Renamed GFPGAN to extras
Added Real-ESRGAN to extras tab
This commit is contained in:
parent
055dd10aae
commit
155dd2fc0c
2 changed files with 89 additions and 23 deletions
15
README.md
15
README.md
|
@ -62,14 +62,25 @@ Open the URL in browser, and you are good to go.
|
||||||
The script creates a web UI for Stable Diffusion's txt2img and img2img scripts. Following are features added
|
The script creates a web UI for Stable Diffusion's txt2img and img2img scripts. Following are features added
|
||||||
that are not in original script.
|
that are not in original script.
|
||||||
|
|
||||||
### GFPGAN
|
### Extras tab
|
||||||
|
Additional neural network image improvement methods unrelated to stable diffusion.
|
||||||
|
|
||||||
|
#### GFPGAN
|
||||||
Lets you improve faces in pictures using the GFPGAN model. There is a checkbox in every tab to use GFPGAN at 100%, and
|
Lets you improve faces in pictures using the GFPGAN model. There is a checkbox in every tab to use GFPGAN at 100%, and
|
||||||
also a separate tab that just allows you to use GFPGAN on any picture, with a slider that controls how strongthe effect is.
|
also a separate tab that just allows you to use GFPGAN on any picture, with a slider that controls how strongthe effect is.
|
||||||
|
|
||||||
![](images/GFPGAN.png)
|
![](images/GFPGAN.png)
|
||||||
|
|
||||||
|
#### Real-ESRGAN
|
||||||
|
Image upscaler. You can choose from multiple models by original author, and specify by how much the image should be upscaled.
|
||||||
|
Requires `realesrgan` librarty:
|
||||||
|
|
||||||
|
```commandline
|
||||||
|
pip install realesrgan
|
||||||
|
```
|
||||||
|
|
||||||
### Sampling method selection
|
### Sampling method selection
|
||||||
Pick out of three sampling methods for txt2img: DDIM, PLMS, k-diffusion:
|
Pick out of multiple sampling methods for txt2img:
|
||||||
|
|
||||||
![](images/sampling.png)
|
![](images/sampling.png)
|
||||||
|
|
||||||
|
|
97
webui.py
97
webui.py
|
@ -76,6 +76,38 @@ samplers = [
|
||||||
SamplerData('PLMS', lambda model: PLMSSampler(model)),
|
SamplerData('PLMS', lambda model: PLMSSampler(model)),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
RealesrganModelInfo = namedtuple("RealesrganModelInfo", ["name", "location", "model", "netscale"])
|
||||||
|
|
||||||
|
try:
|
||||||
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||||
|
from realesrgan import RealESRGANer
|
||||||
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
|
||||||
|
|
||||||
|
realesrgan_models = [
|
||||||
|
RealesrganModelInfo(
|
||||||
|
name="Real-ESRGAN 2x plus",
|
||||||
|
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
||||||
|
netscale=2, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||||
|
),
|
||||||
|
RealesrganModelInfo(
|
||||||
|
name="Real-ESRGAN 4x plus",
|
||||||
|
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
||||||
|
netscale=4, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||||
|
),
|
||||||
|
RealesrganModelInfo(
|
||||||
|
name="Real-ESRGAN 4x plus anime 6B",
|
||||||
|
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
||||||
|
netscale=4, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||||
|
),
|
||||||
|
]
|
||||||
|
have_realesrgan = True
|
||||||
|
except:
|
||||||
|
print("Error loading Real-ESRGAN:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
|
realesrgan_models = [RealesrganModelInfo('None', '', 0, None)]
|
||||||
|
have_realesrgan = False
