diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 6cd29c83..21c704f7 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -56,13 +56,13 @@ def setup_codeformer(): self.net.to(shared.device) return self.net, self.face_helper - net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(shared.device_codeformer) + net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer) ckpt_path = load_file_from_url(url=pretrain_model_url, model_dir=os.path.join(path, 'weights/CodeFormer'), progress=True) checkpoint = torch.load(ckpt_path)['params_ema'] net.load_state_dict(checkpoint) net.eval() - face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=shared.device_codeformer) + face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer) self.net = net self.face_helper = face_helper @@ -84,7 +84,7 @@ def setup_codeformer(): for idx, cropped_face in enumerate(self.face_helper.cropped_faces): cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) - cropped_face_t = cropped_face_t.unsqueeze(0).to(shared.device_codeformer) + cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) try: with torch.no_grad():