Merge branch 'master' into varsize
This commit is contained in:
commit
18c001792a
19 changed files with 294 additions and 119 deletions
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
2
.github/ISSUE_TEMPLATE/feature_request.yml
vendored
|
@ -1,7 +1,7 @@
|
||||||
name: Feature request
|
name: Feature request
|
||||||
description: Suggest an idea for this project
|
description: Suggest an idea for this project
|
||||||
title: "[Feature Request]: "
|
title: "[Feature Request]: "
|
||||||
labels: ["suggestion"]
|
labels: ["enhancement"]
|
||||||
|
|
||||||
body:
|
body:
|
||||||
- type: checkboxes
|
- type: checkboxes
|
||||||
|
|
13
.github/workflows/on_pull_request.yaml
vendored
13
.github/workflows/on_pull_request.yaml
vendored
|
@ -19,22 +19,19 @@ jobs:
|
||||||
- name: Checkout Code
|
- name: Checkout Code
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
- name: Set up Python 3.10
|
- name: Set up Python 3.10
|
||||||
uses: actions/setup-python@v3
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.10.6
|
python-version: 3.10.6
|
||||||
- uses: actions/cache@v2
|
cache: pip
|
||||||
with:
|
cache-dependency-path: |
|
||||||
path: ~/.cache/pip
|
**/requirements*txt
|
||||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
|
||||||
restore-keys: |
|
|
||||||
${{ runner.os }}-pip-
|
|
||||||
- name: Install PyLint
|
- name: Install PyLint
|
||||||
run: |
|
run: |
|
||||||
python -m pip install --upgrade pip
|
python -m pip install --upgrade pip
|
||||||
pip install pylint
|
pip install pylint
|
||||||
# This lets PyLint check to see if it can resolve imports
|
# This lets PyLint check to see if it can resolve imports
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run : |
|
run: |
|
||||||
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
|
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
|
||||||
python launch.py
|
python launch.py
|
||||||
- name: Analysing the code with pylint
|
- name: Analysing the code with pylint
|
||||||
|
|
8
.github/workflows/run_tests.yaml
vendored
8
.github/workflows/run_tests.yaml
vendored
|
@ -14,11 +14,9 @@ jobs:
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.10.6
|
python-version: 3.10.6
|
||||||
- uses: actions/cache@v3
|
cache: pip
|
||||||
with:
|
cache-dependency-path: |
|
||||||
path: ~/.cache/pip
|
**/requirements*txt
|
||||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
|
||||||
restore-keys: ${{ runner.os }}-pip-
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
|
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
|
||||||
- name: Upload main app stdout-stderr
|
- name: Upload main app stdout-stderr
|
||||||
|
|
|
@ -4,7 +4,7 @@ titles = {
|
||||||
"Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results",
|
"Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results",
|
||||||
"Sampling method": "Which algorithm to use to produce the image",
|
"Sampling method": "Which algorithm to use to produce the image",
|
||||||
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
"GFPGAN": "Restore low quality faces using GFPGAN neural network",
|
||||||
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
|
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help",
|
||||||
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
|
||||||
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
|
||||||
|
|
||||||
|
@ -74,7 +74,7 @@ titles = {
|
||||||
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
"Style 1": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
||||||
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
"Style 2": "Style to apply; styles have components for both positive and negative prompts and apply to both",
|
||||||
"Apply style": "Insert selected styles into prompt fields",
|
"Apply style": "Insert selected styles into prompt fields",
|
||||||
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
|
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style uses that as a placeholder for your prompt when you use the style in the future.",
|
||||||
|
|
||||||
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
|
||||||
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
|
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
|
||||||
|
@ -92,12 +92,12 @@ titles = {
|
||||||
"Weighted sum": "Result = A * (1 - M) + B * M",
|
"Weighted sum": "Result = A * (1 - M) + B * M",
|
||||||
"Add difference": "Result = A + (B - C) * M",
|
"Add difference": "Result = A + (B - C) * M",
|
||||||
|
|
||||||
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
"Learning rate": "How fast should training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
|
||||||
|
|
||||||
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
|
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
|
||||||
|
|
||||||
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
|
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resolution and lower quality.",
|
||||||