|
||||||
|
|
||||||
|
|
||||||
class Options:
|
class Options:
|
||||||
data = None
|
data = None
|
||||||
|
@ -196,10 +228,6 @@ def torch_gc():
|
||||||
torch.cuda.ipc_collect()
|
torch.cuda.ipc_collect()
|
||||||
|
|
||||||
|
|
||||||
def sanitize_filename_part(text):
|
|
||||||
return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]
|
|
||||||
|
|
||||||
|
|
||||||
def save_image(image, path, basename, seed, prompt, extension, info=None, short_filename=False):
|
def save_image(image, path, basename, seed, prompt, extension, info=None, short_filename=False):
|
||||||
prompt = sanitize_filename_part(prompt)
|
prompt = sanitize_filename_part(prompt)
|
||||||
|
|
||||||
|
@ -208,7 +236,7 @@ def save_image(image, path, basename, seed, prompt, extension, info=None, short_
|
||||||
else:
|
else:
|
||||||
filename = f"{basename}-{seed}-{prompt[:128]}.{extension}"
|
filename = f"{basename}-{seed}-{prompt[:128]}.{extension}"
|
||||||
|
|
||||||
if extension == 'png' and opts.enable_pnginfo:
|
if extension == 'png' and opts.enable_pnginfo and info is not None:
|
||||||
pnginfo = PngImagePlugin.PngInfo()
|
pnginfo = PngImagePlugin.PngInfo()
|
||||||
pnginfo.add_text("parameters", info)
|
pnginfo.add_text("parameters", info)
|
||||||
else:
|
else:
|
||||||
|
@ -217,6 +245,10 @@ def save_image(image, path, basename, seed, prompt, extension, info=None, short_
|
||||||
image.save(os.path.join(path, filename), quality=opts.jpeg_quality, pnginfo=pnginfo)
|
image.save(os.path.join(path, filename), quality=opts.jpeg_quality, pnginfo=pnginfo)
|
||||||
|
|
||||||
|
|
||||||
|
def sanitize_filename_part(text):
|
||||||
|
return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]
|
||||||
|
|
||||||
|
|
||||||
def plaintext_to_html(text):
|
def plaintext_to_html(text):
|
||||||
text = "".join([f"<p>{html.escape(x)}</p>\n" for x in text.split('\n')])
|
text = "".join([f"<p>{html.escape(x)}</p>\n" for x in text.split('\n')])
|
||||||
return text
|
return text
|
||||||
|
@ -835,7 +867,7 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
||||||
prompt_matrix=prompt_matrix,
|
prompt_matrix=prompt_matrix,
|
||||||
use_GFPGAN=use_GFPGAN,
|
use_GFPGAN=use_GFPGAN,
|
||||||
do_not_save_grid=True,
|
do_not_save_grid=True,
|
||||||
extra_generation_params = {"Denoising Strength": denoising_strength},
|
extra_generation_params={"Denoising Strength": denoising_strength},
|
||||||
)
|
)
|
||||||
|
|
||||||
if initial_seed is None:
|
if initial_seed is None:
|
||||||
|
@ -870,7 +902,7 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
||||||
height=height,
|
height=height,
|
||||||
prompt_matrix=prompt_matrix,
|
prompt_matrix=prompt_matrix,
|
||||||
use_GFPGAN=use_GFPGAN,
|
use_GFPGAN=use_GFPGAN,
|
||||||
extra_generation_params = {"Denoising Strength": denoising_strength},
|
extra_generation_params={"Denoising Strength": denoising_strength},
|
||||||
)
|
)
|
||||||
|
|
||||||
del sampler
|
del sampler
|
||||||
|
@ -908,30 +940,56 @@ img2img_interface = gr.Interface(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def run_GFPGAN(image, strength):
|
def run_extras(image, GFPGAN_strength, RealESRGAN_upscaling, RealESRGAN_model_index):
|
||||||
image = image.convert("RGB")
|
image = image.convert("RGB")
|
||||||
|
|
||||||
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
|
outpath = opts.outdir or "outputs/extras-samples"
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if strength < 1.0:
|
if GFPGAN is not None and GFPGAN_strength > 0:
|
||||||
res = Image.blend(image, res, strength)
|
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
return res, 0, ''
|
if GFPGAN_strength < 1.0:
|
||||||
|
res = Image.blend(image, res, GFPGAN_strength)
|
||||||
|
|
||||||
|
image = res
|
||||||
|
|
||||||
|
if have_realesrgan and RealESRGAN_upscaling != 1.0:
|
||||||
|
info = realesrgan_models[RealESRGAN_model_index]
|
||||||
|
|
||||||
|
model = info.model()
|
||||||
|
upsampler = RealESRGANer(
|
||||||
|
scale=info.netscale,
|
||||||
|
model_path=info.location,
|
||||||
|
model=model,
|
||||||
|
half=True
|
||||||
|
)
|
||||||
|
|
||||||
|
upsampled = upsampler.enhance(np.array(image), outscale=RealESRGAN_upscaling)[0]
|
||||||
|
|
||||||
|
image = Image.fromarray(upsampled)
|
||||||
|
|
||||||
|
os.makedirs(outpath, exist_ok=True)
|
||||||
|
base_count = len(os.listdir(outpath))
|
||||||
|
|
||||||
|
save_image(image, outpath, f"{base_count:05}", None, '', opts.samples_format, short_filename=True)
|
||||||
|
|
||||||
|
return image, 0, ''
|
||||||
|
|
||||||
|
|
||||||
gfpgan_interface = gr.Interface(
|
extras_interface = gr.Interface(
|
||||||
run_GFPGAN,
|
wrap_gradio_call(run_extras),
|
||||||
inputs=[
|
inputs=[
|
||||||
gr.Image(label="Source", source="upload", interactive=True, type="pil"),
|
gr.Image(label="Source", source="upload", interactive=True, type="pil"),
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Effect strength", value=100),
|
gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN strength", value=1, interactive=GFPGAN is not None),
|
||||||
|
gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Real-ESRGAN upscaling", value=2, interactive=have_realesrgan),
|
||||||
|
gr.Radio(label='Real-ESRGAN model', choices=[x.name for x in realesrgan_models], value=realesrgan_models[0].name, type="index", interactive=have_realesrgan),
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
gr.Image(label="Result"),
|
gr.Image(label="Result"),
|
||||||
gr.Number(label='Seed', visible=False),
|
gr.Number(label='Seed', visible=False),
|
||||||
gr.HTML(),
|
gr.HTML(),
|
||||||
],
|
],
|
||||||
description="Fix faces on images",
|
|
||||||
allow_flagging="never",
|
allow_flagging="never",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -989,7 +1047,7 @@ settings_interface = gr.Interface(
|
||||||
interfaces = [
|
interfaces = [
|
||||||
(txt2img_interface, "txt2img"),
|
(txt2img_interface, "txt2img"),
|
||||||
(img2img_interface, "img2img"),
|
(img2img_interface, "img2img"),
|
||||||
(gfpgan_interface, "GFPGAN"),
|
(extras_interface, "Extras"),
|
||||||
(settings_interface, "Settings"),
|
(settings_interface, "Settings"),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -1003,9 +1061,6 @@ text_inversion_embeddings = TextInversionEmbeddings()
|
||||||
if os.path.exists(cmd_opts.embeddings_dir):
|
if os.path.exists(cmd_opts.embeddings_dir):
|
||||||
text_inversion_embeddings.hijack(model)
|
text_inversion_embeddings.hijack(model)
|
||||||
|
|
||||||
if GFPGAN is None:
|
|
||||||
interfaces = [x for x in interfaces if x[0] != gfpgan_interface]
|
|
||||||
|
|
||||||
demo = gr.TabbedInterface(
|
demo = gr.TabbedInterface(
|
||||||
interface_list=[x[0] for x in interfaces],
|
interface_list=[x[0] for x in interfaces],
|
||||||
tab_names=[x[1] for x in interfaces],
|
tab_names=[x[1] for x in interfaces],
|
||||||
|
|
Loading…
Reference in a new issue