.extras
|
||||
import modules.face_restoration
|
||||
|
@ -23,7 +24,6 @@ import modules.scripts
|
|||
import modules.sd_hijack
|
||||
import modules.sd_models
|
||||
import modules.sd_vae
|
||||
import modules.shared as shared
|
||||
import modules.txt2img
|
||||
import modules.script_callbacks
|
||||
|
||||
|
@ -32,36 +32,12 @@ from modules import modelloader
|
|||
from modules.shared import cmd_opts
|
||||
import modules.hypernetworks.hypernetwork
|
||||
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
if cmd_opts.server_name:
|
||||
server_name = cmd_opts.server_name
|
||||
else:
|
||||
server_name = "0.0.0.0" if cmd_opts.listen else None
|
||||
|
||||
def wrap_queued_call(func):
|
||||
def f(*args, **kwargs):
|
||||
with queue_lock:
|
||||
res = func(*args, **kwargs)
|
||||
|
||||
return res
|
||||
|
||||
return f
|
||||
|
||||
|
||||
def wrap_gradio_gpu_call(func, extra_outputs=None):
|
||||
def f(*args, **kwargs):
|
||||
|
||||
shared.state.begin()
|
||||
|
||||
with queue_lock:
|
||||
res = func(*args, **kwargs)
|
||||
|
||||
shared.state.end()
|
||||
|
||||
return res
|
||||
|
||||
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
|
||||
|
||||
|
||||
def initialize():
|
||||
extensions.list_extensions()
|
||||
|
@ -86,8 +62,9 @@ def initialize():
|
|||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
|
||||
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
||||
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: shared.reload_hypernetworks()))
|
||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
|
||||
|
||||
if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
|
||||
|
||||
|
@ -111,8 +88,12 @@ def initialize():
|
|||
|
||||
|
||||
def setup_cors(app):
|
||||
if cmd_opts.cors_allow_origins:
|
||||
if cmd_opts.cors_allow_origins and cmd_opts.cors_allow_origins_regex:
|
||||
app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'])
|
||||
elif cmd_opts.cors_allow_origins:
|
||||
app.add_middleware(CORSMiddleware, allow_origins=cmd_opts.cors_allow_origins.split(','), allow_methods=['*'])
|
||||
elif cmd_opts.cors_allow_origins_regex:
|
||||
app.add_middleware(CORSMiddleware, allow_origin_regex=cmd_opts.cors_allow_origins_regex, allow_methods=['*'])
|
||||
|
||||
|
||||
def create_api(app):
|
||||
|
@ -150,9 +131,12 @@ def webui():
|
|||
initialize()
|
||||
|
||||
while 1:
|
||||
demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
|
||||
if shared.opts.clean_temp_dir_at_start:
|
||||
ui_tempdir.cleanup_tmpdr()
|
||||
|
||||
app, local_url, share_url = demo.launch(
|
||||
shared.demo = modules.ui.create_ui()
|
||||
|
||||
app, local_url, share_url = shared.demo.launch(
|
||||
share=cmd_opts.share,
|
||||
server_name=server_name,
|
||||
server_port=cmd_opts.port,
|
||||
|
@ -179,9 +163,10 @@ def webui():
|
|||
if launch_api:
|
||||
create_api(app)
|
||||
|
||||
modules.script_callbacks.app_started_callback(demo, app)
|
||||
modules.script_callbacks.app_started_callback(shared.demo, app)
|
||||
modules.script_callbacks.app_started_callback(shared.demo, app)
|
||||
|
||||
wait_on_server(demo)
|
||||
wait_on_server(shared.demo)
|
||||
|
||||
sd_samplers.set_samplers()
|
||||
|
||||
|
|
14
webui.sh
14
webui.sh
|
@ -3,6 +3,7 @@
|
|||
# Please do not make any changes to this file, #
|
||||
# change the variables in webui-user.sh instead #
|
||||
#################################################
|
||||
|
||||
# Read variables from webui-user.sh
|
||||
# shellcheck source=/dev/null
|
||||
if [[ -f webui-user.sh ]]
|
||||
|
@ -46,6 +47,17 @@ then
|
|||
LAUNCH_SCRIPT="launch.py"
|
||||
fi
|
||||
|
||||
# this script cannot be run as root by default
|
||||
can_run_as_root=0
|
||||
|
||||
# read any command line flags to the webui.sh script
|
||||
while getopts "f" flag
|
||||
do
|
||||
case ${flag} in
|
||||
f) can_run_as_root=1;;
|
||||
esac
|
||||
done
|
||||
|
||||
# Disable sentry logging
|
||||
export ERROR_REPORTING=FALSE
|
||||
|
||||
|
@ -61,7 +73,7 @@ printf "\e[1m\e[34mTested on Debian 11 (Bullseye)\e[0m"
|
|||
printf "\n%s\n" "${delimiter}"
|
||||
|
||||
# Do not run as root
|
||||
if [[ $(id -u) -eq 0 ]]
|
||||
if [[ $(id -u) -eq 0 && can_run_as_root -eq 0 ]]
|
||||
then
|
||||
printf "\n%s\n" "${delimiter}"
|
||||
printf "\e[1m\e[31mERROR: This script must not be launched as root, aborting...\e[0m"
|
||||
|
|
Loading…
Reference in a new issue