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality.",
|
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resolution and extremely low quality.",
|
||||||
|
|
||||||
"Hires. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
"Hires. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
|
||||||
"Hires steps": "Number of sampling steps for upscaled picture. If 0, uses same as for original.",
|
"Hires steps": "Number of sampling steps for upscaled picture. If 0, uses same as for original.",
|
||||||
|
|
25
javascript/hires_fix.js
Normal file
25
javascript/hires_fix.js
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
|
||||||
|
function setInactive(elem, inactive){
|
||||||
|
console.log(elem)
|
||||||
|
if(inactive){
|
||||||
|
elem.classList.add('inactive')
|
||||||
|
} else{
|
||||||
|
elem.classList.remove('inactive')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){
|
||||||
|
console.log(enable, width, height, hr_scale, hr_resize_x, hr_resize_y)
|
||||||
|
|
||||||
|
hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale')
|
||||||
|
hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x')
|
||||||
|
hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y')
|
||||||
|
|
||||||
|
gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""
|
||||||
|
|
||||||
|
setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0)
|
||||||
|
setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0)
|
||||||
|
setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0)
|
||||||
|
|
||||||
|
return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
||||||
|
}
|
|
@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||||
from secrets import compare_digest
|
from secrets import compare_digest
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules import sd_samplers, deepbooru, sd_hijack, images
|
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
|
||||||
from modules.api.models import *
|
from modules.api.models import *
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.extras import run_extras
|
from modules.extras import run_extras
|
||||||
|
@ -28,8 +28,13 @@ def upscaler_to_index(name: str):
|
||||||
try:
|
try:
|
||||||
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||||
except:
|
except:
|
||||||
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
|
||||||
|
def script_name_to_index(name, scripts):
|
||||||
|
try:
|
||||||
|
return [script.title().lower() for script in scripts].index(name.lower())
|
||||||
|
except:
|
||||||
|
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
|
||||||
|
|
||||||
def validate_sampler_name(name):
|
def validate_sampler_name(name):
|
||||||
config = sd_samplers.all_samplers_map.get(name, None)
|
config = sd_samplers.all_samplers_map.get(name, None)
|
||||||
|
@ -143,7 +148,21 @@ class Api:
|
||||||
|
|
||||||
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||||
|
|
||||||
|
def get_script(self, script_name, script_runner):
|
||||||
|
if script_name is None:
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
if not script_runner.scripts:
|
||||||
|
script_runner.initialize_scripts(False)
|
||||||
|
ui.create_ui()
|
||||||
|
|
||||||
|
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
|
||||||
|
script = script_runner.selectable_scripts[script_idx]
|
||||||
|
return script, script_idx
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
|
script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)
|
||||||
|
|
||||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||||
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
|
||||||
"do_not_save_samples": True,
|
"do_not_save_samples": True,
|
||||||
|
@ -153,14 +172,22 @@ class Api:
|
||||||
if populate.sampler_name:
|
if populate.sampler_name:
|
||||||
populate.sampler_index = None # prevent a warning later on
|
populate.sampler_index = None # prevent a warning later on
|
||||||
|
|
||||||
|
args = vars(populate)
|
||||||
|
args.pop('script_name', None)
|
||||||
|
|
||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
|
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
|
||||||
|
|
||||||
shared.state.begin()
|
shared.state.begin()
|
||||||
processed = process_images(p)
|
if script is not None:
|
||||||
|
p.outpath_grids = opts.outdir_txt2img_grids
|
||||||
|
p.outpath_samples = opts.outdir_txt2img_samples
|
||||||
|
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||||
|
processed = scripts.scripts_txt2img.run(p, *p.script_args)
|
||||||
|
else:
|
||||||
|
processed = process_images(p)
|
||||||
shared.state.end()
|
shared.state.end()
|
||||||
|
|
||||||
|
|
||||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
|
|
||||||
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||||
|
@ -170,6 +197,8 @@ class Api:
|
||||||
if init_images is None:
|
if init_images is None:
|
||||||
raise HTTPException(status_code=404, detail="Init image not found")
|
raise HTTPException(status_code=404, detail="Init image not found")
