Working UniPC (for batch size 1)
This commit is contained in:
parent
ea9bd9fc74
commit
1253199889
7 changed files with 978 additions and 6 deletions
|
@ -6,6 +6,7 @@ titles = {
|
|||
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
|
||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||
"UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models",
|
||||
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||
|
||||
"Batch count": "How many batches of images to create",
|
||||
|
|
1
modules/models/diffusion/uni_pc/__init__.py
Normal file
1
modules/models/diffusion/uni_pc/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .sampler import UniPCSampler
|
85
modules/models/diffusion/uni_pc/sampler.py
Normal file
85
modules/models/diffusion/uni_pc/sampler.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
|
||||
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
|
||||
|
||||
class UniPCSampler(object):
|
||||
def __init__(self, model, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
||||
self.before_sample = None
|
||||
self.after_sample = None
|
||||
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def set_hooks(self, before, after):
|
||||
self.before_sample = before
|
||||
self.after_sample = after
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
|
||||
device = self.model.betas.device
|
||||
if x_T is None:
|
||||
img = torch.randn(size, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
||||
|
||||
model_fn = model_wrapper(
|
||||
lambda x, t, c: self.model.apply_model(x, t, c),
|
||||
ns,
|
||||
model_type="noise",
|
||||
guidance_type="classifier-free",
|
||||
#condition=conditioning,
|
||||
#unconditional_condition=unconditional_conditioning,
|
||||
guidance_scale=unconditional_guidance_scale,
|
||||
)
|
||||
|
||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample)
|
||||
x = uni_pc.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=3, lower_order_final=True)
|
||||
|
||||
return x.to(device), None
|
858
modules/models/diffusion/uni_pc/uni_pc.py
Normal file
858
modules/models/diffusion/uni_pc/uni_pc.py
Normal file
|
@ -0,0 +1,858 @@
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
|
||||
class NoiseScheduleVP:
|
||||
def __init__(
|
||||
self,
|
||||
schedule='discrete',
|
||||
betas=None,
|
||||
alphas_cumprod=None,
|
||||
continuous_beta_0=0.1,
|
||||
continuous_beta_1=20.,
|
||||
):
|
||||
"""Create a wrapper class for the forward SDE (VP type).
|
||||
|
||||
***
|
||||
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
||||
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
||||
***
|
||||
|
||||
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
||||
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
||||
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
||||
|
||||
log_alpha_t = self.marginal_log_mean_coeff(t)
|
||||
sigma_t = self.marginal_std(t)
|
||||
lambda_t = self.marginal_lambda(t)
|
||||
|
||||
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
||||
|
||||
t = self.inverse_lambda(lambda_t)
|
||||
|
||||
===============================================================
|
||||
|
||||
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
||||
|
||||
1. For discrete-time DPMs:
|
||||
|
||||
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
||||
t_i = (i + 1) / N
|
||||
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
||||
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
||||
|
||||
Args:
|
||||
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
||||
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
||||
|
||||
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
||||
|
||||
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
||||
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
||||
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
||||
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
||||
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
||||
and
|
||||
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
||||
|
||||
|
||||
2. For continuous-time DPMs:
|
||||
|
||||
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
||||
schedule are the default settings in DDPM and improved-DDPM:
|
||||
|
||||
Args:
|
||||
beta_min: A `float` number. The smallest beta for the linear schedule.
|
||||
beta_max: A `float` number. The largest beta for the linear schedule.
|
||||
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
||||
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
||||
T: A `float` number. The ending time of the forward process.
|
||||
|
||||
===============================================================
|
||||
|
||||
Args:
|
||||
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
||||
'linear' or 'cosine' for continuous-time DPMs.
|
||||
Returns:
|
||||
A wrapper object of the forward SDE (VP type).
|
||||
|
||||
===============================================================
|
||||
|
||||
Example:
|
||||
|
||||
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
||||
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
||||
|
||||
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
||||
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
||||
|
||||
# For continuous-time DPMs (VPSDE), linear schedule:
|
||||
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
||||
|
||||
"""
|
||||
|
||||
if schedule not in ['discrete', 'linear', 'cosine']:
|
||||
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
||||
|
||||
self.schedule = schedule
|
||||
if schedule == 'discrete':
|
||||
if betas is not None:
|
||||
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
||||
else:
|
||||
assert alphas_cumprod is not None
|
||||
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
||||
self.total_N = len(log_alphas)
|
||||
self.T = 1.
