From ad4de819c43997f2666b5bad95301f5c37f9018e Mon Sep 17 00:00:00 2001 From: victorca25 Date: Sun, 9 Oct 2022 13:02:12 +0200 Subject: [PATCH 001/321] update ESRGAN architecture and model to support all ESRGAN models in the DB, BSRGAN and real-ESRGAN models --- modules/bsrgan_model.py | 76 ------ modules/bsrgan_model_arch.py | 102 -------- modules/esrgam_model_arch.py | 80 ------ modules/esrgan_model.py | 178 +++++++++----- modules/esrgan_model_arch.py | 463 +++++++++++++++++++++++++++++++++++ 5 files changed, 585 insertions(+), 314 deletions(-) delete mode 100644 modules/bsrgan_model.py delete mode 100644 modules/bsrgan_model_arch.py delete mode 100644 modules/esrgam_model_arch.py create mode 100644 modules/esrgan_model_arch.py diff --git a/modules/bsrgan_model.py b/modules/bsrgan_model.py deleted file mode 100644 index 737e1a76..00000000 --- a/modules/bsrgan_model.py +++ /dev/null @@ -1,76 +0,0 @@ -import os.path -import sys -import traceback - -import PIL.Image -import numpy as np -import torch -from basicsr.utils.download_util import load_file_from_url - -import modules.upscaler -from modules import devices, modelloader -from modules.bsrgan_model_arch import RRDBNet - - -class UpscalerBSRGAN(modules.upscaler.Upscaler): - def __init__(self, dirname): - self.name = "BSRGAN" - self.model_name = "BSRGAN 4x" - self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth" - self.user_path = dirname - super().__init__() - model_paths = self.find_models(ext_filter=[".pt", ".pth"]) - scalers = [] - if len(model_paths) == 0: - scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4) - scalers.append(scaler_data) - for file in model_paths: - if "http" in file: - name = self.model_name - else: - name = modelloader.friendly_name(file) - try: - scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) - scalers.append(scaler_data) - except Exception: - print(f"Error loading BSRGAN model: {file}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - self.scalers = scalers - - def do_upscale(self, img: PIL.Image, selected_file): - torch.cuda.empty_cache() - model = self.load_model(selected_file) - if model is None: - return img - model.to(devices.device_bsrgan) - torch.cuda.empty_cache() - img = np.array(img) - img = img[:, :, ::-1] - img = np.moveaxis(img, 2, 0) / 255 - img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(devices.device_bsrgan) - with torch.no_grad(): - output = model(img) - output = output.squeeze().float().cpu().clamp_(0, 1).numpy() - output = 255. * np.moveaxis(output, 0, 2) - output = output.astype(np.uint8) - output = output[:, :, ::-1] - torch.cuda.empty_cache() - return PIL.Image.fromarray(output, 'RGB') - - def load_model(self, path: str): - if "http" in path: - filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, - progress=True) - else: - filename = path - if not os.path.exists(filename) or filename is None: - print(f"BSRGAN: Unable to load model from {filename}", file=sys.stderr) - return None - model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) # define network - model.load_state_dict(torch.load(filename), strict=True) - model.eval() - for k, v in model.named_parameters(): - v.requires_grad = False - return model - diff --git a/modules/bsrgan_model_arch.py b/modules/bsrgan_model_arch.py deleted file mode 100644 index cb4d1c13..00000000 --- a/modules/bsrgan_model_arch.py +++ /dev/null @@ -1,102 +0,0 @@ -import functools -import torch -import torch.nn as nn -import torch.nn.functional as F -import torch.nn.init as init - - -def initialize_weights(net_l, scale=1): - if not isinstance(net_l, list): - net_l = [net_l] - for net in net_l: - for m in net.modules(): - if isinstance(m, nn.Conv2d): - init.kaiming_normal_(m.weight, a=0, mode='fan_in') - m.weight.data *= scale # for residual block - if m.bias is not None: - m.bias.data.zero_() - elif isinstance(m, nn.Linear): - init.kaiming_normal_(m.weight, a=0, mode='fan_in') - m.weight.data *= scale - if m.bias is not None: - m.bias.data.zero_() - elif isinstance(m, nn.BatchNorm2d): - init.constant_(m.weight, 1) - init.constant_(m.bias.data, 0.0) - - -def make_layer(block, n_layers): - layers = [] - for _ in range(n_layers): - layers.append(block()) - return nn.Sequential(*layers) - - -class ResidualDenseBlock_5C(nn.Module): - def __init__(self, nf=64, gc=32, bias=True): - super(ResidualDenseBlock_5C, self).__init__() - # gc: growth channel, i.e. intermediate channels - self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias) - self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias) - self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias) - self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias) - self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias) - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - - # initialization - initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) - - def forward(self, x): - x1 = self.lrelu(self.conv1(x)) - x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) - x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) - x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) - x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) - return x5 * 0.2 + x - - -class RRDB(nn.Module): - '''Residual in Residual Dense Block''' - - def __init__(self, nf, gc=32): - super(RRDB, self).__init__() - self.RDB1 = ResidualDenseBlock_5C(nf, gc) - self.RDB2 = ResidualDenseBlock_5C(nf, gc) - self.RDB3 = ResidualDenseBlock_5C(nf, gc) - - def forward(self, x): - out = self.RDB1(x) - out = self.RDB2(out) - out = self.RDB3(out) - return out * 0.2 + x - - -class RRDBNet(nn.Module): - def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4): - super(RRDBNet, self).__init__() - RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc) - self.sf = sf - - self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) - self.RRDB_trunk = make_layer(RRDB_block_f, nb) - self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - #### upsampling - self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - if self.sf==4: - self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) - - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - - def forward(self, x): - fea = self.conv_first(x) - trunk = self.trunk_conv(self.RRDB_trunk(fea)) - fea = fea + trunk - - fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))) - if self.sf==4: - fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))) - out = self.conv_last(self.lrelu(self.HRconv(fea))) - - return out \ No newline at end of file diff --git a/modules/esrgam_model_arch.py b/modules/esrgam_model_arch.py deleted file mode 100644 index e413d36e..00000000 --- a/modules/esrgam_model_arch.py +++ /dev/null @@ -1,80 +0,0 @@ -# this file is taken from https://github.com/xinntao/ESRGAN - -import functools -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def make_layer(block, n_layers): - layers = [] - for _ in range(n_layers): - layers.append(block()) - return nn.Sequential(*layers) - - -class ResidualDenseBlock_5C(nn.Module): - def __init__(self, nf=64, gc=32, bias=True): - super(ResidualDenseBlock_5C, self).__init__() - # gc: growth channel, i.e. intermediate channels - self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias) - self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias) - self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias) - self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias) - self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias) - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - - # initialization - # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) - - def forward(self, x): - x1 = self.lrelu(self.conv1(x)) - x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) - x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) - x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) - x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) - return x5 * 0.2 + x - - -class RRDB(nn.Module): - '''Residual in Residual Dense Block''' - - def __init__(self, nf, gc=32): - super(RRDB, self).__init__() - self.RDB1 = ResidualDenseBlock_5C(nf, gc) - self.RDB2 = ResidualDenseBlock_5C(nf, gc) - self.RDB3 = ResidualDenseBlock_5C(nf, gc) - - def forward(self, x): - out = self.RDB1(x) - out = self.RDB2(out) - out = self.RDB3(out) - return out * 0.2 + x - - -class RRDBNet(nn.Module): - def __init__(self, in_nc, out_nc, nf, nb, gc=32): - super(RRDBNet, self).__init__() - RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc) - - self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) - self.RRDB_trunk = make_layer(RRDB_block_f, nb) - self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - #### upsampling - self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) - self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True) - - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - - def forward(self, x): - fea = self.conv_first(x) - trunk = self.trunk_conv(self.RRDB_trunk(fea)) - fea = fea + trunk - - fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))) - fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))) - out = self.conv_last(self.lrelu(self.HRconv(fea))) - - return out diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 3970e6e4..a49e2258 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -5,68 +5,115 @@ import torch from PIL import Image from basicsr.utils.download_util import load_file_from_url -import modules.esrgam_model_arch as arch +import modules.esrgan_model_arch as arch from modules import shared, modelloader, images, devices from modules.upscaler import Upscaler, UpscalerData from modules.shared import opts -def fix_model_layers(crt_model, pretrained_net): - # this code is adapted from https://github.com/xinntao/ESRGAN - if 'conv_first.weight' in pretrained_net: - return pretrained_net - if 'model.0.weight' not in pretrained_net: - is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"] - if is_realesrgan: - raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.") - else: - raise Exception("The file is not a ESRGAN model.") +def mod2normal(state_dict): + # this code is copied from https://github.com/victorca25/iNNfer + if 'conv_first.weight' in state_dict: + crt_net = {} + items = [] + for k, v in state_dict.items(): + items.append(k) - crt_net = crt_model.state_dict() - load_net_clean = {} - for k, v in pretrained_net.items(): - if k.startswith('module.'): - load_net_clean[k[7:]] = v - else: - load_net_clean[k] = v - pretrained_net = load_net_clean + crt_net['model.0.weight'] = state_dict['conv_first.weight'] + crt_net['model.0.bias'] = state_dict['conv_first.bias'] - tbd = [] - for k, v in crt_net.items(): - tbd.append(k) + for k in items.copy(): + if 'RDB' in k: + ori_k = k.replace('RRDB_trunk.', 'model.1.sub.') + if '.weight' in k: + ori_k = ori_k.replace('.weight', '.0.weight') + elif '.bias' in k: + ori_k = ori_k.replace('.bias', '.0.bias') + crt_net[ori_k] = state_dict[k] + items.remove(k) - # directly copy - for k, v in crt_net.items(): - if k in pretrained_net and pretrained_net[k].size() == v.size(): - crt_net[k] = pretrained_net[k] - tbd.remove(k) + crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight'] + crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias'] + crt_net['model.3.weight'] = state_dict['upconv1.weight'] + crt_net['model.3.bias'] = state_dict['upconv1.bias'] + crt_net['model.6.weight'] = state_dict['upconv2.weight'] + crt_net['model.6.bias'] = state_dict['upconv2.bias'] + crt_net['model.8.weight'] = state_dict['HRconv.weight'] + crt_net['model.8.bias'] = state_dict['HRconv.bias'] + crt_net['model.10.weight'] = state_dict['conv_last.weight'] + crt_net['model.10.bias'] = state_dict['conv_last.bias'] + state_dict = crt_net + return state_dict - crt_net['conv_first.weight'] = pretrained_net['model.0.weight'] - crt_net['conv_first.bias'] = pretrained_net['model.0.bias'] - for k in tbd.copy(): - if 'RDB' in k: - ori_k = k.replace('RRDB_trunk.', 'model.1.sub.') - if '.weight' in k: - ori_k = ori_k.replace('.weight', '.0.weight') - elif '.bias' in k: - ori_k = ori_k.replace('.bias', '.0.bias') - crt_net[k] = pretrained_net[ori_k] - tbd.remove(k) +def resrgan2normal(state_dict, nb=23): + # this code is copied from https://github.com/victorca25/iNNfer + if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: + crt_net = {} + items = [] + for k, v in state_dict.items(): + items.append(k) - crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight'] - crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias'] - crt_net['upconv1.weight'] = pretrained_net['model.3.weight'] - crt_net['upconv1.bias'] = pretrained_net['model.3.bias'] - crt_net['upconv2.weight'] = pretrained_net['model.6.weight'] - crt_net['upconv2.bias'] = pretrained_net['model.6.bias'] - crt_net['HRconv.weight'] = pretrained_net['model.8.weight'] - crt_net['HRconv.bias'] = pretrained_net['model.8.bias'] - crt_net['conv_last.weight'] = pretrained_net['model.10.weight'] - crt_net['conv_last.bias'] = pretrained_net['model.10.bias'] + crt_net['model.0.weight'] = state_dict['conv_first.weight'] + crt_net['model.0.bias'] = state_dict['conv_first.bias'] + + for k in items.copy(): + if "rdb" in k: + ori_k = k.replace('body.', 'model.1.sub.') + ori_k = ori_k.replace('.rdb', '.RDB') + if '.weight' in k: + ori_k = ori_k.replace('.weight', '.0.weight') + elif '.bias' in k: + ori_k = ori_k.replace('.bias', '.0.bias') + crt_net[ori_k] = state_dict[k] + items.remove(k) + + crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight'] + crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias'] + crt_net['model.3.weight'] = state_dict['conv_up1.weight'] + crt_net['model.3.bias'] = state_dict['conv_up1.bias'] + crt_net['model.6.weight'] = state_dict['conv_up2.weight'] + crt_net['model.6.bias'] = state_dict['conv_up2.bias'] + crt_net['model.8.weight'] = state_dict['conv_hr.weight'] + crt_net['model.8.bias'] = state_dict['conv_hr.bias'] + crt_net['model.10.weight'] = state_dict['conv_last.weight'] + crt_net['model.10.bias'] = state_dict['conv_last.bias'] + state_dict = crt_net + return state_dict + + +def infer_params(state_dict): + # this code is copied from https://github.com/victorca25/iNNfer + scale2x = 0 + scalemin = 6 + n_uplayer = 0 + plus = False + + for block in list(state_dict): + parts = block.split(".") + n_parts = len(parts) + if n_parts == 5 and parts[2] == "sub": + nb = int(parts[3]) + elif n_parts == 3: + part_num = int(parts[1]) + if (part_num > scalemin + and parts[0] == "model" + and parts[2] == "weight"): + scale2x += 1 + if part_num > n_uplayer: + n_uplayer = part_num + out_nc = state_dict[block].shape[0] + if not plus and "conv1x1" in block: + plus = True + + nf = state_dict["model.0.weight"].shape[0] + in_nc = state_dict["model.0.weight"].shape[1] + out_nc = out_nc + scale = 2 ** scale2x + + return in_nc, out_nc, nf, nb, plus, scale - return crt_net class UpscalerESRGAN(Upscaler): def __init__(self, dirname): @@ -109,20 +156,39 @@ class UpscalerESRGAN(Upscaler): print("Unable to load %s from %s" % (self.model_path, filename)) return None - pretrained_net = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None) - crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32) + state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None) - pretrained_net = fix_model_layers(crt_model, pretrained_net) - crt_model.load_state_dict(pretrained_net) - crt_model.eval() + if "params_ema" in state_dict: + state_dict = state_dict["params_ema"] + elif "params" in state_dict: + state_dict = state_dict["params"] + num_conv = 16 if "realesr-animevideov3" in filename else 32 + model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu') + model.load_state_dict(state_dict) + model.eval() + return model - return crt_model + if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict: + nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23 + state_dict = resrgan2normal(state_dict, nb) + elif "conv_first.weight" in state_dict: + state_dict = mod2normal(state_dict) + elif "model.0.weight" not in state_dict: + raise Exception("The file is not a recognized ESRGAN model.") + + in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict) + + model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus) + model.load_state_dict(state_dict) + model.eval() + + return model def upscale_without_tiling(model, img): img = np.array(img) img = img[:, :, ::-1] - img = np.moveaxis(img, 2, 0) / 255 + img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255 img = torch.from_numpy(img).float() img = img.unsqueeze(0).to(devices.device_esrgan) with torch.no_grad(): diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py new file mode 100644 index 00000000..bc9ceb2a --- /dev/null +++ b/modules/esrgan_model_arch.py @@ -0,0 +1,463 @@ +# this file is adapted from https://github.com/victorca25/iNNfer + +import math +import functools +import torch +import torch.nn as nn +import torch.nn.functional as F + + +#################### +# RRDBNet Generator +#################### + +class RRDBNet(nn.Module): + def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None, + act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D', + finalact=None, gaussian_noise=False, plus=False): + super(RRDBNet, self).__init__() + n_upscale = int(math.log(upscale, 2)) + if upscale == 3: + n_upscale = 1 + + self.resrgan_scale = 0 + if in_nc % 16 == 0: + self.resrgan_scale = 1 + elif in_nc != 4 and in_nc % 4 == 0: + self.resrgan_scale = 2 + + fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) + rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', + norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype, + gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)] + LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype) + + if upsample_mode == 'upconv': + upsample_block = upconv_block + elif upsample_mode == 'pixelshuffle': + upsample_block = pixelshuffle_block + else: + raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) + if upscale == 3: + upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype) + else: + upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)] + HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype) + HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) + + outact = act(finalact) if finalact else None + + self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)), + *upsampler, HR_conv0, HR_conv1, outact) + + def forward(self, x, outm=None): + if self.resrgan_scale == 1: + feat = pixel_unshuffle(x, scale=4) + elif self.resrgan_scale == 2: + feat = pixel_unshuffle(x, scale=2) + else: + feat = x + + return self.model(feat) + + +class RRDB(nn.Module): + """ + Residual in Residual Dense Block + (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) + """ + + def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', + norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', + spectral_norm=False, gaussian_noise=False, plus=False): + super(RRDB, self).