Merge branch 'master' into test_resolve_conflicts

This commit is contained in:
MalumaDev 2022-10-19 10:22:39 +02:00 committed by GitHub
commit 2362d5f00e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 297 additions and 46 deletions

68
modules/api/api.py Normal file
View file

@ -0,0 +1,68 @@
from modules.api.processing import StableDiffusionProcessingAPI
from modules.processing import StableDiffusionProcessingTxt2Img, process_images
from modules.sd_samplers import all_samplers
from modules.extras import run_pnginfo
import modules.shared as shared
import uvicorn
from fastapi import Body, APIRouter, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field, Json
import json
import io
import base64
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
class TextToImageResponse(BaseModel):
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: Json
info: Json
class Api:
def __init__(self, app, queue_lock):
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True
}
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
with self.queue_lock:
processed = process_images(p)
b64images = []
for i in processed.images:
buffer = io.BytesIO()
i.save(buffer, format="png")
b64images.append(base64.b64encode(buffer.getvalue()))
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info))
def img2imgapi(self):
raise NotImplementedError
def extrasapi(self):
raise NotImplementedError
def pnginfoapi(self):
raise NotImplementedError
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)

99
modules/api/processing.py Normal file
View file

@ -0,0 +1,99 @@
from inflection import underscore
from typing import Any, Dict, Optional
from pydantic import BaseModel, Field, create_model
from modules.processing import StableDiffusionProcessingTxt2Img
import inspect
API_NOT_ALLOWED = [
"self",
"kwargs",
"sd_model",
"outpath_samples",
"outpath_grids",
"sampler_index",
"do_not_save_samples",
"do_not_save_grid",
"extra_generation_params",
"overlay_images",
"do_not_reload_embeddings",
"seed_enable_extras",
"prompt_for_display",
"sampler_noise_scheduler_override",
"ddim_discretize"
]
class ModelDef(BaseModel):
"""Assistance Class for Pydantic Dynamic Model Generation"""
field: str
field_alias: str
field_type: Any
field_value: Any
class PydanticModelGenerator:
"""
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
source_data is a snapshot of the default values produced by the class
params are the names of the actual keys required by __init__
"""
def __init__(
self,
model_name: str = None,
class_instance = None,
additional_fields = None,
):
def field_type_generator(k, v):
# field_type = str if not overrides.get(k) else overrides[k]["type"]
# print(k, v.annotation, v.default)
field_type = v.annotation
return Optional[field_type]
def merge_class_params(class_):
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
parameters = {}
for classes in all_classes:
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
return parameters
self._model_name = model_name
self._class_data = merge_class_params(class_instance)
self._model_def = [
ModelDef(
field=underscore(k),
field_alias=k,
field_type=field_type_generator(k, v),
field_value=v.default
)
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
]
for fields in additional_fields:
self._model_def.append(ModelDef(
field=underscore(fields["key"]),
field_alias=fields["key"],
field_type=fields["type"],
field_value=fields["default"]))
def generate_model(self):
"""
Creates a pydantic BaseModel
from the json and overrides provided at initialization
"""
fields = {
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
}
DynamicModel = create_model(self._model_name, **fields)
DynamicModel.__config__.allow_population_by_field_name = True
DynamicModel.__config__.allow_mutation = True
return DynamicModel
StableDiffusionProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}]
).generate_model()

View file

@ -196,7 +196,7 @@ def stack_conds(conds):
return torch.stack(conds)
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@ -225,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)

View file

@ -9,6 +9,7 @@ from PIL import Image, ImageFilter, ImageOps
import random
import cv2
from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
@ -50,10 +51,16 @@ def get_correct_sampler(p):
return sd_samplers.samplers
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
return sd_samplers.samplers_for_img2img
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
return sd_samplers.samplers
class StableDiffusionProcessing:
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None, do_not_reload_embeddings=False):
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@ -86,10 +93,10 @@ class StableDiffusionProcessing:
self.denoising_strength: float = 0
self.sampler_noise_scheduler_override = None
self.ddim_discretize = opts.ddim_discretize
self.s_churn = opts.s_churn
self.s_tmin = opts.s_tmin
self.s_tmax = float('inf') # not representable as a standard ui option
self.s_noise = opts.s_noise
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
if not seed_enable_extras:
self.subseed = -1
@ -97,6 +104,7 @@ class StableDiffusionProcessing:
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@ -515,7 +523,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=0, firstphase_height=0, **kwargs):
def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.denoising_strength = denoising_strength
@ -759,4 +767,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
del x
devices.torch_gc()
return samples
return samples

View file

@ -181,7 +181,7 @@ def einsum_op_cuda(q, k, v):
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
# Divide factor of safety as there's copying and fragmentation
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def einsum_op(q, k, v):
if q.device.type == 'cuda':

View file

@ -122,11 +122,33 @@ def select_checkpoint():
return checkpoint_info
chckpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in chckpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
if "state_dict" in pl_sd:
return pl_sd["state_dict"]
pl_sd = pl_sd["state_dict"]
return pl_sd
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
return sd
def load_model_weights(model, checkpoint_info):
@ -141,7 +163,7 @@ def load_model_weights(model, checkpoint_info):
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
model.load_state_dict(sd, strict=False)
missing, extra = model.load_state_dict(sd, strict=False)
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)

View file

@ -79,6 +79,8 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help=
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
cmd_opts = parser.parse_args()
restricted_opts = [