|
||||
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
||||
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
||||
else:
|
||||
self.total_N = 1000
|
||||
self.beta_0 = continuous_beta_0
|
||||
self.beta_1 = continuous_beta_1
|
||||
self.cosine_s = 0.008
|
||||
self.cosine_beta_max = 999.
|
||||
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
||||
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
||||
self.schedule = schedule
|
||||
if schedule == 'cosine':
|
||||
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
||||
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
||||
self.T = 0.9946
|
||||
else:
|
||||
self.T = 1.
|
||||
|
||||
def marginal_log_mean_coeff(self, t):
|
||||
"""
|
||||
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
if self.schedule == 'discrete':
|
||||
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
||||
elif self.schedule == 'linear':
|
||||
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
||||
elif self.schedule == 'cosine':
|
||||
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
||||
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
||||
return log_alpha_t
|
||||
|
||||
def marginal_alpha(self, t):
|
||||
"""
|
||||
Compute alpha_t of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
return torch.exp(self.marginal_log_mean_coeff(t))
|
||||
|
||||
def marginal_std(self, t):
|
||||
"""
|
||||
Compute sigma_t of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
||||
|
||||
def marginal_lambda(self, t):
|
||||
"""
|
||||
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
||||
"""
|
||||
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
||||
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
||||
return log_mean_coeff - log_std
|
||||
|
||||
def inverse_lambda(self, lamb):
|
||||
"""
|
||||
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
||||
"""
|
||||
if self.schedule == 'linear':
|
||||
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
||||
Delta = self.beta_0**2 + tmp
|
||||
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
||||
elif self.schedule == 'discrete':
|
||||
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
||||
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
||||
return t.reshape((-1,))
|
||||
else:
|
||||
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
||||
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
||||
t = t_fn(log_alpha)
|
||||
return t
|
||||
|
||||
|
||||
def model_wrapper(
|
||||
model,
|
||||
noise_schedule,
|
||||
model_type="noise",
|
||||
model_kwargs={},
|
||||
guidance_type="uncond",
|
||||
#condition=None,
|
||||
#unconditional_condition=None,
|
||||
guidance_scale=1.,
|
||||
classifier_fn=None,
|
||||
classifier_kwargs={},
|
||||
):
|
||||
"""Create a wrapper function for the noise prediction model.
|
||||
|
||||
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
||||
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
||||
|
||||
We support four types of the diffusion model by setting `model_type`:
|
||||
|
||||
1. "noise": noise prediction model. (Trained by predicting noise).
|
||||
|
||||
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
||||
|
||||
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
||||
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
||||
|
||||
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
||||
arXiv preprint arXiv:2202.00512 (2022).
|
||||
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
||||
arXiv preprint arXiv:2210.02303 (2022).
|
||||
|
||||
4. "score": marginal score function. (Trained by denoising score matching).
|
||||
Note that the score function and the noise prediction model follows a simple relationship:
|
||||
```
|
||||
noise(x_t, t) = -sigma_t * score(x_t, t)
|
||||
```
|
||||
|
||||
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
||||
1. "uncond": unconditional sampling by DPMs.
|
||||
The input `model` has the following format:
|
||||
``
|
||||
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
||||
``
|
||||
|
||||
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
||||
The input `model` has the following format:
|
||||
``
|
||||
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
||||
``
|
||||
|
||||
The input `classifier_fn` has the following format:
|
||||
``
|
||||
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
||||
``
|
||||
|
||||
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
||||
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
||||
|
||||
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
||||
The input `model` has the following format:
|
||||
``
|
||||
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
||||
``
|
||||
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
||||
|
||||
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
||||
arXiv preprint arXiv:2207.12598 (2022).
|
||||
|
||||
|
||||
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
||||
or continuous-time labels (i.e. epsilon to T).