|
||||||
|
|
||||||
|
script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)
|
||||||
|
|
||||||
mask = img2imgreq.mask
|
mask = img2imgreq.mask
|
||||||
if mask:
|
if mask:
|
||||||
mask = decode_base64_to_image(mask)
|
mask = decode_base64_to_image(mask)
|
||||||
|
@ -186,13 +215,20 @@ class Api:
|
||||||
|
|
||||||
args = vars(populate)
|
args = vars(populate)
|
||||||
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
|
||||||
|
args.pop('script_name', None)
|
||||||
|
|
||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
|
||||||
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||||
|
|
||||||
shared.state.begin()
|
shared.state.begin()
|
||||||
processed = process_images(p)
|
if script is not None:
|
||||||
|
p.outpath_grids = opts.outdir_img2img_grids
|
||||||
|
p.outpath_samples = opts.outdir_img2img_samples
|
||||||
|
p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
|
||||||
|
processed = scripts.scripts_img2img.run(p, *p.script_args)
|
||||||
|
else:
|
||||||
|
processed = process_images(p)
|
||||||
shared.state.end()
|
shared.state.end()
|
||||||
|
|
||||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
|
|
|
@ -100,13 +100,13 @@ class PydanticModelGenerator:
|
||||||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
"StableDiffusionProcessingTxt2Img",
|
"StableDiffusionProcessingTxt2Img",
|
||||||
StableDiffusionProcessingTxt2Img,
|
StableDiffusionProcessingTxt2Img,
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||||
).generate_model()
|
).generate_model()
|
||||||
|
|
||||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||||
"StableDiffusionProcessingImg2Img",
|
"StableDiffusionProcessingImg2Img",
|
||||||
StableDiffusionProcessingImg2Img,
|
StableDiffusionProcessingImg2Img,
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}]
|
||||||
).generate_model()
|
).generate_model()
|
||||||
|
|
||||||
class TextToImageResponse(BaseModel):
|
class TextToImageResponse(BaseModel):
|
||||||
|
|
|
@ -197,6 +197,15 @@ def restore_old_hires_fix_params(res):
|
||||||
firstpass_width = res.get('First pass size-1', None)
|
firstpass_width = res.get('First pass size-1', None)
|
||||||
firstpass_height = res.get('First pass size-2', None)
|
firstpass_height = res.get('First pass size-2', None)
|
||||||
|
|
||||||
|
if shared.opts.use_old_hires_fix_width_height:
|
||||||
|
hires_width = int(res.get("Hires resize-1", None))
|
||||||
|
hires_height = int(res.get("Hires resize-2", None))
|
||||||
|
|
||||||
|
if hires_width is not None and hires_height is not None:
|
||||||
|
res['Size-1'] = hires_width
|
||||||
|
res['Size-2'] = hires_height
|
||||||
|
return
|
||||||
|
|
||||||
if firstpass_width is None or firstpass_height is None:
|
if firstpass_width is None or firstpass_height is None:
|
||||||
return
|
return
|
||||||
|
|
||||||
|
@ -205,12 +214,8 @@ def restore_old_hires_fix_params(res):
|
||||||
height = int(res.get("Size-2", 512))
|
height = int(res.get("Size-2", 512))
|
||||||
|
|
||||||
if firstpass_width == 0 or firstpass_height == 0:
|
if firstpass_width == 0 or firstpass_height == 0:
|
||||||
# old algorithm for auto-calculating first pass size
|
from modules import processing
|
||||||
desired_pixel_count = 512 * 512
|
firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height)
|
||||||
actual_pixel_count = width * height
|
|
||||||
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
|
||||||
firstpass_width = math.ceil(scale * width / 64) * 64
|
|
||||||
firstpass_height = math.ceil(scale * height / 64) * 64
|
|
||||||
|
|
||||||
res['Size-1'] = firstpass_width
|
res['Size-1'] = firstpass_width
|
||||||
res['Size-2'] = firstpass_height
|
res['Size-2'] = firstpass_height
|
||||||
|
|
|
@ -98,7 +98,7 @@ class StableDiffusionProcessing():
|
||||||
"""
|
"""
|
||||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||||
"""
|
"""
|
||||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
|
||||||
if sampler_index is not None:
|
if sampler_index is not None:
|
||||||
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
|
||||||
|
|
||||||
|
@ -149,7 +149,7 @@ class StableDiffusionProcessing():
|
||||||
self.seed_resize_from_w = 0
|
self.seed_resize_from_w = 0
|
||||||
|
|
||||||
self.scripts = None
|
self.scripts = None
|
||||||
self.script_args = None
|
self.script_args = script_args
|
||||||
self.all_prompts = None
|
self.all_prompts = None
|
||||||
self.all_negative_prompts = None
|
self.all_negative_prompts = None
|
||||||
self.all_seeds = None
|
self.all_seeds = None
|
||||||
|
@ -687,6 +687,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def old_hires_fix_first_pass_dimensions(width, height):
|
||||||
|
"""old algorithm for auto-calculating first pass size"""
|
||||||
|
|
||||||
|
desired_pixel_count = 512 * 512
|
||||||
|
actual_pixel_count = width * height
|
||||||
|
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
|
||||||
|
width = math.ceil(scale * width / 64) * 64
|
||||||
|
