Fix full previews, --no-half-vae

This commit is contained in:
brkirch 2023-01-26 00:34:38 -05:00
parent 6cff440182
commit 10421f93c3
2 changed files with 5 additions and 5 deletions

View file

@ -172,7 +172,7 @@ class StableDiffusionProcessing:
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_unet) if devices.unet_needs_upcast else source_image))
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_vae) if devices.unet_needs_upcast else source_image))
conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image
conditioning = torch.nn.functional.interpolate(
self.sd_model.depth_model(midas_in),
@ -217,7 +217,7 @@ class StableDiffusionProcessing:
)
# Encode the new masked image using first stage of network.
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_unet) if devices.unet_needs_upcast else conditioning_image))
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_vae) if devices.unet_needs_upcast else conditioning_image))
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
@ -417,7 +417,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
def decode_first_stage(model, x):
with devices.autocast(disable=x.dtype == devices.dtype_vae):
x = model.decode_first_stage(x)
x = model.decode_first_stage(x.to(devices.dtype_vae) if devices.unet_needs_upcast else x)
return x
@ -1001,7 +1001,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = torch.from_numpy(batch_images)
image = 2. * image - 1.
image = image.to(device=shared.device, dtype=devices.dtype_unet if devices.unet_needs_upcast else None)
image = image.to(device=shared.device, dtype=devices.dtype_vae if devices.unet_needs_upcast else None)
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))

View file

@ -5,7 +5,7 @@ class CondFunc:
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
for i in range(len(func_path)-2, -1, -1):
for i in range(len(func_path)-1, -1, -1):
try:
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
break