Add option to img2imgalt.py to use sigma adjustment instead of original method for #736
This commit is contained in:
parent
c74becca23
commit
258a2d4f06
1 changed files with 62 additions and 6 deletions
|
@ -59,7 +59,55 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
||||||
return x / x.std()
|
return x / x.std()
|
||||||
|
|
||||||
|
|
||||||
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt"])
|
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
|
||||||
|
|
||||||
|
|
||||||
|
# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
|
||||||
|
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
||||||
|
x = p.init_latent
|
||||||
|
|
||||||
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
||||||
|
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||||
|
|
||||||
|
shared.state.sampling_steps = steps
|
||||||
|
|
||||||
|
for i in trange(1, len(sigmas)):
|
||||||
|
shared.state.sampling_step += 1
|
||||||
|
|
||||||
|
x_in = torch.cat([x] * 2)
|
||||||
|
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
|
||||||
|
cond_in = torch.cat([uncond, cond])
|
||||||
|
|
||||||
|
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
||||||
|
|
||||||
|
if i == 1:
|
||||||
|
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
||||||
|
else:
|
||||||
|
t = dnw.sigma_to_t(sigma_in)
|
||||||
|
|
||||||
|
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
||||||
|
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
|
||||||
|
|
||||||
|
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
|
||||||
|
|
||||||
|
if i == 1:
|
||||||
|
d = (x - denoised) / (2 * sigmas[i])
|
||||||
|
else:
|
||||||
|
d = (x - denoised) / sigmas[i - 1]
|
||||||
|
|
||||||
|
dt = sigmas[i] - sigmas[i - 1]
|
||||||
|
x = x + d * dt
|
||||||
|
|
||||||
|
sd_samplers.store_latent(x)
|
||||||
|
|
||||||
|
# This shouldn't be necessary, but solved some VRAM issues
|
||||||
|
del x_in, sigma_in, cond_in, c_out, c_in, t,
|
||||||
|
del eps, denoised_uncond, denoised_cond, denoised, d, dt
|
||||||
|
|
||||||
|
shared.state.nextjob()
|
||||||
|
|
||||||
|
return x / sigmas[-1]
|
||||||
|
|
||||||
|
|
||||||
class Script(scripts.Script):
|
class Script(scripts.Script):
|
||||||
|
@ -78,9 +126,10 @@ class Script(scripts.Script):
|
||||||
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
|
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
|
||||||
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
|
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
|
||||||
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
|
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
|
||||||
return [original_prompt, original_negative_prompt, cfg, st, randomness]
|
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False)
|
||||||
|
return [original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment]
|
||||||
|
|
||||||
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness):
|
def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness, sigma_adjustment):
|
||||||
p.batch_size = 1
|
p.batch_size = 1
|
||||||
p.batch_count = 1
|
p.batch_count = 1
|
||||||
|
|
||||||
|
@ -88,7 +137,10 @@ class Script(scripts.Script):
|
||||||
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
|
||||||
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
|
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
|
||||||
|
|
||||||
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st and self.cache.original_prompt == original_prompt and self.cache.original_negative_prompt == original_negative_prompt
|
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
|
||||||
|
and self.cache.original_prompt == original_prompt \
|
||||||
|
and self.cache.original_negative_prompt == original_negative_prompt \
|
||||||
|
and self.cache.sigma_adjustment == sigma_adjustment
|
||||||
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
|
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
|
||||||
|
|
||||||
if same_everything:
|
if same_everything:
|
||||||
|
@ -97,8 +149,11 @@ class Script(scripts.Script):
|
||||||
shared.state.job_count += 1
|
shared.state.job_count += 1
|
||||||
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
|
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
|
||||||
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
|
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
|
||||||
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
|
if sigma_adjustment:
|
||||||
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt)
|
rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
|
||||||
|
else:
|
||||||
|
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
|
||||||
|
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
|
||||||
|
|
||||||
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
|
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
|
||||||
|
|
||||||
|
@ -121,6 +176,7 @@ class Script(scripts.Script):
|
||||||
p.extra_generation_params["Decode CFG scale"] = cfg
|
p.extra_generation_params["Decode CFG scale"] = cfg
|
||||||
p.extra_generation_params["Decode steps"] = st
|
p.extra_generation_params["Decode steps"] = st
|
||||||
p.extra_generation_params["Randomness"] = randomness
|
p.extra_generation_params["Randomness"] = randomness
|
||||||
|
p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
|
||||||
|
|
||||||
processed = processing.process_images(p)
|
processed = processing.process_images(p)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue