diff --git a/requirements.txt b/requirements.txt index 8538310b..91b21222 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,6 +1,6 @@ basicsr gfpgan -gradio==3.1.5 +gradio numpy Pillow realesrgan diff --git a/webui.py b/webui.py index 3bdda039..246ebbcd 100644 --- a/webui.py +++ b/webui.py @@ -80,6 +80,10 @@ batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram o queue_lock = threading.Lock() +def gr_show(visible=True): + return {"visible": visible, "__type__": "update"} + + class State: interrupted = False job = "" @@ -1132,7 +1136,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: # we manually generate all input noises because each one should have a specific seed x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds) - if p.n_iter > 0: + if p.n_iter > 1: state.job = f"Batch {n+1} out of {p.n_iter}" samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc) @@ -1728,16 +1732,16 @@ with gr.Blocks(analytics_enabled=False) as img2img_interface: is_upscale = mode == 3 return { - init_img: gr.update(visible=not is_inpaint), - init_img_with_mask: gr.update(visible=is_inpaint), - mask_blur: gr.update(visible=is_inpaint), - inpainting_fill: gr.update(visible=is_inpaint), - prompt_matrix: gr.update(visible=is_classic), - batch_count: gr.update(visible=not is_upscale), - batch_size: gr.update(visible=not is_loopback), - sd_upscale_upscaler_name: gr.update(visible=is_upscale), - sd_upscale_overlap: gr.Slider.update(visible=is_upscale), - inpaint_full_res: gr.update(visible=is_inpaint), + init_img: gr_show(not is_inpaint), + init_img_with_mask: gr_show(is_inpaint), + mask_blur: gr_show(is_inpaint), + inpainting_fill: gr_show(is_inpaint), + prompt_matrix: gr_show(is_classic), + batch_count: gr_show(not is_upscale), + batch_size: gr_show(not is_loopback), + sd_upscale_upscaler_name: gr_show(is_upscale), + sd_upscale_overlap:gr_show(is_upscale), + inpaint_full_res: gr_show(is_inpaint), } switch_mode.change( @@ -1979,9 +1983,9 @@ sd_model = load_model_from_config(sd_config, cmd_opts.ckpt) sd_model = (sd_model if cmd_opts.no_half else sd_model.half()) if cmd_opts.lowvram or cmd_opts.medvram: - setup_for_low_vram(sd_model) + setup_for_low_vram(sd_model) else: - sd_model = sd_model.to(device) + sd_model = sd_model.to(device) model_hijack = StableDiffusionModelHijack() model_hijack.hijack(sd_model)