height = math.ceil(scale * height / 64) * 64
|
||||||
|
|
||||||
|
return width, height
|
||||||
|
|
||||||
|
|
||||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
|
|
||||||
|
@ -703,16 +715,26 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
self.hr_upscale_to_y = hr_resize_y
|
self.hr_upscale_to_y = hr_resize_y
|
||||||
|
|
||||||
if firstphase_width != 0 or firstphase_height != 0:
|
if firstphase_width != 0 or firstphase_height != 0:
|
||||||
print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
|
self.hr_upscale_to_x = self.width
|
||||||
self.hr_scale = self.width / firstphase_width
|
self.hr_upscale_to_y = self.height
|
||||||
self.width = firstphase_width
|
self.width = firstphase_width
|
||||||
self.height = firstphase_height
|
self.height = firstphase_height
|
||||||
|
|
||||||
self.truncate_x = 0
|
self.truncate_x = 0
|
||||||
self.truncate_y = 0
|
self.truncate_y = 0
|
||||||
|
self.applied_old_hires_behavior_to = None
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
if self.enable_hr:
|
if self.enable_hr:
|
||||||
|
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
|
||||||
|
self.hr_resize_x = self.width
|
||||||
|
self.hr_resize_y = self.height
|
||||||
|
self.hr_upscale_to_x = self.width
|
||||||
|
self.hr_upscale_to_y = self.height
|
||||||
|
|
||||||
|
self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
|
||||||
|
self.applied_old_hires_behavior_to = (self.width, self.height)
|
||||||
|
|
||||||
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
|
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
|
||||||
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
self.extra_generation_params["Hires upscale"] = self.hr_scale
|
||||||
self.hr_upscale_to_x = int(self.width * self.hr_scale)
|
self.hr_upscale_to_x = int(self.width * self.hr_scale)
|
||||||
|
|
|
@ -83,10 +83,12 @@ class StableDiffusionModelHijack:
|
||||||
clip = None
|
clip = None
|
||||||
optimization_method = None
|
optimization_method = None
|
||||||
|
|
||||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
|
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
|
||||||
|
|
||||||
def hijack(self, m):
|
def hijack(self, m):
|
||||||
|
|
||||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||||
model_embeddings = m.cond_stage_model.roberta.embeddings
|
model_embeddings = m.cond_stage_model.roberta.embeddings
|
||||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
|
||||||
|
@ -117,7 +119,6 @@ class StableDiffusionModelHijack:
|
||||||
self.layers = flatten(m)
|
self.layers = flatten(m)
|
||||||
|
|
||||||
def undo_hijack(self, m):
|
def undo_hijack(self, m):
|
||||||
|
|
||||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||||
|
|
||||||
|
|
|
@ -247,9 +247,9 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||||
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
|
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
|
||||||
original_mean = z.mean()
|
original_mean = z.mean()
|
||||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||||
new_mean = z.mean()
|
new_mean = z.mean()
|
||||||
z *= original_mean / new_mean
|
z = z * (original_mean / new_mean)
|
||||||
|
|
||||||
return z
|
return z
|
||||||
|
|
||||||
|
|
|
@ -1,8 +1,9 @@
|
||||||
import torch
|
import torch
|
||||||
|
import safetensors.torch
|
||||||
import os
|
import os
|
||||||
import collections
|
import collections
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
from modules import shared, devices, script_callbacks
|
from modules import shared, devices, script_callbacks, sd_models
|
||||||
from modules.paths import models_path
|
from modules.paths import models_path
|
||||||
import glob
|
import glob
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
@ -72,8 +73,10 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||||
candidates = [
|
candidates = [
|
||||||
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
|
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
|
||||||
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
|
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(model_path, '**/*.vae.safetensors'), recursive=True),
|
||||||
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
|
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
|
||||||
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True)
|
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True),
|
||||||
|
*glob.iglob(os.path.join(vae_path, '**/*.safetensors'), recursive=True),
|
||||||
]
|
]
|
||||||
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
|
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
candidates.append(shared.cmd_opts.vae_path)
|
candidates.append(shared.cmd_opts.vae_path)
|
||||||
|
@ -137,6 +140,12 @@ def resolve_vae(checkpoint_file=None, vae_file="auto"):
|
||||||
if os.path.isfile(vae_file_try):
|
if os.path.isfile(vae_file_try):
|
||||||
vae_file = vae_file_try
|
vae_file = vae_file_try
|
||||||