|
||||
|
||||
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
||||
``
|
||||
def model_fn(x, t_continuous) -> noise:
|
||||
t_input = get_model_input_time(t_continuous)
|
||||
return noise_pred(model, x, t_input, **model_kwargs)
|
||||
``
|
||||
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
||||
|
||||
===============================================================
|
||||
|
||||
Args:
|
||||
model: A diffusion model with the corresponding format described above.
|
||||
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
||||
model_type: A `str`. The parameterization type of the diffusion model.
|
||||
"noise" or "x_start" or "v" or "score".
|
||||
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
||||
guidance_type: A `str`. The type of the guidance for sampling.
|
||||
"uncond" or "classifier" or "classifier-free".
|
||||
condition: A pytorch tensor. The condition for the guided sampling.
|
||||
Only used for "classifier" or "classifier-free" guidance type.
|
||||
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
||||
Only used for "classifier-free" guidance type.
|
||||
guidance_scale: A `float`. The scale for the guided sampling.
|
||||
classifier_fn: A classifier function. Only used for the classifier guidance.
|
||||
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
||||
Returns:
|
||||
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
||||
"""
|
||||
|
||||
def get_model_input_time(t_continuous):
|
||||
"""
|
||||
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
||||
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
||||
For continuous-time DPMs, we just use `t_continuous`.
|
||||
"""
|
||||
if noise_schedule.schedule == 'discrete':
|
||||
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
||||
else:
|
||||
return t_continuous
|
||||
|
||||
def noise_pred_fn(x, t_continuous, cond=None):
|
||||
if t_continuous.reshape((-1,)).shape[0] == 1:
|
||||
t_continuous = t_continuous.expand((x.shape[0]))
|
||||
t_input = get_model_input_time(t_continuous)
|
||||
if cond is None:
|
||||
output = model(x, t_input, None, **model_kwargs)
|
||||
else:
|
||||
output = model(x, t_input, cond, **model_kwargs)
|
||||
if model_type == "noise":
|
||||
return output
|
||||
elif model_type == "x_start":
|
||||
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
||||
dims = x.dim()
|
||||
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
||||
elif model_type == "v":
|
||||
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
||||
dims = x.dim()
|
||||
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
||||
elif model_type == "score":
|
||||
sigma_t = noise_schedule.marginal_std(t_continuous)
|
||||
dims = x.dim()
|
||||
return -expand_dims(sigma_t, dims) * output
|
||||
|
||||
def cond_grad_fn(x, t_input, condition):
|
||||
"""
|
||||
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
||||
"""
|
||||
with torch.enable_grad():
|
||||
x_in = x.detach().requires_grad_(True)
|
||||
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
||||
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
||||
|
||||
def model_fn(x, t_continuous, condition, unconditional_condition):
|
||||
"""
|
||||
The noise predicition model function that is used for DPM-Solver.
|
||||
"""
|
||||
if t_continuous.reshape((-1,)).shape[0] == 1:
|
||||
t_continuous = t_continuous.expand((x.shape[0]))
|
||||
if guidance_type == "uncond":
|
||||
return noise_pred_fn(x, t_continuous)
|
||||
elif guidance_type == "classifier":
|
||||
assert classifier_fn is not None
|
||||
t_input = get_model_input_time(t_continuous)
|
||||
cond_grad = cond_grad_fn(x, t_input, condition)
|
||||
sigma_t = noise_schedule.marginal_std(t_continuous)
|
||||
noise = noise_pred_fn(x, t_continuous)
|
||||
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
||||
elif guidance_type == "classifier-free":
|
||||
if guidance_scale == 1. or unconditional_condition is None:
|
||||
return noise_pred_fn(x, t_continuous, cond=condition)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t_continuous] * 2)
|
||||
if isinstance(condition, dict):
|
||||
assert isinstance(unconditional_condition, dict)
|
||||
c_in = dict()
|
||||
for k in condition:
|
||||
if isinstance(condition[k], list):
|
||||
c_in[k] = [torch.cat([
|
||||
unconditional_condition[k][i],
|
||||
condition[k][i]]) for i in range(len(condition[k]))]
|
||||
else:
|
||||
c_in[k] = torch.cat([
|
||||
unconditional_condition[k],
|
||||
condition[k]])
|
||||
elif isinstance(condition, list):
|
||||
c_in = list()
|
||||
assert isinstance(unconditional_condition, list)
|
||||
for i in range(len(condition)):
|
||||
c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
|
||||
else:
|
||||
c_in = torch.cat([unconditional_condition, condition])
|
||||
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
||||
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
||||
|
||||
assert model_type in ["noise", "x_start", "v"]
|
||||
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
||||
return model_fn
|
||||
|
||||
|
||||
class UniPC:
|
||||
def __init__(
|
||||
self,
|
||||
model_fn,
|
||||
noise_schedule,
|
||||
predict_x0=True,
|
||||
thresholding=False,
|
||||
max_val=1.,
|
||||
variant='bh1',
|
||||
condition=None,
|
||||
unconditional_condition=None,
|
||||
before_sample=None,
|
||||
after_sample=None
|
||||
):
|
||||
"""Construct a UniPC.