__init__() + # This is for backwards compatibility with existing models + if nr == 3: + self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) + self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) + self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) + else: + RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)] + self.RDBs = nn.Sequential(*RDB_list) + + def forward(self, x): + if hasattr(self, 'RDB1'): + out = self.RDB1(x) + out = self.RDB2(out) + out = self.RDB3(out) + else: + out = self.RDBs(x) + return out * 0.2 + x + + +class ResidualDenseBlock_5C(nn.Module): + """ + Residual Dense Block + The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) + Modified options that can be used: + - "Partial Convolution based Padding" arXiv:1811.11718 + - "Spectral normalization" arXiv:1802.05957 + - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. + {Rakotonirina} and A. {Rasoanaivo} + """ + + def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', + norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', + spectral_norm=False, gaussian_noise=False, plus=False): + super(ResidualDenseBlock_5C, self).__init__() + + self.noise = GaussianNoise() if gaussian_noise else None + self.conv1x1 = conv1x1(nf, gc) if plus else None + + self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + if mode == 'CNA': + last_act = None + else: + last_act = act_type + self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + + def forward(self, x): + x1 = self.conv1(x) + x2 = self.conv2(torch.cat((x, x1), 1)) + if self.conv1x1: + x2 = x2 + self.conv1x1(x) + x3 = self.conv3(torch.cat((x, x1, x2), 1)) + x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) + if self.conv1x1: + x4 = x4 + x2 + x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) + if self.noise: + return self.noise(x5.mul(0.2) + x) + else: + return x5 * 0.2 + x + + +#################### +# ESRGANplus +#################### + +class GaussianNoise(nn.Module): + def __init__(self, sigma=0.1, is_relative_detach=False): + super().__init__() + self.sigma = sigma + self.is_relative_detach = is_relative_detach + self.noise = torch.tensor(0, dtype=torch.float) + + def forward(self, x): + if self.training and self.sigma != 0: + self.noise = self.noise.to(x.device) + scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x + sampled_noise = self.noise.repeat(*x.size()).normal_() * scale + x = x + sampled_noise + return x + +def conv1x1(in_planes, out_planes, stride=1): + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) + + +#################### +# SRVGGNetCompact +#################### + +class SRVGGNetCompact(nn.Module): + """A compact VGG-style network structure for super-resolution. + This class is copied from https://github.com/xinntao/Real-ESRGAN + """ + + def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'): + super(SRVGGNetCompact, self).__init__() + self.num_in_ch = num_in_ch + self.num_out_ch = num_out_ch + self.num_feat = num_feat + self.num_conv = num_conv + self.upscale = upscale + self.act_type = act_type + + self.body = nn.ModuleList() + # the first conv + self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) + # the first activation + if act_type == 'relu': + activation = nn.ReLU(inplace=True) + elif act_type == 'prelu': + activation = nn.PReLU(num_parameters=num_feat) + elif act_type == 'leakyrelu': + activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) + self.body.append(activation) + + # the body structure + for _ in range(num_conv): + self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) + # activation + if act_type == 'relu': + activation = nn.ReLU(inplace=True) + elif act_type == 'prelu': + activation = nn.PReLU(num_parameters=num_feat) + elif act_type == 'leakyrelu': + activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) + self.body.append(activation) + + # the last conv + self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) + # upsample + self.upsampler = nn.PixelShuffle(upscale) + + def forward(self, x): + out = x + for i in range(0, len(self.body)): + out = self.body[i](out) + + out = self.upsampler(out) + # add the nearest upsampled image, so that the network learns the residual + base = F.interpolate(x, scale_factor=self.upscale, mode='nearest') + out += base + return out + + +#################### +# Upsampler +#################### + +class Upsample(nn.Module): + r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. + The input data is assumed to be of the form + `minibatch x channels x [optional depth] x [optional height] x width`. + """ + + def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None): + super(Upsample, self).__init__() + if isinstance(scale_factor, tuple): + self.scale_factor = tuple(float(factor) for factor in scale_factor) + else: + self.scale_factor = float(scale_factor) if scale_factor else None + self.mode = mode + self.size = size + self.align_corners = align_corners + + def forward(self, x): + return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) + + def extra_repr(self): + if self.scale_factor is not None: + info = 'scale_factor=' + str(self.scale_factor) + else: + info = 'size=' + str(self.size) + info += ', mode=' + self.mode + return info + + +def pixel_unshuffle(x, scale): + """ Pixel unshuffle. + Args: + x (Tensor): Input feature with shape (b, c, hh, hw). + scale (int): Downsample ratio. + Returns: + Tensor: the pixel unshuffled feature. + """ + b, c, hh, hw = x.size() + out_channel = c * (scale**2) + assert hh % scale == 0 and hw % scale == 0 + h = hh // scale + w = hw // scale + x_view = x.view(b, c, h, scale, w, scale) + return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) + + +def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, + pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'): + """ + Pixel shuffle layer + (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional + Neural Network, CVPR17) + """ + conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, + pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype) + pixel_shuffle = nn.PixelShuffle(upscale_factor) + + n = norm(norm_type, out_nc) if norm_type else None + a = act(act_type) if act_type else None + return sequential(conv, pixel_shuffle, n, a) + + +def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, + pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'): + """ Upconv layer """ + upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor + upsample = Upsample(scale_factor=upscale_factor, mode=mode) + conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, + pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype) + return sequential(upsample, conv) + + + + + + + + +#################### +# Basic blocks +#################### + + +def make_layer(basic_block, num_basic_block, **kwarg): + """Make layers by stacking the same blocks. + Args: + basic_block (nn.module): nn.module class for basic block. (block) + num_basic_block (int): number of blocks. (n_layers) + Returns: + nn.Sequential: Stacked blocks in nn.Sequential. + """ + layers = [] + for _ in range(num_basic_block): + layers.append(basic_block(**kwarg)) + return nn.Sequential(*layers) + + +def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): + """ activation helper """ + act_type = act_type.lower() + if act_type == 'relu': + layer = nn.ReLU(inplace) + elif act_type in ('leakyrelu', 'lrelu'): + layer = nn.LeakyReLU(neg_slope, inplace) + elif act_type == 'prelu': + layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) + elif act_type == 'tanh': # [-1, 1] range output + layer = nn.Tanh() + elif act_type == 'sigmoid': # [0, 1] range output + layer = nn.Sigmoid() + else: + raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) + return layer + + +class Identity(nn.Module): + def __init__(self, *kwargs): + super(Identity, self).__init__() + + def forward(self, x, *kwargs): + return x + + +def norm(norm_type, nc): + """ Return a normalization layer """ + norm_type = norm_type.lower() + if norm_type == 'batch': + layer = nn.BatchNorm2d(nc, affine=True) + elif norm_type == 'instance': + layer = nn.InstanceNorm2d(nc, affine=False) + elif norm_type == 'none': + def norm_layer(x): return Identity() + else: + raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) + return layer + + +def pad(pad_type, padding): + """ padding layer helper """ + pad_type = pad_type.lower() + if padding == 0: + return None + if pad_type == 'reflect': + layer = nn.ReflectionPad2d(padding) + elif pad_type == 'replicate': + layer = nn.ReplicationPad2d(padding) + elif pad_type == 'zero': + layer = nn.ZeroPad2d(padding) + else: + raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) + return layer + + +def get_valid_padding(kernel_size, dilation): + kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) + padding = (kernel_size - 1) // 2 + return padding + + +class ShortcutBlock(nn.Module): + """ Elementwise sum the output of a submodule to its input """ + def __init__(self, submodule): + super(ShortcutBlock, self).__init__() + self.sub = submodule + + def forward(self, x): + output = x + self.sub(x) + return output + + def __repr__(self): + return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|') + + +def sequential(*args): + """ Flatten Sequential. It unwraps nn.Sequential. """ + if len(args) == 1: + if isinstance(args[0], OrderedDict): + raise NotImplementedError('sequential does not support OrderedDict input.') + return args[0] # No sequential is needed. + modules = [] + for module in args: + if isinstance(module, nn.Sequential): + for submodule in module.children(): + modules.append(submodule) + elif isinstance(module, nn.Module): + modules.append(module) + return nn.Sequential(*modules) + + +def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, + pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D', + spectral_norm=False): + """ Conv layer with padding, normalization, activation """ + assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) + padding = get_valid_padding(kernel_size, dilation) + p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None + padding = padding if pad_type == 'zero' else 0 + + if convtype=='PartialConv2D': + c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + elif convtype=='DeformConv2D': + c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + elif convtype=='Conv3D': + c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + else: + c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + + if spectral_norm: + c = nn.utils.spectral_norm(c) + + a = act(act_type) if act_type else None + if 'CNA' in mode: + n = norm(norm_type, out_nc) if norm_type else None + return sequential(p, c, n, a) + elif mode == 'NAC': + if norm_type is None and act_type is not None: + a = act(act_type, inplace=False) + n = norm(norm_type, in_nc) if norm_type else None + return sequential(n, a, p, c) From 6e4f5566b58e36aede83427df6c69eba8517af28 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 15 Oct 2022 23:53:49 +0800 Subject: [PATCH 002/321] sorting files --- javascript/images_history.js | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/javascript/images_history.js b/javascript/images_history.js index f7d052c3..7f0d8f42 100644 --- a/javascript/images_history.js +++ b/javascript/images_history.js @@ -96,7 +96,7 @@ function images_history_get_current_img(tabname, image_path, files){ ]; } -function images_history_delete(del_num, tabname, img_path, img_file_name, page_index, filenames, image_index){ +function images_history_delete(del_num, tabname, img_file_name, page_index, filenames, image_index){ image_index = parseInt(image_index); var tab = gradioApp().getElementById(tabname + '_images_history'); var set_btn = tab.querySelector(".images_history_set_index"); @@ -132,12 +132,12 @@ function images_history_delete(del_num, tabname, img_path, img_file_name, page_i return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index]; } -function images_history_turnpage(img_path, page_index, image_index, tabname){ +function images_history_turnpage(img_path, page_index, image_index, tabname, date_from, date_to){ var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item"); buttons.forEach(function(elem) { elem.style.display = 'block'; }) - return [img_path, page_index, image_index, tabname]; + return [img_path, page_index, image_index, tabname, date_from, date_to]; } function images_history_enable_del_buttons(){ From 763b893f319cee280b86e63025eb55e7c16b02e7 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sun, 16 Oct 2022 10:03:09 +0800 Subject: [PATCH 003/321] images history sorting files by date --- javascript/images_history.js | 12 +- modules/images_history.py | 261 ++++++++++++++++++++++++++--------- 2 files changed, 202 insertions(+), 71 deletions(-) diff --git a/javascript/images_history.js b/javascript/images_history.js index 7f0d8f42..ac5834c7 100644 --- a/javascript/images_history.js +++ b/javascript/images_history.js @@ -88,10 +88,10 @@ function images_history_set_image_info(button){ } -function images_history_get_current_img(tabname, image_path, files){ +function images_history_get_current_img(tabname, img_index, files){ return [ - gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"), - image_path, + tabname, + gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"), files ]; } @@ -129,7 +129,7 @@ function images_history_delete(del_num, tabname, img_file_name, page_index, file setTimeout(function(btn){btn.click()}, 30, btn); } images_history_disabled_del(); - return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index]; + return [del_num, tabname, img_file_name, page_index, filenames, image_index]; } function images_history_turnpage(img_path, page_index, image_index, tabname, date_from, date_to){ @@ -170,8 +170,8 @@ function images_history_init(){ } tabs_box.classList.add(images_history_tab_list[0]); - // same as above, at page load - //load_txt2img_button.click(); + // same as above, at page load-- load very fast now + load_txt2img_button.click(); } else { setTimeout(images_history_init, 500); } diff --git a/modules/images_history.py b/modules/images_history.py index f5ef44fe..533cf51b 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -1,33 +1,74 @@ import os import shutil +import time +import hashlib +import gradio +show_max_dates_num = 3 +system_bak_path = "webui_log_and_bak" +def is_valid_date(date): + try: + time.strptime(date, "%Y%m%d") + return True + except: + return False +def reduplicative_file_move(src, dst): + def same_name_file(basename, path): + name, ext = os.path.splitext(basename) + f_list = os.listdir(path) + max_num = 0 + for f in f_list: + if len(f) <= len(basename): + continue + f_ext = f[-len(ext):] if len(ext) > 0 else "" + if f[:len(name)] == name and f_ext == ext: + if f[len(name)] == "(" and f[-len(ext)-1] == ")": + number = f[len(name)+1:-len(ext)-1] + if number.isdigit(): + if int(number) > max_num: + max_num = int(number) + return f"{name}({max_num + 1}){ext}" + name = os.path.basename(src) + save_name = os.path.join(dst, name) + if not os.path.exists(save_name): + shutil.move(src, dst) + else: + name = same_name_file(name, dst) + shutil.move(src, os.path.join(dst, name)) -def traverse_all_files(output_dir, image_list, curr_dir=None): - curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir) +def traverse_all_files(curr_path, image_list, all_type=False): try: f_list = os.listdir(curr_path) except: - if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt": - image_list.append(curr_dir) + if all_type or curr_path[-10:].rfind(".") > 0 and curr_path[-4:] != ".txt": + image_list.append(curr_path) return image_list for file in f_list: - file = file if curr_dir is None else os.path.join(curr_dir, file) - file_path = os.path.join(curr_path, file) - if file[-4:] == ".txt": + file = os.path.join(curr_path, file) + if (not all_type) and file[-4:] == ".txt": pass - elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0: + elif os.path.isfile(file) and file[-10:].rfind(".") > 0: image_list.append(file) else: - image_list = traverse_all_files(output_dir, image_list, file) + image_list = traverse_all_files(file, image_list) return image_list - -def get_recent_images(dir_name, page_index, step, image_index, tabname): - page_index = int(page_index) - f_list = os.listdir(dir_name) +def get_recent_images(dir_name, page_index, step, image_index, tabname, date_from, date_to): + #print(f"turn_page {page_index}",date_from) + if date_from is None or date_from == "": + return None, 1, None, "" image_list = [] - image_list = traverse_all_files(dir_name, image_list) - image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file))) + date_list = auto_sorting(dir_name) + page_index = int(page_index) + today = time.strftime("%Y%m%d",time.localtime(time.time())) + for date in date_list: + if date >= date_from and date <= date_to: + path = os.path.join(dir_name, date) + if date == today and not os.path.exists(path): + continue + image_list = traverse_all_files(path, image_list) + + image_list = sorted(image_list, key=lambda file: -os.path.getctime(file)) num = 48 if tabname != "extras" else 12 max_page_index = len(image_list) // num + 1 page_index = max_page_index if page_index == -1 else page_index + step @@ -38,40 +79,101 @@ def get_recent_images(dir_name, page_index, step, image_index, tabname): image_index = int(image_index) if image_index < 0 or image_index > len(image_list) - 1: current_file = None - hidden = None else: - current_file = image_list[int(image_index)] - hidden = os.path.join(dir_name, current_file) - return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, "" + current_file = image_list[image_index] + return image_list, page_index, image_list, "" + +def auto_sorting(dir_name): + #print(f"auto sorting") + bak_path = os.path.join(dir_name, system_bak_path) + if not os.path.exists(bak_path): + os.mkdir(bak_path) + log_file = None + files_list = [] + f_list = os.listdir(dir_name) + for file in f_list: + if file == system_bak_path: + continue + file_path = os.path.join(dir_name, file) + if not is_valid_date(file): + if file[-10:].rfind(".") > 0: + files_list.append(file_path) + else: + files_list = traverse_all_files(file_path, files_list, all_type=True) + + for file in files_list: + date_str = time.strftime("%Y%m%d",time.localtime(os.path.getctime(file))) + file_path = os.path.dirname(file) + hash_path = hashlib.md5(file_path.encode()).hexdigest() + path = os.path.join(dir_name, date_str, hash_path) + if not os.path.exists(path): + os.makedirs(path) + if log_file is None: + log_file = open(os.path.join(bak_path,"path_mapping.csv"),"a") + log_file.write(f"{hash_path},{file_path}\n") + reduplicative_file_move(file, path) + + date_list = [] + f_list = os.listdir(dir_name) + for f in f_list: + if is_valid_date(f): + date_list.append(f) + elif f == system_bak_path: + continue + else: + reduplicative_file_move(os.path.join(dir_name, f), bak_path) + + today = time.strftime("%Y%m%d",time.localtime(time.time())) + if today not in date_list: + date_list.append(today) + return sorted(date_list) -def first_page_click(dir_name, page_index, image_index, tabname): - return get_recent_images(dir_name, 1, 0, image_index, tabname) + +def archive_images(dir_name): + date_list = auto_sorting(dir_name) + date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0] + return ( + gradio.update(visible=False), + gradio.update(visible=True), + gradio.Dropdown.update(choices=date_list, value=date_list[-1]), + gradio.Dropdown.update(choices=date_list, value=date_from) + ) + +def date_to_change(dir_name, page_index, image_index, tabname, date_from, date_to): + #print("date_to", date_to) + date_list = auto_sorting(dir_name) + date_from_list = [date for date in date_list if date <= date_to] + date_from = date_from_list[0] if len(date_from_list) < show_max_dates_num else date_from_list[-show_max_dates_num] + image_list, page_index, image_list, _ =get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to) + return image_list, page_index, image_list, _, gradio.Dropdown.update(choices=date_from_list, value=date_from) + +def first_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): + return get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to) -def end_page_click(dir_name, page_index, image_index, tabname): - return get_recent_images(dir_name, -1, 0, image_index, tabname) +def end_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): + return get_recent_images(dir_name, -1, 0, image_index, tabname, date_from, date_to) -def prev_page_click(dir_name, page_index, image_index, tabname): - return get_recent_images(dir_name, page_index, -1, image_index, tabname) +def prev_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): + return get_recent_images(dir_name, page_index, -1, image_index, tabname, date_from, date_to) -def next_page_click(dir_name, page_index, image_index, tabname): - return get_recent_images(dir_name, page_index, 1, image_index, tabname) +def next_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): + return get_recent_images(dir_name, page_index, 1, image_index, tabname, date_from, date_to) -def page_index_change(dir_name, page_index, image_index, tabname): - return get_recent_images(dir_name, page_index, 0, image_index, tabname) +def page_index_change(dir_name, page_index, image_index, tabname, date_from, date_to): + return get_recent_images(dir_name, page_index, 0, image_index, tabname, date_from, date_to) -def show_image_info(num, image_path, filenames): - # print(f"select image {num}") +def show_image_info(tabname_box, num, filenames): + # #print(f"select image {num}") file = filenames[int(num)] - return file, num, os.path.join(image_path, file) + return file, num, file - -def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index): +def delete_image(delete_num, tabname, name, page_index, filenames, image_index): if name == "": return filenames, delete_num else: @@ -81,21 +183,19 @@ def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, ima new_file_list = [] for name in filenames: if i >= index and i < index + delete_num: - path = os.path.join(dir_name, name) - if os.path.exists(path): - print(f"Delete file {path}") - os.remove(path) - txt_file = os.path.splitext(path)[0] + ".txt" + if os.path.exists(name): + #print(f"Delete file {name}") + os.remove(name) + txt_file = os.path.splitext(name)[0] + ".txt" if os.path.exists(txt_file): os.remove(txt_file) else: - print(f"Not exists file {path}") + #print(f"Not exists file {name}") else: new_file_list.append(name) i += 1 return new_file_list, 1 - def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): if tabname == "txt2img": dir_name = opts.outdir_txt2img_samples @@ -107,16 +207,32 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): dir_name = d[0] for p in d[1:]: dir_name = os.path.join(dir_name, p) - with gr.Row(): - renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page") - first_page = gr.Button('First Page') - prev_page = gr.Button('Prev Page') - page_index = gr.Number(value=1, label="Page Index") - next_page = gr.Button('Next Page') - end_page = gr.Button('End Page') - with gr.Row(elem_id=tabname + "_images_history"): + + f_list = os.listdir(dir_name) + sorted_flag = os.path.exists(os.path.join(dir_name, system_bak_path)) or len(f_list) == 0 + date_list, date_from, date_to = None, None, None + if sorted_flag: + #print(sorted_flag) + date_list = auto_sorting(dir_name) + date_to = date_list[-1] + date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0] + + with gr.Column(visible=sorted_flag) as page_panel: with gr.Row(): + renew_page = gr.Button('Refresh', elem_id=tabname + "_images_history_renew_page", interactive=sorted_flag) + first_page = gr.Button('First Page') + prev_page = gr.Button('Prev Page') + page_index = gr.Number(value=1, label="Page Index") + next_page = gr.Button('Next Page') + end_page = gr.Button('End Page') + + with gr.Row(elem_id=tabname + "_images_history"): with gr.Column(scale=2): + with gr.Row(): + newest = gr.Button('Newest') + date_to = gr.Dropdown(choices=date_list, value=date_to, label="Date to") + date_from = gr.Dropdown(choices=date_list, value=date_from, label="Date from") + history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6) with gr.Row(): delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next") @@ -128,22 +244,31 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): with gr.Row(): with gr.Column(): img_file_info = gr.Textbox(label="Generate Info", interactive=False) - img_file_name = gr.Textbox(label="File Name", interactive=False) - with gr.Row(): + img_file_name = gr.Textbox(value="", label="File Name", interactive=False) # hiden items + with gr.Row(visible=False): + img_path = gr.Textbox(dir_name) + tabname_box = gr.Textbox(tabname) + image_index = gr.Textbox(value=-1) + set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") + filenames = gr.State() + hidden = gr.Image(type="pil") + info1 = gr.Textbox() + info2 = gr.Textbox() + with gr.Column(visible=not sorted_flag) as init_warning: + with gr.Row(): + gr.Textbox("The system needs to archive the files according to the date. This requires changing the directory structure of the files", + label="Waring", + css="") + with gr.Row(): + sorted_button = gr.Button('Confirme') - img_path = gr.Textbox(dir_name.rstrip("/"), visible=False) - tabname_box = gr.Textbox(tabname, visible=False) - image_index = gr.Textbox(value=-1, visible=False) - set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False) - filenames = gr.State() - hidden = gr.Image(type="pil", visible=False) - info1 = gr.Textbox(visible=False) - info2 = gr.Textbox(visible=False) - + + + # turn pages - gallery_inputs = [img_path, page_index, image_index, tabname_box] - gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name] + gallery_inputs = [img_path, page_index, image_index, tabname_box, date_from, date_to] + gallery_outputs = [history_gallery, page_index, filenames, img_file_name] first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) @@ -154,15 +279,21 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): # page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index]) # other funcitons - set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden]) + set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, filenames], outputs=[img_file_name, image_index, hidden]) img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None) - delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num]) + delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num]) hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) - + date_to.change(date_to_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs + [date_from]) # pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img') switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img') + sorted_button.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from]) + newest.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from]) + + + + def create_history_tabs(gr, opts, run_pnginfo, switch_dict): with gr.Blocks(analytics_enabled=False) as images_history: From f62905fdf928b54aa76765e5cbde8d538d494e49 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sun, 16 Oct 2022 21:22:38 +0800 Subject: [PATCH 004/321] images history speed up --- javascript/images_history.js | 39 +++--- modules/images_history.py | 248 ++++++++++++++++++----------------- 2 files changed, 146 insertions(+), 141 deletions(-) diff --git a/javascript/images_history.js b/javascript/images_history.js index ac5834c7..fb1356d9 100644 --- a/javascript/images_history.js +++ b/javascript/images_history.js @@ -20,7 +20,7 @@ var images_history_click_image = function(){ var images_history_click_tab = function(){ var tabs_box = gradioApp().getElementById("images_history_tab"); if (!tabs_box.classList.contains(this.getAttribute("tabname"))) { - gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_renew_page").click(); + gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click(); tabs_box.classList.add(this.getAttribute("tabname")) } } @@ -96,7 +96,7 @@ function images_history_get_current_img(tabname, img_index, files){ ]; } -function images_history_delete(del_num, tabname, img_file_name, page_index, filenames, image_index){ +function images_history_delete(del_num, tabname, image_index){ image_index = parseInt(image_index); var tab = gradioApp().getElementById(tabname + '_images_history'); var set_btn = tab.querySelector(".images_history_set_index"); @@ -107,6 +107,7 @@ function images_history_delete(del_num, tabname, img_file_name, page_index, file } }); var img_num = buttons.length / 2; + del_num = Math.min(img_num - image_index, del_num) if (img_num <= del_num){ setTimeout(function(tabname){ gradioApp().getElementById(tabname + '_images_history_renew_page').click(); @@ -114,30 +115,29 @@ function images_history_delete(del_num, tabname, img_file_name, page_index, file } else { var next_img for (var i = 0; i < del_num; i++){ - if (image_index + i < image_index + img_num){ - buttons[image_index + i].style.display = 'none'; - buttons[image_index + img_num + 1].style.display = 'none'; - next_img = image_index + i + 1 - } + buttons[image_index + i].style.display = 'none'; + buttons[image_index + i + img_num].style.display = 'none'; + next_img = image_index + i + 1 } var bnt; if (next_img >= img_num){ - btn = buttons[image_index - del_num]; + btn = buttons[image_index - 1]; } else { btn = buttons[next_img]; } setTimeout(function(btn){btn.click()}, 30, btn); } images_history_disabled_del(); - return [del_num, tabname, img_file_name, page_index, filenames, image_index]; + } -function images_history_turnpage(img_path, page_index, image_index, tabname, date_from, date_to){ +function images_history_turnpage(tabname){ + console.log("del_button") + gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled'); var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item"); buttons.forEach(function(elem) { elem.style.display = 'block'; - }) - return [img_path, page_index, image_index, tabname, date_from, date_to]; + }) } function images_history_enable_del_buttons(){ @@ -147,7 +147,7 @@ function images_history_enable_del_buttons(){ } function images_history_init(){ - var load_txt2img_button = gradioApp().getElementById('txt2img_images_history_renew_page') + var load_txt2img_button = gradioApp().getElementById('saved_images_history_start') if (load_txt2img_button){ for (var i in images_history_tab_list ){ tab = images_history_tab_list[i]; @@ -166,7 +166,8 @@ function images_history_init(){ // this refreshes history upon tab switch // until the history is known to work well, which is not the case now, we do not do this at startup - //tab_btns[i].addEventListener('click', images_history_click_tab); + // -- load page very fast now, so better user experience by automatically activating pages + tab_btns[i].addEventListener('click', images_history_click_tab); } tabs_box.classList.add(images_history_tab_list[0]); @@ -177,7 +178,7 @@ function images_history_init(){ } } -var images_history_tab_list = ["txt2img", "img2img", "extras"]; +var images_history_tab_list = ["saved", "txt2img", "img2img", "extras"]; setTimeout(images_history_init, 500); document.addEventListener("DOMContentLoaded", function() { var mutationObserver = new MutationObserver(function(m){ @@ -188,18 +189,16 @@ document.addEventListener("DOMContentLoaded", function() { bnt.addEventListener('click', images_history_click_image, true); }); - // same as load_txt2img_button.click() above - /* var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg"); if (cls_btn){ cls_btn.addEventListener('click', function(){ - gradioApp().getElementById(tabname + '_images_history_renew_page').click(); + gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled'); }, false); - }*/ + } } }); - mutationObserver.observe( gradioApp(), { childList:true, subtree:true }); + mutationObserver.observe(gradioApp(), { childList:true, subtree:true }); }); diff --git a/modules/images_history.py b/modules/images_history.py index 7fd75005..ae0b4e40 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -3,8 +3,10 @@ import shutil import time import hashlib import gradio -show_max_dates_num = 3 + system_bak_path = "webui_log_and_bak" +loads_files_num = 216 +num_of_imgs_per_page = 36 def is_valid_date(date): try: time.strptime(date, "%Y%m%d") @@ -53,38 +55,7 @@ def traverse_all_files(curr_path, image_list, all_type=False): image_list = traverse_all_files(file, image_list) return image_list -def get_recent_images(dir_name, page_index, step, image_index, tabname, date_from, date_to): - #print(f"turn_page {page_index}",date_from) - if date_from is None or date_from == "": - return None, 1, None, "" - image_list = [] - date_list = auto_sorting(dir_name) - page_index = int(page_index) - today = time.strftime("%Y%m%d",time.localtime(time.time())) - for date in date_list: - if date >= date_from and date <= date_to: - path = os.path.join(dir_name, date) - if date == today and not os.path.exists(path): - continue - image_list = traverse_all_files(path, image_list) - - image_list = sorted(image_list, key=lambda file: -os.path.getctime(file)) - num = 48 if tabname != "extras" else 12 - max_page_index = len(image_list) // num + 1 - page_index = max_page_index if page_index == -1 else page_index + step - page_index = 1 if page_index < 1 else page_index - page_index = max_page_index if page_index > max_page_index else page_index - idx_frm = (page_index - 1) * num - image_list = image_list[idx_frm:idx_frm + num] - image_index = int(image_index) - if image_index < 0 or image_index > len(image_list) - 1: - current_file = None - else: - current_file = image_list[image_index] - return image_list, page_index, image_list, "" - -def auto_sorting(dir_name): - #print(f"auto sorting") +def auto_sorting(dir_name): bak_path = os.path.join(dir_name, system_bak_path) if not os.path.exists(bak_path): os.mkdir(bak_path) @@ -126,102 +97,131 @@ def auto_sorting(dir_name): today = time.strftime("%Y%m%d",time.localtime(time.time())) if today not in date_list: date_list.append(today) - return sorted(date_list) + return sorted(date_list, reverse=True) -def archive_images(dir_name): +def archive_images(dir_name, date_to): date_list = auto_sorting(dir_name) - date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0] + today = time.strftime("%Y%m%d",time.localtime(time.time())) + date_to = today if date_to is None or date_to == "" else date_to + filenames = [] + for date in date_list: + if date <= date_to: + path = os.path.join(dir_name, date) + if date == today and not os.path.exists(path): + continue + filenames = traverse_all_files(path, filenames) + if len(filenames) > loads_files_num: + break + filenames = sorted(filenames, key=lambda file: -os.path.getctime(file)) + _, image_list, _, visible_num = get_recent_images(1, 0, filenames) return ( gradio.update(visible=False), gradio.update(visible=True), - gradio.Dropdown.update(choices=date_list, value=date_list[-1]), - gradio.Dropdown.update(choices=date_list, value=date_from) + gradio.Dropdown.update(choices=date_list, value=date_to), + date, + filenames, + 1, + image_list, + "", + visible_num ) +def system_init(dir_name): + ret = [x for x in archive_images(dir_name, None)] + ret += [gradio.update(visible=False)] + return ret -def date_to_change(dir_name, page_index, image_index, tabname, date_from, date_to): - #print("date_to", date_to) - date_list = auto_sorting(dir_name) - date_from_list = [date for date in date_list if date <= date_to] - date_from = date_from_list[0] if len(date_from_list) < show_max_dates_num else date_from_list[-show_max_dates_num] - image_list, page_index, image_list, _ =get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to) - return image_list, page_index, image_list, _, gradio.Dropdown.update(choices=date_from_list, value=date_from) +def newest_click(dir_name, date_to): + if date_to == "start": + return True, False, "start", None, None, 1, None, "" + else: + return archive_images(dir_name, time.strftime("%Y%m%d",time.localtime(time.time()))) -def first_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): - return get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to) - - -def