print(f"Using VAE found similar to selected model: {vae_file}")
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
|
# if still not found, try look for ".vae.safetensors" beside model
|
||||||
|
if vae_file == "auto":
|
||||||
|
vae_file_try = model_path + ".vae.safetensors"
|
||||||
|
if os.path.isfile(vae_file_try):
|
||||||
|
vae_file = vae_file_try
|
||||||
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
# No more fallbacks for auto
|
# No more fallbacks for auto
|
||||||
if vae_file == "auto":
|
if vae_file == "auto":
|
||||||
vae_file = None
|
vae_file = None
|
||||||
|
@ -163,8 +172,9 @@ def load_vae(model, vae_file=None):
|
||||||
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
||||||
print(f"Loading VAE weights from: {vae_file}")
|
print(f"Loading VAE weights from: {vae_file}")
|
||||||
store_base_vae(model)
|
store_base_vae(model)
|
||||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
|
||||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
vae_ckpt = sd_models.read_state_dict(vae_file, map_location=shared.weight_load_location)
|
||||||
|
vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||||
_load_vae_dict(model, vae_dict_1)
|
_load_vae_dict(model, vae_dict_1)
|
||||||
|
|
||||||
if cache_enabled:
|
if cache_enabled:
|
||||||
|
@ -195,10 +205,12 @@ def _load_vae_dict(model, vae_dict_1):
|
||||||
model.first_stage_model.load_state_dict(vae_dict_1)
|
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||||
model.first_stage_model.to(devices.dtype_vae)
|
model.first_stage_model.to(devices.dtype_vae)
|
||||||
|
|
||||||
|
|
||||||
def clear_loaded_vae():
|
def clear_loaded_vae():
|
||||||
global loaded_vae_file
|
global loaded_vae_file
|
||||||
loaded_vae_file = None
|
loaded_vae_file = None
|
||||||
|
|
||||||
|
|
||||||
def reload_vae_weights(sd_model=None, vae_file="auto"):
|
def reload_vae_weights(sd_model=None, vae_file="auto"):
|
||||||
from modules import lowvram, devices, sd_hijack
|
from modules import lowvram, devices, sd_hijack
|
||||||
|
|
||||||
|
|
|
@ -398,6 +398,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
||||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||||
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
|
||||||
|
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
||||||
|
|
|
@ -15,7 +15,8 @@ import torch
|
||||||
from torch import Tensor
|
from torch import Tensor
|
||||||
from torch.utils.checkpoint import checkpoint
|
from torch.utils.checkpoint import checkpoint
|
||||||
import math
|
import math
|
||||||
from typing import Optional, NamedTuple, Protocol, List
|
from typing import Optional, NamedTuple, List
|
||||||
|
|
||||||
|
|
||||||
def narrow_trunc(
|
def narrow_trunc(
|
||||||
input: Tensor,
|
input: Tensor,
|
||||||
|
@ -25,12 +26,14 @@ def narrow_trunc(
|
||||||
) -> Tensor:
|
) -> Tensor:
|
||||||
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
|
return torch.narrow(input, dim, start, length if input.shape[dim] >= start + length else input.shape[dim] - start)
|
||||||
|
|
||||||
|
|
||||||
class AttnChunk(NamedTuple):
|
class AttnChunk(NamedTuple):
|
||||||
exp_values: Tensor
|
exp_values: Tensor
|
||||||
exp_weights_sum: Tensor
|
exp_weights_sum: Tensor
|
||||||
max_score: Tensor
|
max_score: Tensor
|
||||||
|
|
||||||
class SummarizeChunk(Protocol):
|
|
||||||
|
class SummarizeChunk:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def __call__(
|
def __call__(
|
||||||
query: Tensor,
|
query: Tensor,
|
||||||
|
@ -38,7 +41,8 @@ class SummarizeChunk(Protocol):
|
||||||
value: Tensor,
|
value: Tensor,
|
||||||
) -> AttnChunk: ...
|
) -> AttnChunk: ...
|
||||||
|
|
||||||
class ComputeQueryChunkAttn(Protocol):
|
|
||||||
|
class ComputeQueryChunkAttn:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def __call__(
|
def __call__(
|
||||||
query: Tensor,
|
query: Tensor,
|
||||||
|
@ -46,6 +50,7 @@ class ComputeQueryChunkAttn(Protocol):
|
||||||
value: Tensor,
|
value: Tensor,
|
||||||
) -> Tensor: ...
|
) -> Tensor: ...
|
||||||
|
|
||||||
|
|
||||||
def _summarize_chunk(
|
def _summarize_chunk(
|
||||||
query: Tensor,
|
query: Tensor,
|
||||||
key: Tensor,
|
key: Tensor,
|
||||||
|
@ -66,6 +71,7 @@ def _summarize_chunk(
|
||||||
max_score = max_score.squeeze(-1)
|
max_score = max_score.squeeze(-1)
|
||||||
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
||||||
|
|
||||||
|
|
||||||
def _query_chunk_attention(
|
def _query_chunk_attention(
|
||||||
query: Tensor,
|
query: Tensor,
|
||||||
key: Tensor,
|
key: Tensor,
|
||||||
|
@ -106,6 +112,7 @@ def _query_chunk_attention(
|
||||||
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
||||||
return all_values / all_weights
|
return all_values / all_weights
|
||||||
|
|
||||||
|
|
||||||
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
||||||
def _get_attention_scores_no_kv_chunking(
|
def _get_attention_scores_no_kv_chunking(
|
||||||
query: Tensor,
|
query: Tensor,
|
||||||
|
@ -125,10 +132,12 @@ def _get_attention_scores_no_kv_chunking(