|
||||
|
||||
We support both data_prediction and noise_prediction.
|
||||
"""
|
||||
self.model_fn_ = model_fn
|
||||
self.noise_schedule = noise_schedule
|
||||
self.variant = variant
|
||||
self.predict_x0 = predict_x0
|
||||
self.thresholding = thresholding
|
||||
self.max_val = max_val
|
||||
self.condition = condition
|
||||
self.unconditional_condition = unconditional_condition
|
||||
self.before_sample = before_sample
|
||||
self.after_sample = after_sample
|
||||
|
||||
def dynamic_thresholding_fn(self, x0, t=None):
|
||||
"""
|
||||
The dynamic thresholding method.
|
||||
"""
|
||||
dims = x0.dim()
|
||||
p = self.dynamic_thresholding_ratio
|
||||
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
||||
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
||||
x0 = torch.clamp(x0, -s, s) / s
|
||||
return x0
|
||||
|
||||
def model(self, x, t):
|
||||
cond = self.condition
|
||||
uncond = self.unconditional_condition
|
||||
if self.before_sample is not None:
|
||||
x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
|
||||
res = self.model_fn_(x, t, cond, uncond)
|
||||
if self.after_sample is not None:
|
||||
x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
|
||||
|
||||
if isinstance(res, tuple):
|
||||
# (None, pred_x0)
|
||||
res = res[1]
|
||||
|
||||
return res
|
||||
|
||||
def noise_prediction_fn(self, x, t):
|
||||
"""
|
||||
Return the noise prediction model.
|
||||
"""
|
||||
return self.model(x, t)
|
||||
|
||||
def data_prediction_fn(self, x, t):
|
||||
"""
|
||||
Return the data prediction model (with thresholding).
|
||||
"""
|
||||
noise = self.noise_prediction_fn(x, t)
|
||||
dims = x.dim()
|
||||
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
||||
from pprint import pp
|
||||
print("X:")
|
||||
pp(x)
|
||||
print("sigma_t:")
|
||||
pp(sigma_t)
|
||||
print("noise:")
|
||||
pp(noise)
|
||||
print("alpha_t:")
|
||||
pp(alpha_t)
|
||||
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
||||
if self.thresholding:
|
||||
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
||||
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
||||
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
||||
x0 = torch.clamp(x0, -s, s) / s
|
||||
return x0
|
||||
|
||||
def model_fn(self, x, t):
|
||||
"""
|
||||
Convert the model to the noise prediction model or the data prediction model.
|
||||
"""
|
||||
if self.predict_x0:
|
||||
return self.data_prediction_fn(x, t)
|
||||
else:
|
||||
return self.noise_prediction_fn(x, t)
|
||||
|
||||
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
||||
"""Compute the intermediate time steps for sampling.
|
||||
"""
|
||||
if skip_type == 'logSNR':
|
||||
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
||||
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
||||
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
||||
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
||||
elif skip_type == 'time_uniform':
|
||||
return torch.linspace(t_T, t_0, N + 1).to(device)
|
||||
elif skip_type == 'time_quadratic':
|
||||
t_order = 2
|
||||
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
||||
return t
|
||||
else:
|
||||
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
||||
|
||||
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
||||
"""
|
||||
Get the order of each step for sampling by the singlestep DPM-Solver.
|
||||
"""
|
||||
if order == 3:
|
||||
K = steps // 3 + 1
|
||||
if steps % 3 == 0:
|
||||
orders = [3,] * (K - 2) + [2, 1]
|
||||
elif steps % 3 == 1:
|
||||
orders = [3,] * (K - 1) + [1]
|
||||
else:
|
||||
orders = [3,] * (K - 1) + [2]
|
||||
elif order == 2:
|
||||
if steps % 2 == 0:
|
||||
K = steps // 2
|
||||
orders = [2,] * K
|
||||
else:
|
||||
K = steps // 2 + 1
|
||||
orders = [2,] * (K - 1) + [1]
|
||||
elif order == 1:
|
||||
K = steps
|
||||
orders = [1,] * steps
|
||||
else:
|
||||
raise ValueError("'order' must be '1' or '2' or '3'.")
|
||||
if skip_type == 'logSNR':
|
||||
# To reproduce the results in DPM-Solver paper
|
||||
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
||||
else:
|
||||
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
||||
return timesteps_outer, orders
|
||||
|
||||
def denoise_to_zero_fn(self, x, s):
|
||||
"""
|
||||
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
||||
"""
|
||||
return self.data_prediction_fn(x, s)
|
||||
|
||||
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
||||
if len(t.shape) == 0:
|
||||
t = t.view(-1)
|
||||
if 'bh' in self.variant:
|
||||
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
||||
else:
|
||||
assert self.variant == 'vary_coeff'
|
||||
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
||||
|
||||
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
||||
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
||||
ns = self.noise_schedule
|
||||
assert order <= len(model_prev_list)
|
||||
|
||||
# first compute rks
|
||||
t_prev_0 = t_prev_list[-1]
|
||||
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
||||
lambda_t = ns.marginal_lambda(t)
|
||||
model_prev_0 = model_prev_list[-1]
|
||||
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
||||
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
||||
alpha_t = torch.exp(log_alpha_t)
|
||||
|
||||
h = lambda_t - lambda_prev_0
|
||||
|
||||
rks = []
|
||||
D1s = []
|
||||
for i in range(1, order):
|
||||
t_prev_i = t_prev_list[-(i + 1)]
|
||||
model_prev_i = model_prev_list[-(i + 1)]
|
||||
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
||||
rk = (lambda_prev_i - lambda_prev_0) / h
|
||||
rks.append(rk)
|
||||
D1s.append((model_prev_i - model_prev_0) / rk)
|
||||
|
||||
rks.append(1.)
|
||||
rks = torch.tensor(rks, device=x.device)
|
||||
|
||||
K = len(rks)
|
||||
# build C matrix
|
||||
C = []
|
||||
|
||||
col = torch.ones_like(rks)
|
||||
for k in range(1, K + 1):
|
||||
C.append(col)
|
||||
col = col * rks / (k + 1)
|
||||
C = torch.stack(C, dim=1)
|
||||
|
||||
if len(D1s) > 0:
|
||||
D1s = torch.stack(D1s, dim=1) # (B, K)
|
||||
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
||||
A_p = C_inv_p
|
||||
|
||||
if use_corrector:
|
||||
print('using corrector')
|
||||
C_inv = torch.linalg.inv(C)
|
||||
A_c = C_inv
|
||||
|
||||
hh = -h if self.predict_x0 else h
|
||||
h_phi_1 = torch.expm1(hh)
|
||||
h_phi_ks = []
|
||||
factorial_k = 1
|
||||
h_phi_k = h_phi_1
|
||||
for k in range(1, K + 2):
|
||||
h_phi_ks.append(h_phi_k)
|
||||
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
||||
factorial_k *= (k + 1)
|
||||
|
||||
model_t = None
|
||||
if self.predict_x0:
|
||||
x_t_ = (
|
||||
sigma_t / sigma_prev_0 * x
|
||||
- alpha_t * h_phi_1 * model_prev_0
|
||||
)
|
||||
# now predictor
|
||||
x_t = x_t_
|
||||
if len(D1s) > 0:
|
||||
# compute the residuals for predictor
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
||||
# now corrector
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_
|
||||
k = 0
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
||||
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
||||
else:
|
||||
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
||||
x_t_ = (
|
||||
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
||||
- (sigma_t * h_phi_1) * model_prev_0
|
||||
)
|
||||
# now predictor
|
||||
x_t = x_t_
|
||||
if len(D1s) > 0:
|
||||
# compute the residuals for predictor
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
||||
# now corrector
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_
|
||||
k = 0
|
||||
for k in range(K - 1):
|
||||
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
||||
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
||||
return x_t, model_t
|
||||
|
||||
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
||||
print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
||||
ns = self.noise_schedule
|
||||
assert order <= len(model_prev_list)
|
||||
dims = x.dim()
|
||||
|
||||
# first compute rks
|
||||
t_prev_0 = t_prev_list[-1]
|
||||
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
||||
lambda_t = ns.marginal_lambda(t)
|
||||
model_prev_0 = model_prev_list[-1]
|
||||
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
||||
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
||||
alpha_t = torch.exp(log_alpha_t)
|
||||
|
||||
h = lambda_t - lambda_prev_0
|
||||
|
||||
rks = []
|
||||
D1s = []
|
||||
for i in range(1, order):
|
||||
t_prev_i = t_prev_list[-(i + 1)]
|
||||
model_prev_i = model_prev_list[-(i + 1)]
|
||||
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
||||
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
||||
rks.append(rk)
|
||||
D1s.append((model_prev_i - model_prev_0) / rk)
|
||||
|
||||
rks.append(1.)
|
||||
rks = torch.tensor(rks, device=x.device)
|
||||
|
||||
R = []
|
||||
b = []
|
||||
|
||||
hh = -h[0] if self.predict_x0 else h[0]
|
||||
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
||||
h_phi_k = h_phi_1 / hh - 1
|
||||
|
||||
factorial_i = 1
|
||||
|
||||
if self.variant == 'bh1':
|
||||
B_h = hh
|
||||
elif self.variant == 'bh2':
|
||||
B_h = torch.expm1(hh)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
for i in range(1, order + 1):
|
||||
R.append(torch.pow(rks, i - 1))
|
||||
b.append(h_phi_k * factorial_i / B_h)
|
||||
factorial_i *= (i + 1)
|
||||
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
||||
|
||||
R = torch.stack(R)
|
||||
b = torch.tensor(b, device=x.device)
|
||||
|
||||
# now predictor
|
||||
use_predictor = len(D1s) > 0 and x_t is None
|
||||
if len(D1s) > 0:
|
||||
D1s = torch.stack(D1s, dim=1) # (B, K)
|
||||
if x_t is None:
|
||||
# for order 2, we use a simplified version
|
||||
if order == 2:
|
||||
rhos_p = torch.tensor([0.5], device=b.device)
|
||||
else:
|
||||
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
||||
else:
|
||||
D1s = None
|
||||
|
||||
if use_corrector:
|
||||
print('using corrector')
|
||||
# for order 1, we use a simplified version
|
||||
if order == 1:
|
||||
rhos_c = torch.tensor([0.5], device=b.device)
|
||||
else:
|
||||
rhos_c = torch.linalg.solve(R, b)
|
||||
|
||||
model_t = None
|
||||
if self.predict_x0:
|
||||
x_t_ = (
|
||||
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
||||
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
|
||||
)
|
||||
|
||||
if x_t is None:
|
||||
if use_predictor:
|
||||
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
||||
else:
|
||||
pred_res = 0
|
||||
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
|
||||
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
if D1s is not None:
|
||||
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
||||
else:
|
||||
corr_res = 0
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
||||
else:
|
||||
x_t_ = (
|
||||
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dimss) * x
|
||||
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
|
||||
)
|
||||
if x_t is None:
|
||||
if use_predictor:
|
||||
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
||||
else:
|
||||
pred_res = 0
|
||||
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
|
||||
|
||||
if use_corrector:
|
||||
model_t = self.model_fn(x_t, t)
|
||||
if D1s is not None:
|
||||
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
||||
else:
|
||||
corr_res = 0
|
||||
D1_t = (model_t - model_prev_0)
|
||||
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
||||
return x_t, model_t
|
||||
|
||||
|
||||
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
||||
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
||||
atol=0.0078, rtol=0.05, corrector=False,
|
||||
):
|
||||
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
||||
t_T = self.noise_schedule.T if t_start is None else t_start
|
||||
device = x.device
|
||||
if method == 'multistep':
|
||||
assert steps >= order
|
||||
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
||||
assert timesteps.shape[0] - 1 == steps
|
||||
with torch.no_grad():
|
||||
vec_t = timesteps[0].expand((x.shape[0]))
|
||||
model_prev_list = [self.model_fn(x, vec_t)]
|
||||
t_prev_list = [vec_t]
|
||||
# Init the first `order` values by lower order multistep DPM-Solver.
|
||||
for init_order in range(1, order):
|
||||
vec_t = timesteps[init_order].expand(x.shape[0])
|
||||
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
|
||||
if model_x is None:
|
||||
model_x = self.model_fn(x, vec_t)
|
||||
model_prev_list.append(model_x)
|
||||
t_prev_list.append(vec_t)
|
||||
for step in range(order, steps + 1):
|
||||
vec_t = timesteps[step].expand(x.shape[0])
|
||||
if lower_order_final:
|
||||
step_order = min(order, steps + 1 - step)
|
||||
else:
|
||||
step_order = order
|
||||
print('this step order:', step_order)
|
||||
if step == steps:
|
||||
print('do not run corrector at the last step')
|
||||
use_corrector = False
|
||||
else:
|
||||
use_corrector = True
|
||||
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
|
||||
for i in range(order - 1):
|
||||
t_prev_list[i] = t_prev_list[i + 1]
|
||||
model_prev_list[i] = model_prev_list[i + 1]
|
||||
t_prev_list[-1] = vec_t
|
||||
# We do not need to evaluate the final model value.
|
||||
if step < steps:
|
||||
if model_x is None:
|
||||
model_x = self.model_fn(x, vec_t)
|
||||
model_prev_list[-1] = model_x
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
if denoise_to_zero:
|
||||
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
||||
return x
|
||||
|
||||
|
||||
#############################################################
|
||||
# other utility functions
|
||||
#############################################################
|
||||
|
||||
def interpolate_fn(x, xp, yp):
|
||||
"""
|
||||
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
||||
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
||||
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
||||
|
||||
Args:
|
||||
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
||||
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
||||
yp: PyTorch tensor with shape [C, K].
|
||||
Returns:
|
||||
The function values f(x), with shape [N, C].
|
||||
"""
|
||||
N, K = x.shape[0], xp.shape[1]
|
||||
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
||||
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
||||
x_idx = torch.argmin(x_indices, dim=2)
|
||||
cand_start_idx = x_idx - 1
|
||||
start_idx = torch.where(
|
||||
torch.eq(x_idx, 0),
|
||||
torch.tensor(1, device=x.device),
|
||||
torch.where(
|
||||
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
||||
),
|
||||
)
|
||||
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
||||
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
||||
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
||||
start_idx2 = torch.where(
|
||||
torch.eq(x_idx, 0),
|
||||
torch.tensor(0, device=x.device),
|
||||
torch.where(
|
||||
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
||||
),
|
||||
)
|
||||
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
||||
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
||||
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
||||
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
||||
return cand
|
||||
|
||||
|
||||
def expand_dims(v, dims):
|
||||
"""
|
||||
Expand the tensor `v` to the dim `dims`.
|
||||
|
||||
Args:
|
||||
`v`: a PyTorch tensor with shape [N].
|
||||
`dim`: a `int`.