end_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): - return get_recent_images(dir_name, -1, 0, image_index, tabname, date_from, date_to) - - -def prev_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): - return get_recent_images(dir_name, page_index, -1, image_index, tabname, date_from, date_to) - - -def next_page_click(dir_name, page_index, image_index, tabname, date_from, date_to): - return get_recent_images(dir_name, page_index, 1, image_index, tabname, date_from, date_to) - - -def page_index_change(dir_name, page_index, image_index, tabname, date_from, date_to): - return get_recent_images(dir_name, page_index, 0, image_index, tabname, date_from, date_to) - - -def show_image_info(tabname_box, num, filenames): - # #print(f"select image {num}") - file = filenames[int(num)] - return file, num, file - -def delete_image(delete_num, tabname, name, page_index, filenames, image_index): +def delete_image(delete_num, name, filenames, image_index, visible_num): if name == "": return filenames, delete_num else: delete_num = int(delete_num) + visible_num = int(visible_num) + image_index = int(image_index) index = list(filenames).index(name) i = 0 new_file_list = [] for name in filenames: if i >= index and i < index + delete_num: if os.path.exists(name): - #print(f"Delete file {name}") + if visible_num == image_index: + new_file_list.append(name) + continue + print(f"Delete file {name}") os.remove(name) + visible_num -= 1 txt_file = os.path.splitext(name)[0] + ".txt" if os.path.exists(txt_file): os.remove(txt_file) else: - #print(f"Not exists file {name}") + print(f"Not exists file {name}") else: new_file_list.append(name) i += 1 - return new_file_list, 1 + return new_file_list, 1, visible_num + +def get_recent_images(page_index, step, filenames): + page_index = int(page_index) + max_page_index = len(filenames) // num_of_imgs_per_page + 1 + page_index = max_page_index if page_index == -1 else page_index + step + page_index = 1 if page_index < 1 else page_index + page_index = max_page_index if page_index > max_page_index else page_index + idx_frm = (page_index - 1) * num_of_imgs_per_page + image_list = filenames[idx_frm:idx_frm + num_of_imgs_per_page] + length = len(filenames) + visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page + visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num + return page_index, image_list, "", visible_num + +def first_page_click(page_index, filenames): + return get_recent_images(1, 0, filenames) + +def end_page_click(page_index, filenames): + return get_recent_images(-1, 0, filenames) + +def prev_page_click(page_index, filenames): + return get_recent_images(page_index, -1, filenames) + +def next_page_click(page_index, filenames): + return get_recent_images(page_index, 1, filenames) + +def page_index_change(page_index, filenames): + return get_recent_images(page_index, 0, filenames) + +def show_image_info(tabname_box, num, page_index, filenames): + file = filenames[int(num) + int((page_index - 1) * num_of_imgs_per_page)] + return file, num, file def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): - if opts.outdir_samples != "": - dir_name = opts.outdir_samples - elif tabname == "txt2img": + if tabname == "txt2img": dir_name = opts.outdir_txt2img_samples elif tabname == "img2img": dir_name = opts.outdir_img2img_samples elif tabname == "extras": dir_name = opts.outdir_extras_samples + elif tabname == "saved": + dir_name = opts.outdir_save + if not os.path.exists(dir_name): + os.makedirs(dir_name) d = dir_name.split("/") - dir_name = "/" if dir_name.startswith("/") else d[0] + dir_name = d[0] for p in d[1:]: dir_name = os.path.join(dir_name, p) f_list = os.listdir(dir_name) sorted_flag = os.path.exists(os.path.join(dir_name, system_bak_path)) or len(f_list) == 0 date_list, date_from, date_to = None, None, None - if sorted_flag: - #print(sorted_flag) - date_list = auto_sorting(dir_name) - date_to = date_list[-1] - date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0] with gr.Column(visible=sorted_flag) as page_panel: with gr.Row(): - renew_page = gr.Button('Refresh', elem_id=tabname + "_images_history_renew_page", interactive=sorted_flag) + #renew_page = gr.Button('Refresh') first_page = gr.Button('First Page') prev_page = gr.Button('Prev Page') page_index = gr.Number(value=1, label="Page Index") @@ -231,9 +231,9 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): with gr.Row(elem_id=tabname + "_images_history"): with gr.Column(scale=2): with gr.Row(): - newest = gr.Button('Newest') - date_to = gr.Dropdown(choices=date_list, value=date_to, label="Date to") - date_from = gr.Dropdown(choices=date_list, value=date_from, label="Date from") + newest = gr.Button('Refresh', elem_id=tabname + "_images_history_start") + date_from = gr.Textbox(label="Date from", interactive=False) + date_to = gr.Dropdown(value="start" if not sorted_flag else None, label="Date to") history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6) with gr.Row(): @@ -247,66 +247,72 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): with gr.Column(): img_file_info = gr.Textbox(label="Generate Info", interactive=False) img_file_name = gr.Textbox(value="", label="File Name", interactive=False) + # hiden items - with gr.Row(visible=False): + with gr.Row(visible=False): + visible_img_num = gr.Number() img_path = gr.Textbox(dir_name) tabname_box = gr.Textbox(tabname) image_index = gr.Textbox(value=-1) set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") filenames = gr.State() + all_images_list = gr.State() hidden = gr.Image(type="pil") info1 = gr.Textbox() info2 = gr.Textbox() + with gr.Column(visible=not sorted_flag) as init_warning: with gr.Row(): - gr.Textbox("The system needs to archive the files according to the date. This requires changing the directory structure of the files", - label="Waring", - css="") + warning = gr.Textbox( + label="Waring", + value=f"The system needs to archive the files according to the date. This requires changing the directory structure of the files.If you have doubts about this operation, you can first back up the files in the '{dir_name}' directory" + ) + warning.style(height=100, width=50) with gr.Row(): sorted_button = gr.Button('Confirme') - - + change_date_output = [init_warning, page_panel, date_to, date_from, filenames, page_index, history_gallery, img_file_name, visible_img_num] + sorted_button.click(system_init, inputs=[img_path], outputs=change_date_output + [sorted_button]) + newest.click(newest_click, inputs=[img_path, date_to], outputs=change_date_output) + date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output) + date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + newest.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + + delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num]) + delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None) + # turn pages - gallery_inputs = [img_path, page_index, image_index, tabname_box, date_from, date_to] - gallery_outputs = [history_gallery, page_index, filenames, img_file_name] + gallery_inputs = [page_index, filenames] + gallery_outputs = [page_index, history_gallery, img_file_name, visible_img_num] - first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) - next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) - prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) - end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) - page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) - renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs) - # page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index]) + first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs) + next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs) + prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs) + end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs) + page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs) + + first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") # other funcitons - set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, filenames], outputs=[img_file_name, image_index, hidden]) - img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None) - delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num]) + set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, image_index, hidden]) + img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None) hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) - date_to.change(date_to_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs + [date_from]) - # pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) + switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img') switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img') - sorted_button.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from]) - newest.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from]) - - - def create_history_tabs(gr, opts, run_pnginfo, switch_dict): with gr.Blocks(analytics_enabled=False) as images_history: with gr.Tabs() as tabs: - with gr.Tab("txt2img history"): - with gr.Blocks(analytics_enabled=False) as images_history_txt2img: - show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict) - with gr.Tab("img2img history"): - with gr.Blocks(analytics_enabled=False) as images_history_img2img: - show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict) - with gr.Tab("extras history"): - with gr.Blocks(analytics_enabled=False) as images_history_img2img: - show_images_history(gr, opts, "extras", run_pnginfo, switch_dict) + for tab in ["saved", "txt2img", "img2img", "extras"]: + with gr.Tab(tab): + with gr.Blocks(analytics_enabled=False) as images_history_img2img: + show_images_history(gr, opts, tab, run_pnginfo, switch_dict) return images_history From a4de699e3c235d83b5a957d08779cb41cb0781bc Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sun, 16 Oct 2022 22:37:12 +0800 Subject: [PATCH 005/321] Images history speed up --- javascript/images_history.js | 1 + modules/images_history.py | 7 +++++-- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/javascript/images_history.js b/javascript/images_history.js index fb1356d9..9d9d04fb 100644 --- a/javascript/images_history.js +++ b/javascript/images_history.js @@ -108,6 +108,7 @@ function images_history_delete(del_num, tabname, image_index){ }); var img_num = buttons.length / 2; del_num = Math.min(img_num - image_index, del_num) + console.log(del_num, img_num) if (img_num <= del_num){ setTimeout(function(tabname){ gradioApp().getElementById(tabname + '_images_history_renew_page').click(); diff --git a/modules/images_history.py b/modules/images_history.py index ae0b4e40..94bd16a8 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -153,6 +153,7 @@ def delete_image(delete_num, name, filenames, image_index, visible_num): if os.path.exists(name): if visible_num == image_index: new_file_list.append(name) + i += 1 continue print(f"Delete file {name}") os.remove(name) @@ -221,7 +222,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): with gr.Column(visible=sorted_flag) as page_panel: with gr.Row(): - #renew_page = gr.Button('Refresh') + renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page") first_page = gr.Button('First Page') prev_page = gr.Button('Prev Page') page_index = gr.Number(value=1, label="Page Index") @@ -231,7 +232,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): with gr.Row(elem_id=tabname + "_images_history"): with gr.Column(scale=2): with gr.Row(): - newest = gr.Button('Refresh', elem_id=tabname + "_images_history_start") + newest = gr.Button('Reload', elem_id=tabname + "_images_history_start") date_from = gr.Textbox(label="Date from", interactive=False) date_to = gr.Dropdown(value="start" if not sorted_flag else None, label="Date to") @@ -291,12 +292,14 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs) end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs) page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs) + renew_page.click(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs) first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") # other funcitons set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, image_index, hidden]) From 9d702b16f01795c3af900e0ebd70faf4b25200f6 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 17 Oct 2022 16:11:03 +0800 Subject: [PATCH 006/321] fix two little bug --- modules/images_history.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/images_history.py b/modules/images_history.py index 23045df1..1ae168ca 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -133,7 +133,7 @@ def archive_images(dir_name, date_to): date = sort_array[loads_num][2] filenames = [x[1] for x in sort_array] else: - date = sort_array[loads_num][2] + date = sort_array[-1][2] filenames = [x[1] for x in sort_array] filenames = [x[1] for x in sort_array if x[2]>= date] _, image_list, _, visible_num = get_recent_images(1, 0, filenames) @@ -334,6 +334,6 @@ def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict): with gr.Tab(tab): with gr.Blocks(analytics_enabled=False) as images_history_img2img: show_images_history(gr, opts, tab, run_pnginfo, switch_dict) - gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory") #, visible=False) + gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False) return images_history From c408a0b41cfffde184cad35b2d97346342947d83 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 17 Oct 2022 22:28:43 +0800 Subject: [PATCH 007/321] fix two bug --- launch.py | 1 - modules/images_history.py | 4 ++-- 2 files changed, 2 insertions(+), 3 deletions(-) diff --git a/launch.py b/launch.py index 7520cfee..088eada1 100644 --- a/launch.py +++ b/launch.py @@ -11,7 +11,6 @@ python = sys.executable git = os.environ.get('GIT', "git") index_url = os.environ.get('INDEX_URL', "") - def extract_arg(args, name): return [x for x in args if x != name], name in args diff --git a/modules/images_history.py b/modules/images_history.py index 1ae168ca..10e5b970 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -181,7 +181,8 @@ def delete_image(delete_num, name, filenames, image_index, visible_num): return new_file_list, 1, visible_num def save_image(file_name): - shutil.copy2(file_name, opts.outdir_save) + if file_name is not None and os.path.exists(file_name): + shutil.copy2(file_name, opts.outdir_save) def get_recent_images(page_index, step, filenames): page_index = int(page_index) @@ -327,7 +328,6 @@ def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict): opts = sys_opts loads_files_num = int(opts.images_history_num_per_page) num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num) - backup_flag = opts.images_history_backup with gr.Blocks(analytics_enabled=False) as images_history: with gr.Tabs() as tabs: for tab in ["txt2img", "img2img", "extras", "saved"]: From de179cf8fd8191e1a6d288e7c29a16f53da1be88 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 17 Oct 2022 22:38:46 +0800 Subject: [PATCH 008/321] fix two bug --- launch.py | 1 + 1 file changed, 1 insertion(+) diff --git a/launch.py b/launch.py index 088eada1..7520cfee 100644 --- a/launch.py +++ b/launch.py @@ -11,6 +11,7 @@ python = sys.executable git = os.environ.get('GIT', "git") index_url = os.environ.get('INDEX_URL', "") + def extract_arg(args, name): return [x for x in args if x != name], name in args From 2272cf2f35fafd5cd486bfb4ee89df5bbc625b97 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 17 Oct 2022 23:04:42 +0800 Subject: [PATCH 009/321] fix two bug --- modules/images_history.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/images_history.py b/modules/images_history.py index 10e5b970..1c1790a4 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -133,7 +133,7 @@ def archive_images(dir_name, date_to): date = sort_array[loads_num][2] filenames = [x[1] for x in sort_array] else: - date = sort_array[-1][2] + date = None if len(sort_array) == 0 else sort_array[-1][2] filenames = [x[1] for x in sort_array] filenames = [x[1] for x in sort_array if x[2]>= date] _, image_list, _, visible_num = get_recent_images(1, 0, filenames) From 2b5b62e768d892773a7ec1d5e8d8cea23aae1254 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 17 Oct 2022 23:14:03 +0800 Subject: [PATCH 010/321] fix two bug --- modules/images_history.