add execution timings to output
change the text output element to HTML
This commit is contained in:
parent
29f7e7ab89
commit
199123e98d
1 changed files with 34 additions and 8 deletions
42
webui.py
42
webui.py
|
@ -12,6 +12,8 @@ from contextlib import contextmanager, nullcontext
|
|||
import mimetypes
|
||||
import random
|
||||
import math
|
||||
import html
|
||||
import time
|
||||
|
||||
import k_diffusion as K
|
||||
from ldm.util import instantiate_from_config
|
||||
|
@ -160,6 +162,11 @@ def save_image(image, path, basename, seed, prompt, extension, info=None, short_
|
|||
image.save(os.path.join(path, filename), quality=opt.jpeg_quality, pnginfo=pnginfo)
|
||||
|
||||
|
||||
def plaintext_to_html(text):
|
||||
text = "".join([f"<p>{html.escape(x)}</p>\n" for x in text.split('\n')])
|
||||
return text
|
||||
|
||||
|
||||
def load_GFPGAN():
|
||||
model_name = 'GFPGANv1.3'
|
||||
model_path = os.path.join(GFPGAN_dir, 'experiments/pretrained_models', model_name + '.pth')
|
||||
|
@ -331,6 +338,20 @@ def check_prompt_length(prompt, comments):
|
|||
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
|
||||
def wrap_gradio_call(func):
|
||||
def f(*p1, **p2):
|
||||
t = time.perf_counter()
|
||||
res = list(func(*p1, **p2))
|
||||
elapsed = time.perf_counter() - t
|
||||
|
||||
# last item is always HTML
|
||||
res[-1] = res[-1] + f"<p class='performance'>Time taken: {elapsed:.2f}s</p>"
|
||||
|
||||
return tuple(res)
|
||||
|
||||
return f
|
||||
|
||||
|
||||
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, do_not_save_grid=False):
|
||||
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||
|
||||
|
@ -484,7 +505,7 @@ def txt2img(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, p
|
|||
|
||||
del sampler
|
||||
|
||||
return output_images, seed, info
|
||||
return output_images, seed, plaintext_to_html(info)
|
||||
|
||||
|
||||
class Flagging(gr.FlaggingCallback):
|
||||
|
@ -529,7 +550,7 @@ class Flagging(gr.FlaggingCallback):
|
|||
|
||||
|
||||
txt2img_interface = gr.Interface(
|
||||
txt2img,
|
||||
wrap_gradio_call(txt2img),
|
||||
inputs=[
|
||||
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
|
||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||
|
@ -547,7 +568,7 @@ txt2img_interface = gr.Interface(
|
|||
outputs=[
|
||||
gr.Gallery(label="Images"),
|
||||
gr.Number(label='Seed'),
|
||||
gr.Textbox(label="Copy-paste generation parameters"),
|
||||
gr.HTML(),
|
||||
],
|
||||
title="Stable Diffusion Text-to-Image K",
|
||||
description="Generate images from text with Stable Diffusion (using K-LMS)",
|
||||
|
@ -650,14 +671,14 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
|||
|
||||
del sampler
|
||||
|
||||
return output_images, seed, info
|
||||
return output_images, seed, plaintext_to_html(info)
|
||||
|
||||
|
||||
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
|
||||
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
|
||||
|
||||
img2img_interface = gr.Interface(
|
||||
img2img,
|
||||
wrap_gradio_call(img2img),
|
||||
inputs=[
|
||||
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
||||
gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"),
|
||||
|
@ -677,7 +698,7 @@ img2img_interface = gr.Interface(
|
|||
outputs=[
|
||||
gr.Gallery(),
|
||||
gr.Number(label='Seed'),
|
||||
gr.Textbox(label="Copy-paste generation parameters"),
|
||||
gr.HTML(),
|
||||
],
|
||||
title="Stable Diffusion Image-to-Image",
|
||||
description="Generate images from images with Stable Diffusion",
|
||||
|
@ -698,7 +719,7 @@ def run_GFPGAN(image, strength):
|
|||
if strength < 1.0:
|
||||
res = Image.blend(image, res, strength)
|
||||
|
||||
return res
|
||||
return res, 0, ''
|
||||
|
||||
|
||||
if GFPGAN is not None:
|
||||
|
@ -710,6 +731,8 @@ if GFPGAN is not None:
|
|||
],
|
||||
outputs=[
|
||||
gr.Image(label="Result"),
|
||||
gr.Number(label='Seed', visible=False),
|
||||
gr.HTML(),
|
||||
],
|
||||
title="GFPGAN",
|
||||
description="Fix faces on images",
|
||||
|
@ -719,7 +742,10 @@ if GFPGAN is not None:
|
|||
demo = gr.TabbedInterface(
|
||||
interface_list=[x[0] for x in interfaces],
|
||||
tab_names=[x[1] for x in interfaces],
|
||||
css=("" if opt.no_progressbar_hiding else css_hide_progressbar)
|
||||
css=("" if opt.no_progressbar_hiding else css_hide_progressbar) + """
|
||||
.output-html p {margin: 0 0.5em;}
|
||||
.performance { font-size: 0.85em; color: #444; }
|
||||
"""
|
||||
)
|
||||
|
||||
demo.launch()
|
||||
|
|
Loading…
Reference in a new issue