Merge pull request #4021 from AUTOMATIC1111/add-kdiff-cfgdenoiser-callback

Add mid-kdiffusion cfgdenoiser script callback - access latents, conditionings and sigmas mid-sampling
This commit is contained in:
AUTOMATIC1111 2022-11-02 07:29:16 +03:00 committed by GitHub
commit 10f62546d3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 44 additions and 1 deletions

View file

@ -26,6 +26,24 @@ class ImageSaveParams:
"""dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'""" """dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'"""
class CFGDenoiserParams:
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps):
self.x = x
"""Latent image representation in the process of being denoised"""
self.image_cond = image_cond
"""Conditioning image"""
self.sigma = sigma
"""Current sigma noise step value"""
self.sampling_step = sampling_step
"""Current Sampling step number"""
self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned"""
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"]) ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
callbacks_app_started = [] callbacks_app_started = []
callbacks_model_loaded = [] callbacks_model_loaded = []
@ -33,6 +51,7 @@ callbacks_ui_tabs = []
callbacks_ui_settings = [] callbacks_ui_settings = []
callbacks_before_image_saved = [] callbacks_before_image_saved = []
callbacks_image_saved = [] callbacks_image_saved = []
callbacks_cfg_denoiser = []
def clear_callbacks(): def clear_callbacks():
@ -41,7 +60,7 @@ def clear_callbacks():
callbacks_ui_settings.clear() callbacks_ui_settings.clear()
callbacks_before_image_saved.clear() callbacks_before_image_saved.clear()
callbacks_image_saved.clear() callbacks_image_saved.clear()
callbacks_cfg_denoiser.clear()
def app_started_callback(demo: Blocks, app: FastAPI): def app_started_callback(demo: Blocks, app: FastAPI):
for c in callbacks_app_started: for c in callbacks_app_started:
@ -95,6 +114,14 @@ def image_saved_callback(params: ImageSaveParams):
report_exception(c, 'image_saved_callback') report_exception(c, 'image_saved_callback')
def cfg_denoiser_callback(params: CFGDenoiserParams):
for c in callbacks_cfg_denoiser:
try:
c.callback(params)
except Exception:
report_exception(c, 'cfg_denoiser_callback')
def add_callback(callbacks, fun): def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__] stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file' filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@ -147,3 +174,12 @@ def on_image_saved(callback):
- params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing. - params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
""" """
add_callback(callbacks_image_saved, callback) add_callback(callbacks_image_saved, callback)
def on_cfg_denoiser(callback):
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
The callback is called with one argument:
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
"""
add_callback(callbacks_cfg_denoiser, callback)

View file

@ -12,6 +12,7 @@ from modules import prompt_parser, devices, processing, images
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
@ -280,6 +281,12 @@ class CFGDenoiser(torch.nn.Module):
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
if tensor.shape[1] == uncond.shape[1]: if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond]) cond_in = torch.cat([tensor, uncond])