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/images_history.py b/modules/images_history.py index 1c1790a4..20324557 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -44,7 +44,7 @@ def traverse_all_files(curr_path, image_list, all_type=False): return image_list for file in f_list: file = os.path.join(curr_path, file) - if (not all_type) and file[-4:] == ".txt": + if (not all_type) and (file[-4:] == ".txt" or file[-4:] == ".csv"): pass elif os.path.isfile(file) and file[-10:].rfind(".") > 0: image_list.append(file) @@ -182,7 +182,7 @@ def delete_image(delete_num, name, filenames, image_index, visible_num): def save_image(file_name): if file_name is not None and os.path.exists(file_name): - shutil.copy2(file_name, opts.outdir_save) + shutil.copy(file_name, opts.outdir_save) def get_recent_images(page_index, step, filenames): page_index = int(page_index) From 7651b84968f66dd0a5c3346520aad8dac6c4464e Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 19:07:17 +0900 Subject: [PATCH 011/321] Initial KR support - WIP Localization WIP --- ko-KR.json | 76 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 76 insertions(+) create mode 100644 ko-KR.json diff --git a/ko-KR.json b/ko-KR.json new file mode 100644 index 00000000..f93b3e16 --- /dev/null +++ b/ko-KR.json @@ -0,0 +1,76 @@ +{ + "txt2img": "텍스트→이미지", + "img2img": "이미지→이미지", + "Extras": "부가기능", + "PNG Info": "PNG 정보", + "History": "기록", + "Checkpoint Merger": "체크포인트 병합", + "Train": "훈련", + "Settings": "설정", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Hypernetwork": "하이퍼네트워크", + "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", + "Generate": "생성", + "Style 1": "스타일 1", + "Style 2": "스타일 2", + "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", + "Save style": "스타일 저장", + "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", + "Do not do anything special": "아무것도 하지 않기", + "Generate forever": "반복 생성", + "Cancel generate forever": "반복 생성 취소", + "Interrupt": "중단", + "Skip": "건너뛰기", + "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", + "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", + "Prompt": "프롬프트", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Negative prompt": "네거티브 프롬프트", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Sampling Steps": "샘플링 스텝 수", + "Sampling method": "샘플링 방법", + "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Width": "가로", + "Height": "세로", + "Restore faces": "얼굴 보정", + "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", + "Tiling": "타일링", + "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Highres. fix": "고해상도 보정", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Firstpass width": "초기 가로길이", + "Firstpass height": "초기 세로길이", + "Denoising strength": "디노이즈 강도", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Batch count": "배치 수", + "Batch size": "배치 크기", + "How many batches of images to create": "생성할 이미지 배치 수", + "How many image to create in a single batch": "한 배치당 이미지 수", + "CFG Scale": "CFG 스케일", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Seed": "시드", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", + "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", + "Extra": "고급", + "Variation seed": "바리에이션 시드", + "Variation strength": "바리에이션 강도", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", + "Resize seed from height": "시드 리사이징 가로길이", + "Resize seed from width": "시드 리사이징 세로길이", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Script": "스크립트", + "Save": "저장", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "Send to img2img": "이미지→이미지로 전송", + "Send to inpaint": "인페인트로 전송", + "Send to extras": "부가기능으로 전송", + "Open images output directory": "이미지 저장 경로 열기", + "Make Zip when Save?": "저장 시 Zip 생성하기", + "Always save all generated images": "생성된 이미지 항상 저장하기" +} \ No newline at end of file From 50e34cf194b3e3085bc99aeea4dbfd7758dc79c8 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 20:11:17 +0900 Subject: [PATCH 012/321] Update ko-KR.json --- localizations/ko-KR.json | 85 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 85 insertions(+) create mode 100644 localizations/ko-KR.json diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json new file mode 100644 index 00000000..a4367dc5 --- /dev/null +++ b/localizations/ko-KR.json @@ -0,0 +1,85 @@ +{ + "⤡": "⤡", + "⊞": "⊞", + "×": "×", + "❮": "❮", + "❯": "❯", + "Loading...": "로딩중...", + "view": "", + "api": "api", + "•": "•", + "txt2img": "텍스트→이미지", + "img2img": "이미지→이미지", + "Extras": "부가기능", + "PNG Info": "PNG 정보", + "History": "기록", + "Checkpoint Merger": "체크포인트 병합", + "Train": "훈련", + "Settings": "설정", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Hypernetwork": "하이퍼네트워크", + "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", + "Generate": "생성", + "Style 1": "스타일 1", + "Style 2": "스타일 2", + "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", + "Save style": "스타일 저장", + "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", + "Do not do anything special": "아무것도 하지 않기", + "Generate forever": "반복 생성", + "Cancel generate forever": "반복 생성 취소", + "Interrupt": "중단", + "Skip": "건너뛰기", + "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", + "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", + "Prompt": "프롬프트", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Negative prompt": "네거티브 프롬프트", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Sampling Steps": "샘플링 스텝 수", + "Sampling method": "샘플링 방법", + "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Width": "가로", + "Height": "세로", + "Restore faces": "얼굴 보정", + "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", + "Tiling": "타일링", + "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Highres. fix": "고해상도 보정", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Firstpass width": "초기 가로길이", + "Firstpass height": "초기 세로길이", + "Denoising strength": "디노이즈 강도", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Batch count": "배치 수", + "Batch size": "배치 크기", + "How many batches of images to create": "생성할 이미지 배치 수", + "How many image to create in a single batch": "한 배치당 이미지 수", + "CFG Scale": "CFG 스케일", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Seed": "시드", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", + "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", + "Extra": "고급", + "Variation seed": "바리에이션 시드", + "Variation strength": "바리에이션 강도", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", + "Resize seed from height": "시드 리사이징 가로길이", + "Resize seed from width": "시드 리사이징 세로길이", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Script": "스크립트", + "Save": "저장", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "Send to img2img": "이미지→이미지로 전송", + "Send to inpaint": "인페인트로 전송", + "Send to extras": "부가기능으로 전송", + "Open images output directory": "이미지 저장 경로 열기", + "Make Zip when Save?": "저장 시 Zip 생성하기", + "Always save all generated images": "생성된 이미지 항상 저장하기" +} \ No newline at end of file From 0530f07da3c77ed4bfa02f37de5c84562a37f470 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 20:12:54 +0900 Subject: [PATCH 013/321] Move ko-KR.json --- ko-KR.json | 76 ------------------------------------------------------ 1 file changed, 76 deletions(-) delete mode 100644 ko-KR.json diff --git a/ko-KR.json b/ko-KR.json deleted file mode 100644 index f93b3e16..00000000 --- a/ko-KR.json +++ /dev/null @@ -1,76 +0,0 @@ -{ - "txt2img": "텍스트→이미지", - "img2img": "이미지→이미지", - "Extras": "부가기능", - "PNG Info": "PNG 정보", - "History": "기록", - "Checkpoint Merger": "체크포인트 병합", - "Train": "훈련", - "Settings": "설정", - "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", - "Hypernetwork": "하이퍼네트워크", - "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", - "Generate": "생성", - "Style 1": "스타일 1", - "Style 2": "스타일 2", - "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", - "Save style": "스타일 저장", - "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", - "Do not do anything special": "아무것도 하지 않기", - "Generate forever": "반복 생성", - "Cancel generate forever": "반복 생성 취소", - "Interrupt": "중단", - "Skip": "건너뛰기", - "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", - "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", - "Prompt": "프롬프트", - "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Negative prompt": "네거티브 프롬프트", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Sampling Steps": "샘플링 스텝 수", - "Sampling method": "샘플링 방법", - "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", - "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", - "Width": "가로", - "Height": "세로", - "Restore faces": "얼굴 보정", - "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", - "Tiling": "타일링", - "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", - "Highres. fix": "고해상도 보정", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", - "Firstpass width": "초기 가로길이", - "Firstpass height": "초기 세로길이", - "Denoising strength": "디노이즈 강도", - "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", - "Batch count": "배치 수", - "Batch size": "배치 크기", - "How many batches of images to create": "생성할 이미지 배치 수", - "How many image to create in a single batch": "한 배치당 이미지 수", - "CFG Scale": "CFG 스케일", - "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", - "Seed": "시드", - "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", - "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", - "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", - "Extra": "고급", - "Variation seed": "바리에이션 시드", - "Variation strength": "바리에이션 강도", - "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", - "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", - "Resize seed from height": "시드 리사이징 가로길이", - "Resize seed from width": "시드 리사이징 세로길이", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", - "Script": "스크립트", - "Save": "저장", - "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", - "Send to img2img": "이미지→이미지로 전송", - "Send to inpaint": "인페인트로 전송", - "Send to extras": "부가기능으로 전송", - "Open images output directory": "이미지 저장 경로 열기", - "Make Zip when Save?": "저장 시 Zip 생성하기", - "Always save all generated images": "생성된 이미지 항상 저장하기" -} \ No newline at end of file From eb299527b1e5d1f83a14641647fca72e8fb305ac Mon Sep 17 00:00:00 2001 From: yfszzx Date: Tue, 18 Oct 2022 20:14:11 +0800 Subject: [PATCH 014/321] Image browser --- javascript/images_history.js | 19 ++- modules/images_history.py | 223 +++++++++++++++++++++++------------ modules/shared.py | 7 +- modules/ui.py | 2 +- uitest.bat | 2 + uitest.py | 124 +++++++++++++++++++ 6 files changed, 287 insertions(+), 90 deletions(-) create mode 100644 uitest.bat create mode 100644 uitest.py diff --git a/javascript/images_history.js b/javascript/images_history.js index 3c028bc6..182d730b 100644 --- a/javascript/images_history.js +++ b/javascript/images_history.js @@ -145,9 +145,10 @@ function images_history_enable_del_buttons(){ } function images_history_init(){ - var loaded = gradioApp().getElementById("images_history_reconstruct_directory") - if (loaded){ - var init_status = loaded.querySelector("input").checked + // var loaded = gradioApp().getElementById("images_history_reconstruct_directory") + // if (loaded){ + // var init_status = loaded.querySelector("input").checked + if (gradioApp().getElementById("images_history_finish_render")){ for (var i in images_history_tab_list ){ tab = images_history_tab_list[i]; gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor"); @@ -163,19 +164,17 @@ function images_history_init(){ for (var i in images_history_tab_list){ var tabname = images_history_tab_list[i] tab_btns[i].setAttribute("tabname", tabname); - if (init_status){ - tab_btns[i].addEventListener('click', images_history_click_tab); - } - } - if (init_status){ - tab_btns[0].click(); + // if (!init_status){ + // tab_btns[i].addEventListener('click', images_history_click_tab); + // } + tab_btns[i].addEventListener('click', images_history_click_tab); } } else { setTimeout(images_history_init, 500); } } -var images_history_tab_list = ["txt2img", "img2img", "extras", "saved"]; +var images_history_tab_list = ["custom", "txt2img", "img2img", "extras", "saved"]; setTimeout(images_history_init, 500); document.addEventListener("DOMContentLoaded", function() { var mutationObserver = new MutationObserver(function(m){ diff --git a/modules/images_history.py b/modules/images_history.py index 20324557..d56f3a25 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -4,6 +4,7 @@ import time import hashlib import gradio system_bak_path = "webui_log_and_bak" +browser_tabname = "custom" def is_valid_date(date): try: time.strptime(date, "%Y%m%d") @@ -99,13 +100,15 @@ def auto_sorting(dir_name): date_list.append(today) return sorted(date_list, reverse=True) -def archive_images(dir_name, date_to): +def archive_images(dir_name, date_to): + filenames = [] loads_num =int(opts.images_history_num_per_page * opts.images_history_pages_num) + today = time.strftime("%Y%m%d",time.localtime(time.time())) + date_to = today if date_to is None or date_to == "" else date_to + date_to_bak = date_to if opts.images_history_reconstruct_directory: - date_list = auto_sorting(dir_name) - today = time.strftime("%Y%m%d",time.localtime(time.time())) - date_to = today if date_to is None or date_to == "" else date_to + date_list = auto_sorting(dir_name) for date in date_list: if date <= date_to: path = os.path.join(dir_name, date) @@ -120,7 +123,7 @@ def archive_images(dir_name, date_to): tmparray = [(os.path.getmtime(file), file) for file in filenames ] date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400 filenames = [] - date_list = {} + date_list = {date_to:None} date = time.strftime("%Y%m%d",time.localtime(time.time())) for t, f in tmparray: date = time.strftime("%Y%m%d",time.localtime(t)) @@ -133,22 +136,29 @@ def archive_images(dir_name, date_to): date = sort_array[loads_num][2] filenames = [x[1] for x in sort_array] else: - date = None if len(sort_array) == 0 else sort_array[-1][2] + date = date_to if len(sort_array) == 0 else sort_array[-1][2] filenames = [x[1] for x in sort_array] - filenames = [x[1] for x in sort_array if x[2]>= date] - _, image_list, _, visible_num = get_recent_images(1, 0, filenames) + filenames = [x[1] for x in sort_array if x[2]>= date] + num = len(filenames) + last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000)) + date = date[:4] + "-" + date[4:6] + "-" + date[6:8] + date_to_bak = date_to_bak[:4] + "-" + date_to_bak[4:6] + "-" + date_to_bak[6:8] + load_info = f"Loaded {(num + 1) // opts.images_history_pages_num} pades, {num} images, during {date} - {date_to_bak}" + _, image_list, _, _, visible_num = get_recent_images(1, 0, filenames) return ( gradio.Dropdown.update(choices=date_list, value=date_to), - date, + load_info, filenames, 1, image_list, "", - visible_num + "", + visible_num, + last_date_from ) -def newest_click(dir_name, date_to): - return archive_images(dir_name, time.strftime("%Y%m%d",time.localtime(time.time()))) + + def delete_image(delete_num, name, filenames, image_index, visible_num): if name == "": @@ -196,7 +206,29 @@ def get_recent_images(page_index, step, filenames): length = len(filenames) visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num - return page_index, image_list, "", visible_num + return page_index, image_list, "", "", visible_num + +def newest_click(date_to): + if date_to is None: + return time.strftime("%Y%m%d",time.localtime(time.time())), [] + else: + return None, [] +def forward_click(last_date_from, date_to_recorder): + if len(date_to_recorder) == 0: + return None, [] + if last_date_from == date_to_recorder[-1]: + date_to_recorder = date_to_recorder[:-1] + if len(date_to_recorder) == 0: + return None, [] + return date_to_recorder[-1], date_to_recorder[:-1] + +def backward_click(last_date_from, date_to_recorder): + if last_date_from is None or last_date_from == "": + return time.strftime("%Y%m%d",time.localtime(time.time())), [] + if len(date_to_recorder) == 0 or last_date_from != date_to_recorder[-1]: + date_to_recorder.append(last_date_from) + return last_date_from, date_to_recorder + def first_page_click(page_index, filenames): return get_recent_images(1, 0, filenames) @@ -214,13 +246,33 @@ def page_index_change(page_index, filenames): return get_recent_images(page_index, 0, filenames) def show_image_info(tabname_box, num, page_index, filenames): - file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))] - return file, num, file + file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))] + tm = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + return file, tm, num, file def enable_page_buttons(): return gradio.update(visible=True) +def change_dir(img_dir, date_to): + warning = None + try: + if os.path.exists(img_dir): + try: + f = os.listdir(img_dir) + except: + warning = f"'{img_dir} is not a directory" + else: + warning = "The directory is not exist" + except: + warning = "The format of the directory is incorrect" + if warning is None: + today = time.strftime("%Y%m%d",time.localtime(time.time())) + return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today + else: + return gradio.update(visible=True), gradio.update(visible=False), warning, date_to + def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): + custom_dir = False if tabname == "txt2img": dir_name = opts.outdir_txt2img_samples elif tabname == "img2img": @@ -229,69 +281,85 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): dir_name = opts.outdir_extras_samples elif tabname == "saved": dir_name = opts.outdir_save + else: + custom_dir = True + dir_name = None - d = dir_name.split("/") - dir_name = d[0] - for p in d[1:]: - dir_name = os.path.join(dir_name, p) - if not os.path.exists(dir_name): - os.makedirs(dir_name) + if not custom_dir: + d = dir_name.split("/") + dir_name = d[0] + for p in d[1:]: + dir_name = os.path.join(dir_name, p) + if not os.path.exists(dir_name): + os.makedirs(dir_name) - with gr.Column() as page_panel: - with gr.Row(visible=False) as turn_page_buttons: - renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page") - first_page = gr.Button('First Page') - prev_page = gr.Button('Prev Page') - page_index = gr.Number(value=1, label="Page Index") - next_page = gr.Button('Next Page') - end_page = gr.Button('End Page') + with gr.Column() as page_panel: + with gr.Row(): + img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory") + with gr.Row(visible=False) as warning: + warning_box = gr.Textbox("Message", interactive=False) - with gr.Row(elem_id=tabname + "_images_history"): - with gr.Column(scale=2): - with gr.Row(): - newest = gr.Button('Reload', elem_id=tabname + "_images_history_start") - date_from = gr.Textbox(label="Date from", interactive=False) - date_to = gr.Dropdown(label="Date to") - - history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6) - with gr.Row(): - delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next") - delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button") - - with gr.Column(): - with gr.Row(): - if tabname != "saved": - save_btn = gr.Button('Save') - pnginfo_send_to_txt2img = gr.Button('Send to txt2img') - pnginfo_send_to_img2img = gr.Button('Send to img2img') - with gr.Row(): - with gr.Column(): - img_file_info = gr.Textbox(label="Generate Info", interactive=False) - img_file_name = gr.Textbox(value="", label="File Name", interactive=False) + with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel: + with gr.Column(scale=2): + with gr.Row(): + backward = gr.Button('Backward') + date_to = gr.Dropdown(label="Date to") + forward = gr.Button('Forward') + newest = gr.Button('Reload', elem_id=tabname + "_images_history_start") + with gr.Row(): + load_info = gr.Textbox(show_label=False, interactive=False) + with gr.Row(visible=False) as turn_page_buttons: + renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page") + first_page = gr.Button('First Page') + prev_page = gr.Button('Prev Page') + page_index = gr.Number(value=1, label="Page Index") + next_page = gr.Button('Next Page') + end_page = gr.Button('End Page') + history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=opts.images_history_grid_num) + with gr.Row(): + delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next") + delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button") - # hiden items - with gr.Row(visible=False): - visible_img_num = gr.Number() - img_path = gr.Textbox(dir_name) - tabname_box = gr.Textbox(tabname) - image_index = gr.Textbox(value=-1) - set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") - filenames = gr.State() - all_images_list = gr.State() - hidden = gr.Image(type="pil") - info1 = gr.Textbox() - info2 = gr.Textbox() + with gr.Column(): + with gr.Row(): + if tabname != "saved": + save_btn = gr.Button('Save') + pnginfo_send_to_txt2img = gr.Button('Send to txt2img') + pnginfo_send_to_img2img = gr.Button('Send to img2img') + with gr.Row(): + with gr.Column(): + img_file_info = gr.Textbox(label="Generate Info", interactive=False) + img_file_name = gr.Textbox(value="", label="File Name", interactive=False) + img_file_time= gr.Textbox(value="", label="Create Time", interactive=False) - + + # hiden items + with gr.Row(): #visible=False): + visible_img_num = gr.Number() + date_to_recorder = gr.State([]) + last_date_from = gr.Textbox() + tabname_box = gr.Textbox(tabname) + image_index = gr.Textbox(value=-1) + set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") + filenames = gr.State() + all_images_list = gr.State() + hidden = gr.Image(type="pil") + info1 = gr.Textbox() + info2 = gr.Textbox() + + img_path.submit(change_dir, inputs=[img_path, date_to], outputs=[warning, main_panel, warning_box, date_to]) #change date - change_date_output = [date_to, date_from, filenames, page_index, history_gallery, img_file_name, visible_img_num] - newest.click(newest_click, inputs=[img_path, date_to], outputs=change_date_output) - date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output) - newest.