Merge pull request #3928 from R-N/validate-before-load
Optimize training a little
This commit is contained in:
commit
17a2076f72
3 changed files with 108 additions and 52 deletions
|
@ -335,7 +335,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||
from modules import images
|
||||
|
||||
assert hypernetwork_name, 'hypernetwork not selected'
|
||||
save_hypernetwork_every = save_hypernetwork_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
|
||||
|
||||
path = shared.hypernetworks.get(hypernetwork_name, None)
|
||||
shared.loaded_hypernetwork = Hypernetwork()
|
||||
|
@ -361,39 +363,44 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
else:
|
||||
images_dir = None
|
||||
|
||||
hypernetwork = shared.loaded_hypernetwork
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
ititial_step = hypernetwork.step or 0
|
||||
if ititial_step >= steps:
|
||||
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
hypernetwork = shared.loaded_hypernetwork
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
|
||||
size = len(ds.indexes)
|
||||
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
|
||||
losses = torch.zeros((size,))
|
||||
previous_mean_losses = [0]
|
||||
previous_mean_loss = 0
|
||||
print("Mean loss of {} elements".format(size))
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
forced_filename = "<none>"
|
||||
|
||||
ititial_step = hypernetwork.step or 0
|
||||
if ititial_step > steps:
|
||||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
|
||||
steps_without_grad = 0
|
||||
|
||||
last_saved_file = "<none>"
|
||||
last_saved_image = "<none>"
|
||||
forced_filename = "<none>"
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
|
||||
for i, entries in pbar:
|
||||
hypernetwork.step = i + ititial_step
|
||||
|
@ -446,9 +453,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
|
||||
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
|
||||
hypernetwork.save(last_saved_file)
|
||||
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
||||
"loss": f"{previous_mean_loss:.7f}",
|
||||
|
@ -509,13 +516,23 @@ Last saved image: {html.escape(last_saved_image)}<br/>
|
|||
"""
|
||||
|
||||
report_statistics(loss_dict)
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
hypernetwork.sd_checkpoint = checkpoint.hash
|
||||
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
||||
# Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
|
||||
hypernetwork.name = hypernetwork_name
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
|
||||
hypernetwork.save(filename)
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
||||
|
||||
return hypernetwork, filename
|
||||
|
||||
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
||||
old_hypernetwork_name = hypernetwork.name
|
||||
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
|
||||
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
|
||||
try:
|
||||
hypernetwork.sd_checkpoint = checkpoint.hash
|
||||
hypernetwork.sd_checkpoint_name = checkpoint.model_name
|
||||
hypernetwork.name = hypernetwork_name
|
||||
hypernetwork.save(filename)
|
||||
except:
|
||||
hypernetwork.sd_checkpoint = old_sd_checkpoint
|
||||
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
|
||||
hypernetwork.name = old_hypernetwork_name
|
||||
raise
|
||||
|
|
|
@ -42,6 +42,8 @@ class PersonalizedBase(Dataset):
|
|||
self.lines = lines
|
||||
|
||||
assert data_root, 'dataset directory not specified'
|
||||
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
||||
assert os.listdir(data_root), "Dataset directory is empty"
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
|
|
|
@ -119,7 +119,7 @@ class EmbeddingDatabase:
|
|||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
embedding = Embedding(vec, name)
|
||||
embedding.step = data.get('step', None)
|
||||
embedding.sd_checkpoint = data.get('hash', None)
|
||||
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
|
||||
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
||||
self.register_embedding(embedding, shared.sd_model)
|
||||
|
||||
|
@ -204,9 +204,30 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|||
**values,
|
||||
})
|
||||
|
||||
def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
|
||||
assert model_name, f"{name} not selected"
|
||||
assert learn_rate, "Learning rate is empty or 0"
|
||||
assert isinstance(batch_size, int), "Batch size must be integer"
|
||||
assert batch_size > 0, "Batch size must be positive"
|
||||
assert data_root, "Dataset directory is empty"
|
||||
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
|
||||
assert os.listdir(data_root), "Dataset directory is empty"
|
||||
assert template_file, "Prompt template file is empty"
|
||||
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
|
||||
assert steps, "Max steps is empty or 0"
|
||||
assert isinstance(steps, int), "Max steps must be integer"
|
||||
assert steps > 0 , "Max steps must be positive"
|
||||
assert isinstance(save_model_every, int), "Save {name} must be integer"
|
||||
assert save_model_every >= 0 , "Save {name} must be positive or 0"
|
||||
assert isinstance(create_image_every, int), "Create image must be integer"
|
||||
assert create_image_every >= 0 , "Create image must be positive or 0"
|
||||
if save_model_every or create_image_every:
|
||||
assert log_directory, "Log directory is empty"
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
assert embedding_name, 'embedding not selected'
|
||||
save_embedding_every = save_embedding_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
||||
|
||||
shared.state.textinfo = "Initializing textual inversion training..."