|
||||||
hidden_states_slice = torch.bmm(attn_probs, value)
|
hidden_states_slice = torch.bmm(attn_probs, value)
|
||||||
return hidden_states_slice
|
return hidden_states_slice
|
||||||
|
|
||||||
|
|
||||||
class ScannedChunk(NamedTuple):
|
class ScannedChunk(NamedTuple):
|
||||||
chunk_idx: int
|
chunk_idx: int
|
||||||
attn_chunk: AttnChunk
|
attn_chunk: AttnChunk
|
||||||
|
|
||||||
|
|
||||||
def efficient_dot_product_attention(
|
def efficient_dot_product_attention(
|
||||||
query: Tensor,
|
query: Tensor,
|
||||||
key: Tensor,
|
key: Tensor,
|
||||||
|
|
|
@ -66,17 +66,41 @@ class Embedding:
|
||||||
return self.cached_checksum
|
return self.cached_checksum
|
||||||
|
|
||||||
|
|
||||||
|
class DirWithTextualInversionEmbeddings:
|
||||||
|
def __init__(self, path):
|
||||||
|
self.path = path
|
||||||
|
self.mtime = None
|
||||||
|
|
||||||
|
def has_changed(self):
|
||||||
|
if not os.path.isdir(self.path):
|
||||||
|
return False
|
||||||
|
|
||||||
|
mt = os.path.getmtime(self.path)
|
||||||
|
if self.mtime is None or mt > self.mtime:
|
||||||
|
return True
|
||||||
|
|
||||||
|
def update(self):
|
||||||
|
if not os.path.isdir(self.path):
|
||||||
|
return
|
||||||
|
|
||||||
|
self.mtime = os.path.getmtime(self.path)
|
||||||
|
|
||||||
|
|
||||||
class EmbeddingDatabase:
|
class EmbeddingDatabase:
|
||||||
def __init__(self, embeddings_dir):
|
def __init__(self):
|
||||||
self.ids_lookup = {}
|
self.ids_lookup = {}
|
||||||
self.word_embeddings = {}
|
self.word_embeddings = {}
|
||||||
self.skipped_embeddings = {}
|
self.skipped_embeddings = {}
|
||||||
self.dir_mtime = None
|
|
||||||
self.embeddings_dir = embeddings_dir
|
|
||||||
self.expected_shape = -1
|
self.expected_shape = -1
|
||||||
|
self.embedding_dirs = {}
|
||||||
|
|
||||||
|
def add_embedding_dir(self, path):
|
||||||
|
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
|
||||||
|
|
||||||
|
def clear_embedding_dirs(self):
|
||||||
|
self.embedding_dirs.clear()
|
||||||
|
|
||||||
def register_embedding(self, embedding, model):
|
def register_embedding(self, embedding, model):
|
||||||
|
|
||||||
self.word_embeddings[embedding.name] = embedding
|
self.word_embeddings[embedding.name] = embedding
|
||||||
|
|
||||||
ids = model.cond_stage_model.tokenize([embedding.name])[0]
|
ids = model.cond_stage_model.tokenize([embedding.name])[0]
|
||||||
|
@ -93,65 +117,62 @@ class EmbeddingDatabase:
|
||||||
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
|
||||||
return vec.shape[1]
|
return vec.shape[1]
|
||||||
|
|
||||||
def load_textual_inversion_embeddings(self, force_reload = False):
|
def load_from_file(self, path, filename):
|
||||||
mt = os.path.getmtime(self.embeddings_dir)
|
name, ext = os.path.splitext(filename)
|
||||||
if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime:
|
ext = ext.upper()
|
||||||
return
|
|
||||||
|
|
||||||
self.dir_mtime = mt
|
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
|
||||||
self.ids_lookup.clear()
|
_, second_ext = os.path.splitext(name)
|
||||||
self.word_embeddings.clear()
|
if second_ext.upper() == '.PREVIEW':
|
||||||
self.skipped_embeddings.clear()
|
|
||||||
self.expected_shape = self.get_expected_shape()
|
|
||||||
|
|
||||||
def process_file(path, filename):
|
|
||||||
name, ext = os.path.splitext(filename)
|
|
||||||
ext = ext.upper()
|
|
||||||
|
|
||||||
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
|
|
||||||
embed_image = Image.open(path)
|
|
||||||
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
|
||||||
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
|
||||||
name = data.get('name', name)
|
|
||||||
else:
|
|
||||||
data = extract_image_data_embed(embed_image)
|
|
||||||
name = data.get('name', name)
|
|
||||||
elif ext in ['.BIN', '.PT']:
|
|
||||||
data = torch.load(path, map_location="cpu")
|
|
||||||
else:
|
|
||||||
return
|
return
|
||||||
|
|
||||||
# textual inversion embeddings
|
embed_image = Image.open(path)
|
||||||
if 'string_to_param' in data:
|
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
|
||||||
param_dict = data['string_to_param']
|
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
|
||||||
if hasattr(param_dict, '_parameters'):
|
name = data.get('name', name)
|
||||||
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
|
|
||||||
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
|
||||||
emb = next(iter(param_dict.items()))[1]
|
|
||||||
# diffuser concepts
|
|
||||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
|
||||||
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
|
||||||
|
|
||||||
emb = next(iter(data.values()))
|
|
||||||
if len(emb.shape) == 1:
|
|
||||||
emb = emb.unsqueeze(0)
|
|
||||||
else:
|
else:
|
||||||
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
|
data = extract_image_data_embed(embed_image)
|
||||||
|
name = data.get('name', name)
|
||||||
|
elif ext in ['.BIN', '.PT']:
|
||||||
|