|
||||
Returns:
|
||||
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
||||
"""
|
||||
return v[(...,) + (None,)*(dims - 1)]
|
|
@ -884,7 +884,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
|
||||
shared.state.nextjob()
|
||||
|
||||
img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
|
||||
img2img_sampler_name = 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM
|
||||
self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
|
||||
|
||||
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
|
||||
|
|
|
@ -7,19 +7,27 @@ import torch
|
|||
|
||||
from modules.shared import state
|
||||
from modules import sd_samplers_common, prompt_parser, shared
|
||||
import modules.models.diffusion.uni_pc
|
||||
|
||||
|
||||
samplers_data_compvis = [
|
||||
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
||||
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
||||
sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}),
|
||||
]
|
||||
|
||||
|
||||
class VanillaStableDiffusionSampler:
|
||||
def __init__(self, constructor, sd_model):
|
||||
self.sampler = constructor(sd_model)
|
||||
self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
|
||||
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
|
||||
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
|
||||
self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
|
||||
self.orig_p_sample_ddim = None
|
||||
if self.is_plms:
|
||||
self.orig_p_sample_ddim = self.sampler.p_sample_plms
|
||||
elif self.is_ddim:
|
||||
self.orig_p_sample_ddim = self.sampler.p_sample_ddim
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
|
@ -45,6 +53,15 @@ class VanillaStableDiffusionSampler:
|
|||
return self.last_latent
|
||||
|
||||
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
|
||||
x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
|
||||
|
||||
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
|
||||
|
||||
x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
|
||||
|
||||
return res
|
||||
|
||||
def before_sample(self, x, ts, cond, unconditional_conditioning):
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
|
||||
|
@ -76,7 +93,7 @@ class VanillaStableDiffusionSampler:
|
|||
|
||||
if self.mask is not None:
|
||||
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
|
||||
x_dec = img_orig * self.mask + self.nmask * x_dec
|
||||
x = img_orig * self.mask + self.nmask * x
|
||||
|
||||
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
|
||||
# Note that they need to be lists because it just concatenates them later.
|
||||
|
@ -84,7 +101,13 @@ class VanillaStableDiffusionSampler:
|
|||
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
|
||||
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
||||
|
||||
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
|
||||
return x, ts, cond, unconditional_conditioning
|
||||
|
||||
def after_sample(self, x, ts, cond, uncond, res):
|
||||
if self.is_unipc:
|
||||
# unipc model_fn returns (pred_x0)
|
||||
# p_sample_ddim returns (x_prev, pred_x0)
|
||||
res = (None, res[0])
|
||||
|
||||
if self.mask is not None:
|
||||
self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
|
||||
|
@ -97,7 +120,7 @@ class VanillaStableDiffusionSampler:
|
|||
state.sampling_step = self.step
|
||||
shared.total_tqdm.update()
|
||||
|
||||
return res
|
||||
return x, ts, cond, uncond, res
|
||||
|
||||
def initialize(self, p):
|
||||
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
|
||||
|
@ -107,12 +130,14 @@ class VanillaStableDiffusionSampler:
|
|||
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
|
||||
if hasattr(self.sampler, fieldname):
|
||||
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
|
||||
if self.is_unipc:
|
||||
self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r))
|
||||
|
||||
self.mask = p.mask if hasattr(p, 'mask') else None
|
||||
self.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||
|
||||
def adjust_steps_if_invalid(self, p, num_steps):
|
||||
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
|
||||
if ((self.config.name == 'DDIM' or self.config.name == "UniPC") and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
|
||||
valid_step = 999 / (1000 // num_steps)
|
||||
if valid_step == math.floor(valid_step):
|
||||
return int(valid_step) + 1
|
||||
|
|
|
@ -66,6 +66,8 @@ class TestTxt2ImgWorking(unittest.TestCase):
|
|||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
self.simple_txt2img["sampler_index"] = "DDIM"
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
self.simple_txt2img["sampler_index"] = "UniPC"
|
||||
self.assertEqual(requests.post(self.url_txt2img, json=self.simple_txt2img).status_code, 200)
|
||||
|
||||
def test_txt2img_multiple_batches_performed(self):
|
||||
self.simple_txt2img["n_iter"] = 2
|
||||
|
|
Loading…
Reference in a new issue