|
||||
shared.state.job_count = steps
|
||||
|
@ -232,17 +253,28 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
os.makedirs(images_embeds_dir, exist_ok=True)
|
||||
else:
|
||||
images_embeds_dir = None
|
||||
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
|
||||
cond_model = shared.sd_model.cond_stage_model
|
||||
|
||||
hijack = sd_hijack.model_hijack
|
||||
|
||||
embedding = hijack.embedding_db.word_embeddings[embedding_name]
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
ititial_step = embedding.step or 0
|
||||
if ititial_step >= steps:
|
||||
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
|
||||
return embedding, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
with torch.autocast("cuda"):
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
|
||||
|
||||
embedding.vec.requires_grad = True
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||
|
||||
losses = torch.zeros((32,))
|
||||
|
||||
|
@ -251,13 +283,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
forced_filename = "<none>"
|
||||
embedding_yet_to_be_embedded = False
|
||||
|
||||
ititial_step = embedding.step or 0
|
||||
if ititial_step > steps:
|
||||
return embedding, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||
|
||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||
for i, entries in pbar:
|
||||
embedding.step = i + ititial_step
|
||||
|
@ -290,9 +315,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
|
||||
if embedding_dir is not None and steps_done % save_embedding_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
embedding.name = f'{embedding_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
|
||||
embedding.save(last_saved_file)
|
||||
embedding_name_every = f'{embedding_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
|
||||
save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
|
||||
embedding_yet_to_be_embedded = True
|
||||
|
||||
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
|
||||
|
@ -373,14 +398,26 @@ Last saved image: {html.escape(last_saved_image)}<br/>
|
|||
</p>
|
||||
"""
|
||||
|
||||
checkpoint = sd_models.select_checkpoint()
|
||||
|
||||
embedding.sd_checkpoint = checkpoint.hash
|
||||
embedding.sd_checkpoint_name = checkpoint.model_name
|
||||
embedding.cached_checksum = None
|
||||
# Before saving for the last time, change name back to base name (as opposed to the save_embedding_every step-suffixed naming convention).
|
||||
embedding.name = embedding_name
|
||||
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding.name}.pt')
|
||||
embedding.save(filename)
|
||||
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
|
||||
save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
|
||||
|
||||
return embedding, filename
|
||||
|
||||
def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
|
||||
old_embedding_name = embedding.name
|
||||
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
|
||||
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
|
||||
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
|
||||
try:
|
||||
embedding.sd_checkpoint = checkpoint.hash
|
||||
embedding.sd_checkpoint_name = checkpoint.model_name
|
||||
if remove_cached_checksum:
|
||||
embedding.cached_checksum = None
|
||||
embedding.name = embedding_name
|
||||
embedding.save(filename)
|
||||
except:
|
||||
embedding.sd_checkpoint = old_sd_checkpoint
|
||||
embedding.sd_checkpoint_name = old_sd_checkpoint_name
|
||||
embedding.name = old_embedding_name
|
||||
embedding.cached_checksum = old_cached_checksum
|
||||
raise
|
||||
|
|
Loading…
Reference in a new issue