data = torch.load(path, map_location="cpu")
|
||||||
|
else:
|
||||||
|
return
|
||||||
|
|
||||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
# textual inversion embeddings
|
||||||
embedding = Embedding(vec, name)
|
if 'string_to_param' in data:
|
||||||
embedding.step = data.get('step', None)
|
param_dict = data['string_to_param']
|
||||||
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
|
if hasattr(param_dict, '_parameters'):
|
||||||
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
|
||||||
embedding.vectors = vec.shape[0]
|
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
||||||
embedding.shape = vec.shape[-1]
|
emb = next(iter(param_dict.items()))[1]
|
||||||
|
# diffuser concepts
|
||||||
|
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
||||||
|
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
||||||
|
|
||||||
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
|
emb = next(iter(data.values()))
|
||||||
self.register_embedding(embedding, shared.sd_model)
|
if len(emb.shape) == 1:
|
||||||
else:
|
emb = emb.unsqueeze(0)
|
||||||
self.skipped_embeddings[name] = embedding
|
else:
|
||||||
|
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
|
||||||
|
|
||||||
for root, dirs, fns in os.walk(self.embeddings_dir):
|
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||||
|
embedding = Embedding(vec, name)
|
||||||
|
embedding.step = data.get('step', None)
|
||||||
|
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
|
||||||
|
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
||||||
|
embedding.vectors = vec.shape[0]
|
||||||
|
embedding.shape = vec.shape[-1]
|
||||||
|
|
||||||
|
if self.expected_shape == -1 or self.expected_shape == embedding.shape:
|
||||||
|
self.register_embedding(embedding, shared.sd_model)
|
||||||
|
else:
|
||||||
|
self.skipped_embeddings[name] = embedding
|
||||||
|
|
||||||
|
def load_from_dir(self, embdir):
|
||||||
|
if not os.path.isdir(embdir.path):
|
||||||
|
return
|
||||||
|
|
||||||
|
for root, dirs, fns in os.walk(embdir.path):
|
||||||
for fn in fns:
|
for fn in fns:
|
||||||
try:
|
try:
|
||||||
fullfn = os.path.join(root, fn)
|
fullfn = os.path.join(root, fn)
|
||||||
|
@ -159,12 +180,32 @@ class EmbeddingDatabase:
|
||||||
if os.stat(fullfn).st_size == 0:
|
if os.stat(fullfn).st_size == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
process_file(fullfn, fn)
|
self.load_from_file(fullfn, fn)
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error loading embedding {fn}:", file=sys.stderr)
|
print(f"Error loading embedding {fn}:", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
def load_textual_inversion_embeddings(self, force_reload=False):
|
||||||
|
if not force_reload:
|
||||||
|
need_reload = False
|
||||||
|
for path, embdir in self.embedding_dirs.items():
|
||||||
|
if embdir.has_changed():
|
||||||
|
need_reload = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if not need_reload:
|
||||||
|
return
|
||||||
|
|
||||||
|
self.ids_lookup.clear()
|
||||||
|
self.word_embeddings.clear()
|
||||||
|
self.skipped_embeddings.clear()
|
||||||
|
self.expected_shape = self.get_expected_shape()
|
||||||
|
|
||||||
|
for path, embdir in self.embedding_dirs.items():
|
||||||
|
self.load_from_dir(embdir)
|
||||||
|
embdir.update()
|
||||||
|
|
||||||
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
|
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
|
||||||
if len(self.skipped_embeddings) > 0:
|
if len(self.skipped_embeddings) > 0:
|
||||||
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
|
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
|
||||||
|
@ -247,11 +288,11 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
|
||||||
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
|
assert os.path.isfile(template_file), "Prompt template file doesn't exist"
|
||||||
assert steps, "Max steps is empty or 0"
|
assert steps, "Max steps is empty or 0"
|
||||||
assert isinstance(steps, int), "Max steps must be integer"
|
assert isinstance(steps, int), "Max steps must be integer"
|
||||||
assert steps > 0 , "Max steps must be positive"
|
assert steps > 0, "Max steps must be positive"
|
||||||
assert isinstance(save_model_every, int), "Save {name} must be integer"
|
assert isinstance(save_model_every, int), "Save {name} must be integer"
|
||||||
assert save_model_every >= 0 , "Save {name} must be positive or 0"
|
assert save_model_every >= 0, "Save {name} must be positive or 0"
|
||||||
assert isinstance(create_image_every, int), "Create image must be integer"
|
assert isinstance(create_image_every, int), "Create image must be integer"
|
||||||
assert create_image_every >= 0 , "Create image must be positive or 0"
|
assert create_image_every >= 0, "Create image must be positive or 0"
|
||||||
if save_model_every or create_image_every:
|
if save_model_every or create_image_every:
|
||||||
assert log_directory, "Log directory is empty"
|