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons]) - newest.click(enable_page_buttons, inputs=None, outputs=[turn_page_buttons]) + change_date_output = [date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from] + + date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output) + date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons]) + date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + + newest.click(newest_click, inputs=[date_to], outputs=[date_to, date_to_recorder]) + forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder]) + backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder]) + #delete delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num]) @@ -301,7 +369,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): #turn page gallery_inputs = [page_index, filenames] - gallery_outputs = [page_index, history_gallery, img_file_name, visible_img_num] + gallery_outputs = [page_index, history_gallery, img_file_name, img_file_time, visible_img_num] first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs) next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs) prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs) @@ -317,12 +385,14 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") # other funcitons - set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, image_index, hidden]) + set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, img_file_time, image_index, hidden]) img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None) hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img') switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img') + + def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict): global opts; opts = sys_opts @@ -330,10 +400,11 @@ def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict): num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num) with gr.Blocks(analytics_enabled=False) as images_history: with gr.Tabs() as tabs: - for tab in ["txt2img", "img2img", "extras", "saved"]: + for tab in [browser_tabname, "txt2img", "img2img", "extras", "saved"]: with gr.Tab(tab): - with gr.Blocks(analytics_enabled=False) as images_history_img2img: + with gr.Blocks(analytics_enabled=False) : show_images_history(gr, opts, tab, run_pnginfo, switch_dict) - gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False) + #gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False) + gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_finish_render", visible=False) return images_history diff --git a/modules/shared.py b/modules/shared.py index c2ea4186..1811018d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -309,10 +309,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), })) -options_templates.update(options_section(('images-history', "Images history"), { - "images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"), +options_templates.update(options_section(('images-history', "Images Browser"), { + #"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"), "images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"), - "images_history_pages_num": OptionInfo(6, "Maximum number of pages per load "), + "images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "), + "images_history_grid_num": OptionInfo(6, "Number of grids in each row"), })) diff --git a/modules/ui.py b/modules/ui.py index 43dc88fc..85abac4d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1548,7 +1548,7 @@ Requested path was: {f} (img2img_interface, "img2img", "img2img"), (extras_interface, "Extras", "extras"), (pnginfo_interface, "PNG Info", "pnginfo"), - (images_history, "History", "images_history"), + (images_history, "Image Browser", "images_history"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"), (train_interface, "Train", "ti"), (settings_interface, "Settings", "settings"), diff --git a/uitest.bat b/uitest.bat new file mode 100644 index 00000000..ae863af6 --- /dev/null +++ b/uitest.bat @@ -0,0 +1,2 @@ +venv\Scripts\python.exe uitest.py +pause diff --git a/uitest.py b/uitest.py new file mode 100644 index 00000000..393e2d81 --- /dev/null +++ b/uitest.py @@ -0,0 +1,124 @@ +import os +import threading +import time +import importlib +import signal +import threading + +from modules.paths import script_path + +from modules import devices, sd_samplers +import modules.codeformer_model as codeformer +import modules.extras +import modules.face_restoration +import modules.gfpgan_model as gfpgan +import modules.img2img + +import modules.lowvram +import modules.paths +import modules.scripts +import modules.sd_hijack +import modules.sd_models +import modules.shared as shared +import modules.txt2img + +import modules.ui +from modules import devices +from modules import modelloader +from modules.paths import script_path +from modules.shared import cmd_opts + +modelloader.cleanup_models() +modules.sd_models.setup_model() +codeformer.setup_model(cmd_opts.codeformer_models_path) +gfpgan.setup_model(cmd_opts.gfpgan_models_path) +shared.face_restorers.append(modules.face_restoration.FaceRestoration()) +modelloader.load_upscalers() +queue_lock = threading.Lock() + + +def wrap_queued_call(func): + def f(*args, **kwargs): + with queue_lock: + res = func(*args, **kwargs) + + return res + + return f + + +def wrap_gradio_gpu_call(func, extra_outputs=None): + def f(*args, **kwargs): + devices.torch_gc() + + shared.state.sampling_step = 0 + shared.state.job_count = -1 + shared.state.job_no = 0 + shared.state.job_timestamp = shared.state.get_job_timestamp() + shared.state.current_latent = None + shared.state.current_image = None + shared.state.current_image_sampling_step = 0 + shared.state.interrupted = False + shared.state.textinfo = None + + with queue_lock: + res = func(*args, **kwargs) + + shared.state.job = "" + shared.state.job_count = 0 + + devices.torch_gc() + + return res + + return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) + + +modules.scripts.load_scripts(os.path.join(script_path, "scripts")) + +shared.sd_model = None #modules.sd_models.load_model() +#shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) + + +def webui(): + # make the program just exit at ctrl+c without waiting for anything + def sigint_handler(sig, frame): + print(f'Interrupted with signal {sig} in {frame}') + os._exit(0) + + signal.signal(signal.SIGINT, sigint_handler) + + while 1: + + demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call) + + demo.launch( + share=cmd_opts.share, + server_name="0.0.0.0" if cmd_opts.listen else None, + server_port=cmd_opts.port, + debug=cmd_opts.gradio_debug, + auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None, + inbrowser=cmd_opts.autolaunch, + prevent_thread_lock=True + ) + + while 1: + time.sleep(0.5) + if getattr(demo, 'do_restart', False): + time.sleep(0.5) + demo.close() + time.sleep(0.5) + break + + sd_samplers.set_samplers() + + print('Reloading Custom Scripts') + modules.scripts.reload_scripts(os.path.join(script_path, "scripts")) + print('Reloading modules: modules.ui') + importlib.reload(modules.ui) + print('Restarting Gradio') + + + +if __name__ == "__main__": + webui() \ No newline at end of file From c6f778d9b19d7116ffb82718f6ca0b867e2f4445 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Tue, 18 Oct 2022 20:15:08 +0800 Subject: [PATCH 015/321] Image browser --- uitest.bat | 2 - uitest.py | 124 ----------------------------------------------------- 2 files changed, 126 deletions(-) delete mode 100644 uitest.bat delete mode 100644 uitest.py diff --git a/uitest.bat b/uitest.bat deleted file mode 100644 index ae863af6..00000000 --- a/uitest.bat +++ /dev/null @@ -1,2 +0,0 @@ -venv\Scripts\python.exe uitest.py -pause diff --git a/uitest.py b/uitest.py deleted file mode 100644 index 393e2d81..00000000 --- a/uitest.py +++ /dev/null @@ -1,124 +0,0 @@ -import os -import threading -import time -import importlib -import signal -import threading - -from modules.paths import script_path - -from modules import devices, sd_samplers -import modules.codeformer_model as codeformer -import modules.extras -import modules.face_restoration -import modules.gfpgan_model as gfpgan -import modules.img2img - -import modules.lowvram -import modules.paths -import modules.scripts -import modules.sd_hijack -import modules.sd_models -import modules.shared as shared -import modules.txt2img - -import modules.ui -from modules import devices -from modules import modelloader -from modules.paths import script_path -from modules.shared import cmd_opts - -modelloader.cleanup_models() -modules.sd_models.setup_model() -codeformer.setup_model(cmd_opts.codeformer_models_path) -gfpgan.setup_model(cmd_opts.gfpgan_models_path) -shared.face_restorers.append(modules.face_restoration.FaceRestoration()) -modelloader.load_upscalers() -queue_lock = threading.Lock() - - -def wrap_queued_call(func): - def f(*args, **kwargs): - with queue_lock: - res = func(*args, **kwargs) - - return res - - return f - - -def wrap_gradio_gpu_call(func, extra_outputs=None): - def f(*args, **kwargs): - devices.torch_gc() - - shared.state.sampling_step = 0 - shared.state.job_count = -1 - shared.state.job_no = 0 - shared.state.job_timestamp = shared.state.get_job_timestamp() - shared.state.current_latent = None - shared.state.current_image = None - shared.state.current_image_sampling_step = 0 - shared.state.interrupted = False - shared.state.textinfo = None - - with queue_lock: - res = func(*args, **kwargs) - - shared.state.job = "" - shared.state.job_count = 0 - - devices.torch_gc() - - return res - - return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) - - -modules.scripts.load_scripts(os.path.join(script_path, "scripts")) - -shared.sd_model = None #modules.sd_models.load_model() -#shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) - - -def webui(): - # make the program just exit at ctrl+c without waiting for anything - def sigint_handler(sig, frame): - print(f'Interrupted with signal {sig} in {frame}') - os._exit(0) - - signal.signal(signal.SIGINT, sigint_handler) - - while 1: - - demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call) - - demo.launch( - share=cmd_opts.share, - server_name="0.0.0.0" if cmd_opts.listen else None, - server_port=cmd_opts.port, - debug=cmd_opts.gradio_debug, - auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None, - inbrowser=cmd_opts.autolaunch, - prevent_thread_lock=True - ) - - while 1: - time.sleep(0.5) - if getattr(demo, 'do_restart', False): - time.sleep(0.5) - demo.close() - time.sleep(0.5) - break - - sd_samplers.set_samplers() - - print('Reloading Custom Scripts') - modules.scripts.reload_scripts(os.path.join(script_path, "scripts")) - print('Reloading modules: modules.ui') - importlib.reload(modules.ui) - print('Restarting Gradio') - - - -if __name__ == "__main__": - webui() \ No newline at end of file From 684a31c4da673961ce9e3a384132fda5d1111ab8 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 21:50:34 +0900 Subject: [PATCH 016/321] update ko-KR.json Translated all text on txt2img window, plus some extra --- localizations/ko-KR.json | 42 ++++++++++++++++++++++++++++++++++++---- 1 file changed, 38 insertions(+), 4 deletions(-) diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json index a4367dc5..c6e55bb1 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko-KR.json @@ -4,9 +4,10 @@ "×": "×", "❮": "❮", "❯": "❯", - "Loading...": "로딩중...", - "view": "", - "api": "api", + "Loading...": "", + "view": "api 보이기", + "hide": "api 숨기기", + "api": "", "•": "•", "txt2img": "텍스트→이미지", "img2img": "이미지→이미지", @@ -50,7 +51,7 @@ "Tiling": "타일링", "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", "Highres. fix": "고해상도 보정", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", "Firstpass width": "초기 가로길이", "Firstpass height": "초기 세로길이", "Denoising strength": "디노이즈 강도", @@ -81,5 +82,38 @@ "Send to extras": "부가기능으로 전송", "Open images output directory": "이미지 저장 경로 열기", "Make Zip when Save?": "저장 시 Zip 생성하기", + "Prompt matrix": "프롬프트 매트릭스", + "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)": "(|)를 이용해 프롬프트를 분리할 시 첫 프롬프트를 제외하고 모든 프롬프트의 조합마다 이미지를 생성합니다. 첫 프롬프트는 모든 조합에 포함되게 됩니다.", + "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", + "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", + "Show Textbox": "텍스트박스 보이기", + "File with inputs": "설정값 파일", + "Prompts": "프롬프트", + "X/Y plot": "X/Y 플롯", + "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", + "X type": "X축", + "Y type": "Y축", + "X values": "X 설정값", + "Y values": "Y 설정값", + "Separate values for X axis using commas.": "쉼표로 X축에 적용할 값 분리", + "Separate values for Y axis using commas.": "쉼표로 Y축에 적용할 값 분리", + "Draw legend": "범례 그리기", + "Include Separate Images": "분리된 이미지 포함하기", + "Keep -1 for seeds": "시드값 -1로 유지", + "Var. seed": "바리에이션 시드", + "Var. strength": "바리에이션 강도", + "Steps": "스텝 수", + "Prompt S/R": "프롬프트 스타일 변경", + "Prompt order": "프롬프트 순서", + "Sampler": "샘플러", + "Checkpoint name": "체크포인트 이름", + "Hypernet str.": "하이퍼네트워크 강도", + "Sigma Churn": "시그마 섞기", + "Sigma min": "시그마 최솟값", + "Sigma max": "시그마 최댓값", + "Sigma noise": "시그마 노이즈", + "Clip skip": "클립 건너뛰기", + "Denoising": "디노이징", + "Nothing": "없음", "Always save all generated images": "생성된 이미지 항상 저장하기" } \ No newline at end of file From 4f4e7fed7e4910b165c651e7618eb8e47c57ddb5 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 22:12:41 +0900 Subject: [PATCH 017/321] update ko-KR.json --- localizations/ko-KR.json | 1 + 1 file changed, 1 insertion(+) diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json index c6e55bb1..b263b13c 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko-KR.json @@ -115,5 +115,6 @@ "Clip skip": "클립 건너뛰기", "Denoising": "디노이징", "Nothing": "없음", + "Apply settings": "설정 적용하기", "Always save all generated images": "생성된 이미지 항상 저장하기" } \ No newline at end of file From b7e78ef692fe912916de6e54f6e2521b000d650c Mon Sep 17 00:00:00 2001 From: yfszzx Date: Tue, 18 Oct 2022 22:21:54 +0800 Subject: [PATCH 018/321] Image browser improve --- modules/images_history.py | 43 ++++++++++++++++++++------------------- 1 file changed, 22 insertions(+), 21 deletions(-) diff --git a/modules/images_history.py b/modules/images_history.py index d56f3a25..a40cdc0e 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -100,14 +100,15 @@ def auto_sorting(dir_name): date_list.append(today) return sorted(date_list, reverse=True) -def archive_images(dir_name, date_to): - +def archive_images(dir_name, date_to): filenames = [] - loads_num =int(opts.images_history_num_per_page * opts.images_history_pages_num) + batch_size =int(opts.images_history_num_per_page * opts.images_history_pages_num) + if batch_size <= 0: + batch_size = opts.images_history_num_per_page * 6 today = time.strftime("%Y%m%d",time.localtime(time.time())) date_to = today if date_to is None or date_to == "" else date_to date_to_bak = date_to - if opts.images_history_reconstruct_directory: + if False: #opts.images_history_reconstruct_directory: date_list = auto_sorting(dir_name) for date in date_list: if date <= date_to: @@ -115,11 +116,13 @@ def archive_images(dir_name, date_to): if date == today and not os.path.exists(path): continue filenames = traverse_all_files(path, filenames) - if len(filenames) > loads_num: + if len(filenames) > batch_size: break filenames = sorted(filenames, key=lambda file: -os.path.getmtime(file)) else: - filenames = traverse_all_files(dir_name, filenames) + filenames = traverse_all_files(dir_name, filenames) + total_num = len(filenames) + batch_count = len(filenames) + 1 // batch_size + 1 tmparray = [(os.path.getmtime(file), file) for file in filenames ] date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400 filenames = [] @@ -132,8 +135,8 @@ def archive_images(dir_name, date_to): filenames.append((t, f ,date)) date_list = sorted(list(date_list.keys()), reverse=True) sort_array = sorted(filenames, key=lambda x:-x[0]) - if len(sort_array) > loads_num: - date = sort_array[loads_num][2] + if len(sort_array) > batch_size: + date = sort_array[batch_size][2] filenames = [x[1] for x in sort_array] else: date = date_to if len(sort_array) == 0 else sort_array[-1][2] @@ -141,9 +144,9 @@ def archive_images(dir_name, date_to): filenames = [x[1] for x in sort_array if x[2]>= date] num = len(filenames) last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000)) - date = date[:4] + "-" + date[4:6] + "-" + date[6:8] - date_to_bak = date_to_bak[:4] + "-" + date_to_bak[4:6] + "-" + date_to_bak[6:8] - load_info = f"Loaded {(num + 1) // opts.images_history_pages_num} pades, {num} images, during {date} - {date_to_bak}" + date = date[:4] + "/" + date[4:6] + "/" + date[6:8] + date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8] + load_info = f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages" _, image_list, _, _, visible_num = get_recent_images(1, 0, filenames) return ( gradio.Dropdown.update(choices=date_list, value=date_to), @@ -154,12 +157,10 @@ def