View file

@ -12,7 +12,7 @@ import time
import traceback
import platform
import subprocess as sp
from functools import reduce
from functools import partial, reduce
import numpy as np
import torch
@ -266,6 +266,19 @@ def wrap_gradio_call(func, extra_outputs=None):
return f
def calc_time_left(progress, threshold, label, force_display):
if progress == 0:
return ""
else:
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
if (eta_relative > threshold and progress > 0.02) or force_display:
return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative))
else:
return ""
def check_progress_call(id_part):
if shared.state.job_count == 0:
return "", gr_show(False), gr_show(False), gr_show(False)
@ -277,11 +290,15 @@ def check_progress_call(id_part):
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
time_left = calc_time_left( progress, 60, " ETA:", shared.state.time_left_force_display )
if time_left != "":
shared.state.time_left_force_display = True
progress = min(progress, 1)
progressbar = ""
if opts.show_progressbar:
progressbar = f"""<div class='progressDiv'><div class='progress' style="width:{progress * 100}%">{str(int(progress*100))+"%" if progress > 0.01 else ""}</div></div>"""
progressbar = f"""<div class='progressDiv'><div class='progress' style="overflow:hidden;width:{progress * 100}%">{str(int(progress*100))+"%"+time_left if progress > 0.01 else ""}</div></div>"""
image = gr_show(False)
preview_visibility = gr_show(False)
@ -313,6 +330,8 @@ def check_progress_call_initial(id_part):
shared.state.current_latent = None
shared.state.current_image = None
shared.state.textinfo = None
shared.state.time_start = time.time()
shared.state.time_left_force_display = False
return check_progress_call(id_part)
@ -1417,6 +1436,8 @@ def create_ui(wrap_gradio_gpu_call):
batch_size,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
create_image_every,
save_embedding_every,
@ -1613,6 +1634,7 @@ Requested path was: {f}
def reload_scripts():
modules.scripts.reload_script_body_only()
reload_javascript() # need to refresh the html page
reload_script_bodies.click(
fn=reload_scripts,
@ -1871,26 +1893,30 @@ Requested path was: {f}
return demo
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f'<script>{jsfile.read()}</script>'
def load_javascript(raw_response):
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f'<script>{jsfile.read()}</script>'
jsdir = os.path.join(script_path, "javascript")
for filename in sorted(os.listdir(jsdir)):
with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile:
javascript += f"\n<script>{jsfile.read()}</script>"
jsdir = os.path.join(script_path, "javascript")
for filename in sorted(os.listdir(jsdir)):
with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {filename} --><script>{jsfile.read()}</script>"
if cmd_opts.theme is not None:
javascript += f"\n<script>set_theme('{cmd_opts.theme}');</script>\n"
if cmd_opts.theme is not None:
javascript += f"\n<script>set_theme('{cmd_opts.theme}');</script>\n"
javascript += f"\n<script>{localization.localization_js(shared.opts.localization)}</script>"
javascript += f"\n<script>{localization.localization_js(shared.opts.localization)}</script>"
if 'gradio_routes_templates_response' not in globals():
def template_response(*args, **kwargs):
res = gradio_routes_templates_response(*args, **kwargs)
res.body = res.body.replace(b'</head>', f'{javascript}</head>'.encode("utf8"))
res = raw_response(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gradio_routes_templates_response = gradio.routes.templates.TemplateResponse
gradio.routes.templates.TemplateResponse = template_response
reload_javascript = partial(load_javascript,
gradio.routes.templates.TemplateResponse)
reload_javascript()

View file

@ -23,3 +23,4 @@ resize-right
torchdiffeq
kornia
lark
inflection

View file

@ -22,3 +22,4 @@ resize-right==0.0.2
torchdiffeq==0.2.3
kornia==0.6.7
lark==1.1.2
inflection==0.5.1

View file

@ -4,7 +4,7 @@ import time
import importlib
import signal
import threading
from fastapi import FastAPI
from fastapi.middleware.gzip import GZipMiddleware
from modules.paths import script_path
@ -31,7 +31,6 @@ from modules.paths import script_path
from modules.shared import cmd_opts
import modules.hypernetworks.hypernetwork
queue_lock = threading.Lock()
@ -87,10 +86,6 @@ def initialize():
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
def webui():
initialize()
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
@ -98,10 +93,37 @@ def webui():
signal.signal(signal.SIGINT, sigint_handler)
while 1:
def create_api(app):
from modules.api.api import Api
api = Api(app, queue_lock)
return api
def wait_on_server(demo=None):
while 1:
time.sleep(0.5)
if demo and getattr(demo, 'do_restart', False):
time.sleep(0.5)
demo.close()
time.sleep(0.5)
break
def api_only():
initialize()
app = FastAPI()
app.add_middleware(GZipMiddleware, minimum_size=1000)
api = create_api(app)
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
def webui(launch_api=False):
initialize()
while 1:
demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
app, local_url, share_url = demo.launch(
share=cmd_opts.share,
server_name="0.0.0.0" if cmd_opts.listen else None,
@ -111,17 +133,14 @@ def webui():
inbrowser=cmd_opts.autolaunch,
prevent_thread_lock=True
)
app.add_middleware(GZipMiddleware, minimum_size=1000)
while 1:
time.sleep(0.5)
if getattr(demo, 'do_restart', False):
time.sleep(0.5)
demo.close()
time.sleep(0.5)
break
if (launch_api):
create_api(app)
wait_on_server(demo)
sd_samplers.set_samplers()
print('Reloading Custom Scripts')
@ -133,5 +152,10 @@ def webui():
print('Restarting Gradio')
task = []
if __name__ == "__main__":
webui()
if cmd_opts.nowebui:
api_only()
else:
webui(cmd_opts.api)