assert log_directory, "Log directory is empty"
|
||||||
|
|
||||||
|
|
|
@ -267,7 +267,7 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
p.init([""], [0], [0])
|
p.init([""], [0], [0])
|
||||||
|
|
||||||
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{p.hr_upscale_to_x}x{p.hr_upscale_to_y}</span>"
|
return f"resize: from <span class='resolution'>{p.width}x{p.height}</span> to <span class='resolution'>{p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}</span>"
|
||||||
|
|
||||||
|
|
||||||
def apply_styles(prompt, prompt_neg, style1_name, style2_name):
|
def apply_styles(prompt, prompt_neg, style1_name, style2_name):
|
||||||
|
@ -745,15 +745,20 @@ def create_ui():
|
||||||
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
|
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
|
||||||
|
|
||||||
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
||||||
hr_resolution_preview_args = dict(
|
|
||||||
fn=calc_resolution_hires,
|
|
||||||
inputs=hr_resolution_preview_inputs,
|
|
||||||
outputs=[hr_final_resolution],
|
|
||||||
show_progress=False
|
|
||||||
)
|
|
||||||
|
|
||||||
for input in hr_resolution_preview_inputs:
|
for input in hr_resolution_preview_inputs:
|
||||||
input.change(**hr_resolution_preview_args)
|
input.change(
|
||||||
|
fn=calc_resolution_hires,
|
||||||
|
inputs=hr_resolution_preview_inputs,
|
||||||
|
outputs=[hr_final_resolution],
|
||||||
|
show_progress=False,
|
||||||
|
)
|
||||||
|
input.change(
|
||||||
|
None,
|
||||||
|
_js="onCalcResolutionHires",
|
||||||
|
inputs=hr_resolution_preview_inputs,
|
||||||
|
outputs=[],
|
||||||
|
show_progress=False,
|
||||||
|
)
|
||||||
|
|
||||||
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
|
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
|
||||||
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
|
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
|
||||||
|
|
|
@ -25,6 +25,8 @@ class Script(scripts.Script):
|
||||||
return [info, overlap, upscaler_index, scale_factor]
|
return [info, overlap, upscaler_index, scale_factor]
|
||||||
|
|
||||||
def run(self, p, _, overlap, upscaler_index, scale_factor):
|
def run(self, p, _, overlap, upscaler_index, scale_factor):
|
||||||
|
if isinstance(upscaler_index, str):
|
||||||
|
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
|
||||||
processing.fix_seed(p)
|
processing.fix_seed(p)
|
||||||
upscaler = shared.sd_upscalers[upscaler_index]
|
upscaler = shared.sd_upscalers[upscaler_index]
|
||||||
|
|
||||||
|
|
17
style.css
17
style.css
|
@ -512,7 +512,7 @@ input[type="range"]{
|
||||||
border: none;
|
border: none;
|
||||||
background: none;
|
background: none;
|
||||||
flex: unset;
|
flex: unset;
|
||||||
gap: 0.5em;
|
gap: 1em;
|
||||||
}
|
}
|
||||||
|
|
||||||
#quicksettings > div > div{
|
#quicksettings > div > div{
|
||||||
|
@ -521,6 +521,17 @@ input[type="range"]{
|
||||||
padding: 0;
|
padding: 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#quicksettings > div > div > div > div > label > span {
|
||||||
|
position: relative;
|
||||||
|
margin-right: 9em;
|
||||||
|
margin-bottom: -1em;
|
||||||
|
}
|
||||||
|
|
||||||
|
#quicksettings > div > div > label > span {
|
||||||
|
position: relative;
|
||||||
|
margin-bottom: -1em;
|
||||||
|
}
|
||||||
|
|
||||||
canvas[key="mask"] {
|
canvas[key="mask"] {
|
||||||
z-index: 12 !important;
|
z-index: 12 !important;
|
||||||
filter: invert();
|
filter: invert();
|
||||||
|
@ -659,6 +670,10 @@ footer {
|
||||||
min-width: auto;
|
min-width: auto;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.inactive{
|
||||||
|
opacity: 0.5;
|
||||||
|
}
|
||||||
|
|
||||||
/* The following handles localization for right-to-left (RTL) languages like Arabic.
|
/* The following handles localization for right-to-left (RTL) languages like Arabic.
|
||||||
The rtl media type will only be activated by the logic in javascript/localization.js.
|
The rtl media type will only be activated by the logic in javascript/localization.js.
|
||||||
If you change anything above, you need to make sure it is RTL compliant by just running
|
If you change anything above, you need to make sure it is RTL compliant by just running
|
||||||
|
|
|
@ -50,6 +50,12 @@ class TestImg2ImgWorking(unittest.TestCase):
|
||||||
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
|
self.simple_img2img["mask"] = encode_pil_to_base64(Image.open(r"test/test_files/mask_basic.png"))
|
||||||
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
|
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
|
||||||
|
|
||||||
|
def test_img2img_sd_upscale_performed(self):
|
||||||
|
self.simple_img2img["script_name"] = "sd upscale"
|
||||||
|
self.simple_img2img["script_args"] = ["", 8, "Lanczos", 2.0]
|
||||||
|
|
||||||
|
self.assertEqual(requests.post(self.url_img2img, json=self.simple_img2img).status_code, 200)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
|
Loading…
Reference in a new issue