diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5965c5a0..c64a4598 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -189,8 +189,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini embedding = hijack.embedding_db.word_embeddings[embedding_name] embedding.vec.requires_grad = True - optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) - losses = torch.zeros((32,)) last_saved_file = "" @@ -203,12 +201,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) epoch_len = (tr_img_len * num_repeats) + tr_img_len + scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(scheduleIter) + print(f'Training at rate of {learn_rate} until step {end_step}') + + optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step - if embedding.step > steps: - break + if embedding.step > end_step: + try: + (learn_rate, end_step) = next(scheduleIter) + except: + break + tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') + for pg in optimizer.param_groups: + pg['lr'] = learn_rate if shared.state.interrupted: break @@ -277,3 +287,36 @@ Last saved image: {html.escape(last_saved_image)}
return embedding, filename +class LearnSchedule: + def __init__(self, learn_rate, max_steps, cur_step=0): + pairs = learn_rate.split(',') + self.rates = [] + self.it = 0 + self.maxit = 0 + for i, pair in enumerate(pairs): + tmp = pair.split(':') + if len(tmp) == 2: + step = int(tmp[1]) + if step > cur_step: + self.rates.append((float(tmp[0]), min(step, max_steps))) + self.maxit += 1 + if step > max_steps: + return + elif step == -1: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + else: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + + def __iter__(self): + return self + + def __next__(self): + if self.it < self.maxit: + self.it += 1 + return self.rates[self.it - 1] + else: + raise StopIteration diff --git a/modules/ui.py b/modules/ui.py index 8c06ad7c..c9e8355b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1047,7 +1047,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Group(): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) - learn_rate = gr.Number(label='Learning rate', value=5.0e-03) + learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))