archive_images(dir_name, date_to): "", "", visible_num, - last_date_from + last_date_from, + #gradio.update(visible=batch_count > 1) ) - - - def delete_image(delete_num, name, filenames, image_index, visible_num): if name == "": return filenames, delete_num @@ -295,16 +296,16 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): with gr.Column() as page_panel: with gr.Row(): - img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory") + img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir) with gr.Row(visible=False) as warning: warning_box = gr.Textbox("Message", interactive=False) with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel: with gr.Column(scale=2): - with gr.Row(): - backward = gr.Button('Backward') - date_to = gr.Dropdown(label="Date to") - forward = gr.Button('Forward') + with gr.Row() as batch_panel: + forward = gr.Button('Forward') + date_to = gr.Dropdown(label="Date to") + backward = gr.Button('Backward') newest = gr.Button('Reload', elem_id=tabname + "_images_history_start") with gr.Row(): load_info = gr.Textbox(show_label=False, interactive=False) @@ -335,7 +336,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): # hiden items - with gr.Row(): #visible=False): + with gr.Row(visible=False): visible_img_num = gr.Number() date_to_recorder = gr.State([]) last_date_from = gr.Textbox() From 538bc89c269743e56b07ef2b471d1ce0a39b6776 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Wed, 19 Oct 2022 11:27:51 +0800 Subject: [PATCH 019/321] Image browser improved --- javascript/images_history.js | 81 +++++++++++---------- modules/images_history.py | 133 +++++++++++++++++++---------------- modules/shared.py | 5 ++ modules/ui.py | 2 +- 4 files changed, 119 insertions(+), 102 deletions(-) diff --git a/javascript/images_history.js b/javascript/images_history.js index 182d730b..c9aa76f8 100644 --- a/javascript/images_history.js +++ b/javascript/images_history.js @@ -17,14 +17,6 @@ var images_history_click_image = function(){ images_history_set_image_info(this); } -var images_history_click_tab = function(){ - var tabs_box = gradioApp().getElementById("images_history_tab"); - if (!tabs_box.classList.contains(this.getAttribute("tabname"))) { - gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click(); - tabs_box.classList.add(this.getAttribute("tabname")) - } -} - function images_history_disabled_del(){ gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){ btn.setAttribute('disabled','disabled'); @@ -145,57 +137,64 @@ function images_history_enable_del_buttons(){ } function images_history_init(){ - // var loaded = gradioApp().getElementById("images_history_reconstruct_directory") - // if (loaded){ - // var init_status = loaded.querySelector("input").checked - if (gradioApp().getElementById("images_history_finish_render")){ + var tabnames = gradioApp().getElementById("images_history_tabnames_list") + if (tabnames){ + images_history_tab_list = tabnames.querySelector("textarea").value.split(",") for (var i in images_history_tab_list ){ - tab = images_history_tab_list[i]; + var tab = images_history_tab_list[i]; gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor"); gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index"); gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button"); - gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery"); - + gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery"); + gradioApp().getElementById(tab + "_images_history_start").setAttribute("style","padding:20px;font-size:25px"); } - var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div"); - tabs_box.setAttribute("id", "images_history_tab"); - var tab_btns = tabs_box.querySelectorAll("button"); - for (var i in images_history_tab_list){ - var tabname = images_history_tab_list[i] - tab_btns[i].setAttribute("tabname", tabname); - // if (!init_status){ - // tab_btns[i].addEventListener('click', images_history_click_tab); - // } - tab_btns[i].addEventListener('click', images_history_click_tab); - } + //preload + if (gradioApp().getElementById("images_history_preload").querySelector("input").checked ){ + var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div"); + tabs_box.setAttribute("id", "images_history_tab"); + var tab_btns = tabs_box.querySelectorAll("button"); + for (var i in images_history_tab_list){ + var tabname = images_history_tab_list[i] + tab_btns[i].setAttribute("tabname", tabname); + tab_btns[i].addEventListener('click', function(){ + var tabs_box = gradioApp().getElementById("images_history_tab"); + if (!tabs_box.classList.contains(this.getAttribute("tabname"))) { + gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click(); + tabs_box.classList.add(this.getAttribute("tabname")) + } + }); + } + tab_btns[0].click() + } } else { setTimeout(images_history_init, 500); } } -var images_history_tab_list = ["custom", "txt2img", "img2img", "extras", "saved"]; +var images_history_tab_list = ""; setTimeout(images_history_init, 500); document.addEventListener("DOMContentLoaded", function() { var mutationObserver = new MutationObserver(function(m){ - for (var i in images_history_tab_list ){ - let tabname = images_history_tab_list[i] - var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item'); - buttons.forEach(function(bnt){ - bnt.addEventListener('click', images_history_click_image, true); - }); + if (images_history_tab_list != ""){ + for (var i in images_history_tab_list ){ + let tabname = images_history_tab_list[i] + var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item'); + buttons.forEach(function(bnt){ + bnt.addEventListener('click', images_history_click_image, true); + }); - var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg"); - if (cls_btn){ - cls_btn.addEventListener('click', function(){ - gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled'); - }, false); - } + var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg"); + if (cls_btn){ + cls_btn.addEventListener('click', function(){ + gradioApp().getElementById(tabname + '_images_history_renew_page').click(); + }, false); + } - } + } + } }); mutationObserver.observe(gradioApp(), { childList:true, subtree:true }); - }); diff --git a/modules/images_history.py b/modules/images_history.py index a40cdc0e..78fd0543 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -4,7 +4,9 @@ import time import hashlib import gradio system_bak_path = "webui_log_and_bak" -browser_tabname = "custom" +custom_tab_name = "custom fold" +faverate_tab_name = "favorites" +tabs_list = ["txt2img", "img2img", "extras", faverate_tab_name] def is_valid_date(date): try: time.strptime(date, "%Y%m%d") @@ -122,7 +124,6 @@ def archive_images(dir_name, date_to): else: filenames = traverse_all_files(dir_name, filenames) total_num = len(filenames) - batch_count = len(filenames) + 1 // batch_size + 1 tmparray = [(os.path.getmtime(file), file) for file in filenames ] date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400 filenames = [] @@ -146,10 +147,12 @@ def archive_images(dir_name, date_to): last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000)) date = date[:4] + "/" + date[4:6] + "/" + date[6:8] date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8] - load_info = f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages" + load_info = "
" + load_info += f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages" + load_info += "
" _, image_list, _, _, visible_num = get_recent_images(1, 0, filenames) return ( - gradio.Dropdown.update(choices=date_list, value=date_to), + date_to, load_info, filenames, 1, @@ -158,7 +161,7 @@ def archive_images(dir_name, date_to): "", visible_num, last_date_from, - #gradio.update(visible=batch_count > 1) + gradio.update(visible=total_num > num) ) def delete_image(delete_num, name, filenames, image_index, visible_num): @@ -209,7 +212,7 @@ def get_recent_images(page_index, step, filenames): visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num return page_index, image_list, "", "", visible_num -def newest_click(date_to): +def loac_batch_click(date_to): if date_to is None: return time.strftime("%Y%m%d",time.localtime(time.time())), [] else: @@ -248,7 +251,7 @@ def page_index_change(page_index, filenames): def show_image_info(tabname_box, num, page_index, filenames): file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))] - tm = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + tm = "
" + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + "
" return file, tm, num, file def enable_page_buttons(): @@ -268,9 +271,9 @@ def change_dir(img_dir, date_to): warning = "The format of the directory is incorrect" if warning is None: today = time.strftime("%Y%m%d",time.localtime(time.time())) - return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today + return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today, gradio.update(visible=True), gradio.update(visible=True) else: - return gradio.update(visible=True), gradio.update(visible=False), warning, date_to + return gradio.update(visible=True), gradio.update(visible=False), warning, date_to, gradio.update(visible=False), gradio.update(visible=False) def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): custom_dir = False @@ -280,7 +283,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): dir_name = opts.outdir_img2img_samples elif tabname == "extras": dir_name = opts.outdir_extras_samples - elif tabname == "saved": + elif tabname == faverate_tab_name: dir_name = opts.outdir_save else: custom_dir = True @@ -295,22 +298,26 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): os.makedirs(dir_name) with gr.Column() as page_panel: - with gr.Row(): - img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir) + with gr.Row(): + with gr.Column(scale=1, visible=not custom_dir) as load_batch_box: + load_batch = gr.Button('Load', elem_id=tabname + "_images_history_start", full_width=True) + with gr.Column(scale=4): + with gr.Row(): + img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir) + with gr.Row(): + with gr.Column(visible=False, scale=1) as batch_panel: + with gr.Row(): + forward = gr.Button('Prev batch') + backward = gr.Button('Next batch') + with gr.Column(scale=3): + load_info = gr.HTML(visible=not custom_dir) with gr.Row(visible=False) as warning: warning_box = gr.Textbox("Message", interactive=False) with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel: - with gr.Column(scale=2): - with gr.Row() as batch_panel: - forward = gr.Button('Forward') - date_to = gr.Dropdown(label="Date to") - backward = gr.Button('Backward') - newest = gr.Button('Reload', elem_id=tabname + "_images_history_start") - with gr.Row(): - load_info = gr.Textbox(show_label=False, interactive=False) - with gr.Row(visible=False) as turn_page_buttons: - renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page") + with gr.Column(scale=2): + with gr.Row(visible=True) as turn_page_buttons: + #date_to = gr.Dropdown(label="Date to") first_page = gr.Button('First Page') prev_page = gr.Button('Prev Page') page_index = gr.Number(value=1, label="Page Index") @@ -322,50 +329,54 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next") delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button") - with gr.Column(): - with gr.Row(): - if tabname != "saved": - save_btn = gr.Button('Save') - pnginfo_send_to_txt2img = gr.Button('Send to txt2img') - pnginfo_send_to_img2img = gr.Button('Send to img2img') + with gr.Column(): with gr.Row(): with gr.Column(): - img_file_info = gr.Textbox(label="Generate Info", interactive=False) + img_file_info = gr.Textbox(label="Generate Info", interactive=False, lines=6) + gr.HTML("
") img_file_name = gr.Textbox(value="", label="File Name", interactive=False) - img_file_time= gr.Textbox(value="", label="Create Time", interactive=False) - + img_file_time= gr.HTML() + with gr.Row(): + if tabname != faverate_tab_name: + save_btn = gr.Button('Collect') + pnginfo_send_to_txt2img = gr.Button('Send to txt2img') + pnginfo_send_to_img2img = gr.Button('Send to img2img') + - # hiden items - with gr.Row(visible=False): - visible_img_num = gr.Number() - date_to_recorder = gr.State([]) - last_date_from = gr.Textbox() - tabname_box = gr.Textbox(tabname) - image_index = gr.Textbox(value=-1) - set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") - filenames = gr.State() - all_images_list = gr.State() - hidden = gr.Image(type="pil") - info1 = gr.Textbox() - info2 = gr.Textbox() + # hiden items + with gr.Row(visible=False): + renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page") + batch_date_to = gr.Textbox(label="Date to") + visible_img_num = gr.Number() + date_to_recorder = gr.State([]) + last_date_from = gr.Textbox() + tabname_box = gr.Textbox(tabname) + image_index = gr.Textbox(value=-1) + set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") + filenames = gr.State() + all_images_list = gr.State() + hidden = gr.Image(type="pil") + info1 = gr.Textbox() + info2 = gr.Textbox() - img_path.submit(change_dir, inputs=[img_path, date_to], outputs=[warning, main_panel, warning_box, date_to]) - #change date - change_date_output = [date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from] + img_path.submit(change_dir, inputs=[img_path, batch_date_to], outputs=[warning, main_panel, warning_box, batch_date_to, load_batch_box, load_info]) + + #change batch + change_date_output = [batch_date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from, batch_panel] - date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output) - date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons]) - date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") + batch_date_to.change(archive_images, inputs=[img_path, batch_date_to], outputs=change_date_output) + batch_date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons]) + batch_date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - newest.click(newest_click, inputs=[date_to], outputs=[date_to, date_to_recorder]) - forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder]) - backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder]) + load_batch.click(loac_batch_click, inputs=[batch_date_to], outputs=[batch_date_to, date_to_recorder]) + forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder]) + backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder]) #delete delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num]) delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None) - if tabname != "saved": + if tabname != faverate_tab_name: save_btn.click(save_image, inputs=[img_file_name], outputs=None) #turn page @@ -394,18 +405,20 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): -def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict): +def create_history_tabs(gr, sys_opts, cmp_ops, run_pnginfo, switch_dict): global opts; opts = sys_opts loads_files_num = int(opts.images_history_num_per_page) num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num) + if cmp_ops.browse_all_images: + tabs_list.append(custom_tab_name) with gr.Blocks(analytics_enabled=False) as images_history: with gr.Tabs() as tabs: - for tab in [browser_tabname, "txt2img", "img2img", "extras", "saved"]: + for tab in tabs_list: with gr.Tab(tab): with gr.Blocks(analytics_enabled=False) : - show_images_history(gr, opts, tab, run_pnginfo, switch_dict) - #gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False) - gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_finish_render", visible=False) - + show_images_history(gr, opts, tab, run_pnginfo, switch_dict) + gradio.Checkbox(opts.images_history_preload, elem_id="images_history_preload", visible=False) + gradio.Textbox(",".join(tabs_list), elem_id="images_history_tabnames_list", visible=False) + return images_history diff --git a/modules/shared.py b/modules/shared.py index 1811018d..4d735414 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -74,6 +74,10 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help= parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False) parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None) parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False) +parser.add_argument("--browse-all-images", action='store_true', help="Allow browsing all images by Image Browser", default=False) + + +cmd_opts = parser.parse_args() cmd_opts = parser.parse_args() @@ -311,6 +315,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" options_templates.update(options_section(('images-history', "Images Browser"), { #"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"), + "images_history_preload": OptionInfo(False, "Preload images at startup"), "images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"), "images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "), "images_history_grid_num": OptionInfo(6, "Number of grids in each row"), diff --git a/modules/ui.py b/modules/ui.py index 85abac4d..88f46659 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1150,7 +1150,7 @@ def create_ui(wrap_gradio_gpu_call): "i2i":img2img_paste_fields } - images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) + images_history = img_his.