Gradient clipping for textual embedding

This commit is contained in:
Muhammad Rizqi Nur 2022-10-28 10:31:27 +07:00
parent a133042c66
commit 1618df41ba
2 changed files with 12 additions and 1 deletions

View file

@ -206,7 +206,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
}) })
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected' assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..." shared.state.textinfo = "Initializing textual inversion training..."
@ -256,6 +256,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
if ititial_step > steps: if ititial_step > steps:
return embedding, filename return embedding, filename
clip_grad_mode_value = clip_grad_mode == "value"
clip_grad_mode_norm = clip_grad_mode == "norm"
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
@ -280,6 +283,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
optimizer.zero_grad() optimizer.zero_grad()
loss.backward() loss.backward()
if clip_grad_mode_value:
torch.nn.utils.clip_grad_value_(embedding.vec, clip_value=clip_grad_value)
elif clip_grad_mode_norm:
torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=clip_grad_value)
optimizer.step() optimizer.step()

View file

@ -1409,6 +1409,8 @@ def create_ui(wrap_gradio_gpu_call):
training_width, training_width,
training_height, training_height,
steps, steps,
clip_grad_mode,
clip_grad_value,
create_image_every, create_image_every,
save_embedding_every, save_embedding_every,
template_file, template_file,