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) with gr.Blocks() as modelmerger_interface: with gr.Row().style(equal_height=False): From abeec4b63029c2c4151a78fc395d312113881845 Mon Sep 17 00:00:00 2001 From: captin411 Date: Wed, 19 Oct 2022 03:18:26 -0700 Subject: [PATCH 020/321] Add auto focal point cropping to Preprocess images This algorithm plots a bunch of points of interest on the source image and averages their locations to find a center. Most points come from OpenCV. One point comes from an entropy model. OpenCV points account for 50% of the weight and the entropy based point is the other 50%. The center of all weighted points is calculated and a bounding box is drawn as close to centered over that point as possible. --- modules/textual_inversion/preprocess.py | 151 +++++++++++++++++++++++- 1 file changed, 146 insertions(+), 5 deletions(-) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 886cf0c3..168bfb09 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,5 +1,7 @@ import os -from PIL import Image, ImageOps +import cv2 +import numpy as np +from PIL import Image, ImageOps, ImageDraw import platform import sys import tqdm @@ -11,7 +13,7 @@ if cmd_opts.deepdanbooru: import modules.deepbooru as deepbooru -def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): +def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False): try: if process_caption: shared.interrogator.load() @@ -21,7 +23,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ db_opts[deepbooru.OPT_INCLUDE_RANKS] = False deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts) - preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru) + preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, process_entropy_focus) finally: @@ -33,7 +35,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ -def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): +def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False): width = process_width height = process_height src = os.path.abspath(process_src) @@ -93,6 +95,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro is_tall = ratio > 1.35 is_wide = ratio < 1 / 1.35 + processing_option_ran = False + if process_split and is_tall: img = img.resize((width, height * img.height // img.width)) @@ -101,6 +105,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro bot = img.crop((0, img.height - height, width, img.height)) save_pic(bot, index) + + processing_option_ran = True elif process_split and is_wide: img = img.resize((width * img.width // img.height, height)) @@ -109,8 +115,143 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro right = img.crop((img.width - width, 0, img.width, height)) save_pic(right, index) - else: + + processing_option_ran = True + + if process_entropy_focus and (is_tall or is_wide): + if is_tall: + img = img.resize((width, height * img.height // img.width)) + else: + img = img.resize((width * img.width // img.height, height)) + + x_focal_center, y_focal_center = image_central_focal_point(img, width, height) + + # take the focal point and turn it into crop coordinates that try to center over the focal + # point but then get adjusted back into the frame + y_half = int(height / 2) + x_half = int(width / 2) + + x1 = x_focal_center - x_half + if x1 < 0: + x1 = 0 + elif x1 + width > img.width: + x1 = img.width - width + + y1 = y_focal_center - y_half + if y1 < 0: + y1 = 0 + elif y1 + height > img.height: + y1 = img.height - height + + x2 = x1 + width + y2 = y1 + height + + crop = [x1, y1, x2, y2] + + focal = img.crop(tuple(crop)) + save_pic(focal, index) + + processing_option_ran = True + + if not processing_option_ran: img = images.resize_image(1, img, width, height) save_pic(img, index) shared.state.nextjob() + + +def image_central_focal_point(im, target_width, target_height): + focal_points = [] + + focal_points.extend( + image_focal_points(im) + ) + + fp_entropy = image_entropy_point(im, target_width, target_height) + fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy + + focal_points.append(fp_entropy) + + weight = 0.0 + x = 0.0 + y = 0.0 + for focal_point in focal_points: + weight += focal_point['weight'] + x += focal_point['x'] * focal_point['weight'] + y += focal_point['y'] * focal_point['weight'] + avg_x = round(x // weight) + avg_y = round(y // weight) + + return avg_x, avg_y + + +def image_focal_points(im): + grayscale = im.convert("L") + + # naive attempt at preventing focal points from collecting at watermarks near the bottom + gd = ImageDraw.Draw(grayscale) + gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + + np_im = np.array(grayscale) + + points = cv2.goodFeaturesToTrack( + np_im, + maxCorners=50, + qualityLevel=0.04, + minDistance=min(grayscale.width, grayscale.height)*0.05, + useHarrisDetector=False, + ) + + if points is None: + return [] + + focal_points = [] + for point in points: + x, y = point.ravel() + focal_points.append({ + 'x': x, + 'y': y, + 'weight': 1.0 + }) + + return focal_points + + +def image_entropy_point(im, crop_width, crop_height): + img = im.copy() + # just make it easier to slide the test crop with images oriented the same way + if (img.size[0] < img.size[1]): + portrait = True + img = img.rotate(90, expand=1) + + e_max = 0 + crop_current = [0, 0, crop_width, crop_height] + crop_best = crop_current + while crop_current[2] < img.size[0]: + crop = img.crop(tuple(crop_current)) + e = image_entropy(crop) + + if (e_max < e): + e_max = e + crop_best = list(crop_current) + + crop_current[0] += 4 + crop_current[2] += 4 + + x_mid = int((crop_best[2] - crop_best[0])/2) + y_mid = int((crop_best[3] - crop_best[1])/2) + + return { + 'x': x_mid, + 'y': y_mid, + 'weight': 1.0 + } + + +def image_entropy(im): + # greyscale image entropy + band = np.asarray(im.convert("L")) + hist, _ = np.histogram(band, bins=range(0, 256)) + hist = hist[hist > 0] + return -np.log2(hist / hist.sum()).sum() + From 087609ee181a91a523647435ffffa6288a317e2f Mon Sep 17 00:00:00 2001 From: captin411 Date: Wed, 19 Oct 2022 03:19:35 -0700 Subject: [PATCH 021/321] UI changes for focal point image cropping --- modules/ui.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/modules/ui.py b/modules/ui.py index 1ff7eb4f..b6be713b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1234,6 +1234,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') process_split = gr.Checkbox(label='Split oversized images into two') + process_entropy_focus = gr.Checkbox(label='Create auto focal point crop') process_caption = gr.Checkbox(label='Use BLIP for caption') process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False) @@ -1318,7 +1319,8 @@ def create_ui(wrap_gradio_gpu_call): process_flip, process_split, process_caption, - process_caption_deepbooru + process_caption_deepbooru, + process_entropy_focus ], outputs=[ ti_output, From 41e3877be2c667316515c86037413763eb0ba4da Mon Sep 17 00:00:00 2001 From: captin411 Date: Wed, 19 Oct 2022 13:44:59 -0700 Subject: [PATCH 022/321] fix entropy point calculation --- modules/textual_inversion/preprocess.py | 34 ++++++++++++++----------- 1 file changed, 19 insertions(+), 15 deletions(-) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 168bfb09..7c1a594e 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -196,9 +196,9 @@ def image_focal_points(im): points = cv2.goodFeaturesToTrack( np_im, - maxCorners=50, + maxCorners=100, qualityLevel=0.04, - minDistance=min(grayscale.width, grayscale.height)*0.05, + minDistance=min(grayscale.width, grayscale.height)*0.07, useHarrisDetector=False, ) @@ -218,28 +218,32 @@ def image_focal_points(im): def image_entropy_point(im, crop_width, crop_height): - img = im.copy() - # just make it easier to slide the test crop with images oriented the same way - if (img.size[0] < img.size[1]): - portrait = True - img = img.rotate(90, expand=1) + landscape = im.height < im.width + portrait = im.height > im.width + if landscape: + move_idx = [0, 2] + move_max = im.size[0] + elif portrait: + move_idx = [1, 3] + move_max = im.size[1] e_max = 0 crop_current = [0, 0, crop_width, crop_height] crop_best = crop_current - while crop_current[2] < img.size[0]: - crop = img.crop(tuple(crop_current)) + while crop_current[move_idx[1]] < move_max: + crop = im.crop(tuple(crop_current)) e = image_entropy(crop) - if (e_max < e): + if (e > e_max): e_max = e crop_best = list(crop_current) - crop_current[0] += 4 - crop_current[2] += 4 + crop_current[move_idx[0]] += 4 + crop_current[move_idx[1]] += 4 + + x_mid = int(crop_best[0] + crop_width/2) + y_mid = int(crop_best[1] + crop_height/2) - x_mid = int((crop_best[2] - crop_best[0])/2) - y_mid = int((crop_best[3] - crop_best[1])/2) return { 'x': x_mid, @@ -250,7 +254,7 @@ def image_entropy_point(im, crop_width, crop_height): def image_entropy(im): # greyscale image entropy - band = np.asarray(im.convert("L")) + band = np.asarray(im.convert("1")) hist, _ = np.histogram(band, bins=range(0, 256)) hist = hist[hist > 0] return -np.log2(hist / hist.sum()).sum() From 59ed74438318af893d2cba552b0e28dbc2a9266c Mon Sep 17 00:00:00 2001 From: captin411 Date: Wed, 19 Oct 2022 17:19:02 -0700 Subject: [PATCH 023/321] face detection algo, configurability, reusability Try to move the crop in the direction of a face if it is present More internal configuration options for choosing weights of each of the algorithm's findings Move logic into its module --- modules/textual_inversion/autocrop.py | 216 ++++++++++++++++++++++++ modules/textual_inversion/preprocess.py | 150 ++-------------- 2 files changed, 230 insertions(+), 136 deletions(-) create mode 100644 modules/textual_inversion/autocrop.py diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py new file mode 100644 index 00000000..f858a958 --- /dev/null +++ b/modules/textual_inversion/autocrop.py @@ -0,0 +1,216 @@ +import cv2 +from collections import defaultdict +from math import log, sqrt +import numpy as np +from PIL import Image, ImageDraw + +GREEN = "#0F0" +BLUE = "#00F" +RED = "#F00" + +def crop_image(im, settings): + """ Intelligently crop an image to the subject matter """ + if im.height > im.width: + im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width)) + else: + im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height)) + + focus = focal_point(im, settings) + + # take the focal point and turn it into crop coordinates that try to center over the focal + # point but then get adjusted back into the frame + y_half = int(settings.crop_height / 2) + x_half = int(settings.crop_width / 2) + + x1 = focus.x - x_half + if x1 < 0: + x1 = 0 + elif x1 + settings.crop_width > im.width: + x1 = im.width - settings.crop_width + + y1 = focus.y - y_half + if y1 < 0: + y1 = 0 + elif y1 + settings.crop_height > im.height: + y1 = im.height - settings.crop_height + + x2 = x1 + settings.crop_width + y2 = y1 + settings.crop_height + + crop = [x1, y1, x2, y2] + + if settings.annotate_image: + d = ImageDraw.Draw(im) + rect = list(crop) + rect[2] -= 1 + rect[3] -= 1 + d.rectangle(rect, outline=GREEN) + if settings.destop_view_image: + im.show() + + return im.crop(tuple(crop)) + +def focal_point(im, settings): + corner_points = image_corner_points(im, settings) + entropy_points = image_entropy_points(im, settings) + face_points = image_face_points(im, settings) + + total_points = len(corner_points) + len(entropy_points) + len(face_points) + + corner_weight = settings.corner_points_weight + entropy_weight = settings.entropy_points_weight + face_weight = settings.face_points_weight + + weight_pref_total = corner_weight + entropy_weight + face_weight + + # weight things + pois = [] + if weight_pref_total == 0 or total_points == 0: + return pois + + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ] + ) + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ] + ) + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ] + ) + + if settings.annotate_image: + d = ImageDraw.Draw(im) + + average_point = poi_average(pois, settings, im=im) + + if settings.annotate_image: + d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN) + + return average_point + + +def image_face_points(im, settings): + np_im = np.array(im) + gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) + classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml') + + minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side + faces = classifier.detectMultiScale(gray, scaleFactor=1.05, + minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) + + if len(faces) == 0: + return [] + + rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] + if settings.annotate_image: + for f in rects: + d = ImageDraw.Draw(im) + d.rectangle(f, outline=RED) + + return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects] + + +def image_corner_points(im, settings): + grayscale = im.convert("L") + + # naive attempt at preventing focal points from collecting at watermarks near the bottom + gd = ImageDraw.Draw(grayscale) + gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + + np_im = np.array(grayscale) + + points = cv2.goodFeaturesToTrack( + np_im, + maxCorners=100, + qualityLevel=0.04, + minDistance=min(grayscale.width, grayscale.height)*0.07, + useHarrisDetector=False, + ) + + if points is None: + return [] + + focal_points = [] + for point in points: + x, y = point.ravel() + focal_points.append(PointOfInterest(x, y)) + + return focal_points + + +def image_entropy_points(im, settings): + landscape = im.height < im.width + portrait = im.height > im.width + if landscape: + move_idx = [0, 2] + move_max = im.size[0] + elif portrait: + move_idx = [1, 3] + move_max = im.size[1] + else: + return [] + + e_max = 0 + crop_current = [0, 0, settings.crop_width, settings.crop_height] + crop_best = crop_current + while crop_current[move_idx[1]] < move_max: + crop = im.crop(tuple(crop_current)) + e = image_entropy(crop) + + if (e > e_max): + e_max = e + crop_best = list(crop_current) + + crop_current[move_idx[0]] += 4 + crop_current[move_idx[1]] += 4 + + x_mid = int(crop_best[0] + settings.crop_width/2) + y_mid = int(crop_best[1] + settings.crop_height/2) + + return [PointOfInterest(x_mid, y_mid)] + + +def image_entropy(im): + # greyscale image entropy + band = np.asarray(im.convert("1")) + hist, _ = np.histogram(band, bins=range(0, 256)) + hist = hist[hist > 0] + return -np.log2(hist / hist.sum()).sum() + + +def poi_average(pois, settings, im=None): + weight = 0.0 + x = 0.0 + y = 0.0 + for pois in pois: + if settings.annotate_image and im is not None: + w = 4 * 0.5 * sqrt(pois.weight) + d = ImageDraw.Draw(im) + d.ellipse([ + pois.x - w, pois.y - w, + pois.x + w, pois.y + w ], fill=BLUE) + weight += pois.weight + x += pois.x * pois.weight + y += pois.y * pois.weight + avg_x = round(x / weight) + avg_y = round(y / weight) + + return PointOfInterest(avg_x, avg_y) + + +class PointOfInterest: + def __init__(self, x, y, weight=1.0): + self.x = x + self.y = y + self.weight = weight + + +class Settings: + def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False): + self.crop_width = crop_width + self.crop_height = crop_height + self.corner_points_weight = corner_points_weight + self.entropy_points_weight = entropy_points_weight + self.face_points_weight = entropy_points_weight + self.annotate_image = annotate_image + self.destop_view_image = False \ No newline at end of file diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 7c1a594e..0c79f012 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,7 +1,5 @@ import os -import cv2 -import numpy as np -from PIL import Image, ImageOps, ImageDraw +from PIL import Image, ImageOps import platform import sys import tqdm @@ -9,6 +7,7 @@ import time from modules import shared, images from modules.shared import opts, cmd_opts +from modules.textual_inversion import autocrop if cmd_opts.deepdanbooru: import modules.deepbooru as deepbooru @@ -80,6 +79,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro if process_flip: save_pic_with_caption(ImageOps.mirror(image), index) + for index, imagefile in enumerate(tqdm.tqdm(files)): subindex = [0] filename = os.path.join(src, imagefile) @@ -118,37 +118,16 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro processing_option_ran = True - if process_entropy_focus and (is_tall or is_wide): - if is_tall: - img = img.resize((width, height * img.height // img.width)) - else: - img = img.resize((width * img.width // img.height, height)) - - x_focal_center, y_focal_center = image_central_focal_point(img, width, height) - - # take the focal point and turn it into crop coordinates that try to center over the focal - # point but then get adjusted back into the frame - y_half = int(height / 2) - x_half = int(width / 2) - - x1 = x_focal_center - x_half - if x1 < 0: - x1 = 0 - elif x1 + width > img.width: - x1 = img.width - width - - y1 = y_focal_center - y_half - if y1 < 0: - y1 = 0 - elif y1 + height > img.height: - y1 = img.height - height - - x2 = x1 + width - y2 = y1 + height - - crop = [x1, y1, x2, y2] - - focal = img.crop(tuple(crop)) + if process_entropy_focus and img.height != img.width: + autocrop_settings = autocrop.Settings( + crop_width = width, + crop_height = height, + face_points_weight = 0.9, + entropy_points_weight = 0.7, + corner_points_weight = 0.5, + annotate_image = False + ) + focal = autocrop.crop_image(img, autocrop_settings) save_pic(focal, index) processing_option_ran = True @@ -157,105 +136,4 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro img = images.resize_image(1, img, width, height) save_pic(img, index) - shared.state.nextjob() - - -def image_central_focal_point(im, target_width, target_height): - focal_points = [] - - focal_points.extend( - image_focal_points(im) - ) - - fp_entropy = image_entropy_point(im, target_width, target_height) - fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy - - focal_points.append(fp_entropy) - - weight = 0.0 - x = 0.0 - y = 0.0 - for focal_point in focal_points: - weight += focal_point['weight'] - x += focal_point['x'] * focal_point['weight'] - y += focal_point['y'] * focal_point['weight'] - avg_x = round(x // weight) - avg_y = round(y // weight) - - return avg_x, avg_y - - -def image_focal_points(im): - grayscale = im.convert("L") - - # naive attempt at preventing focal points from collecting at watermarks near the bottom - gd = ImageDraw.Draw(grayscale) - gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") - - np_im = np.array(grayscale) - - points = cv2.goodFeaturesToTrack( - np_im, - maxCorners=100, - qualityLevel=0.04, - minDistance=min(grayscale.width, grayscale.height)*0.07, - useHarrisDetector=False, - ) - - if points is None: - return [] - - focal_points = [] - for point in points: - x, y = point.ravel() - focal_points.append({ - 'x': x, - 'y': y, - 'weight': 1.0 - }) - - return focal_points - - -def image_entropy_point(im, crop_width, crop_height): - landscape = im.height < im.width - portrait = im.height > im.width - if landscape: - move_idx = [0, 2] - move_max = im.size[0] - elif portrait: - move_idx = [1, 3] - move_max = im.size[1] - - e_max = 0 - crop_current = [0, 0, crop_width, crop_height] - crop_best = crop_current - while crop_current[move_idx[1]] < move_max: - crop = im.crop(tuple(crop_current)) - e = image_entropy(crop) - - if (e > e_max): - e_max = e - crop_best = list(crop_current) - - crop_current[move_idx[0]] += 4 - crop_current[move_idx[1]] += 4 - - x_mid = int(crop_best[0] + crop_width/2) - y_mid = int(crop_best[1] + crop_height/2) - - - return { - 'x': x_mid, - 'y': y_mid, - 'weight': 1.0 - } - - -def image_entropy(im): - # greyscale image entropy - band = np.asarray(im.convert("1")) - hist, _ = np.histogram(band, bins=range(0, 256)) - hist = hist[hist > 0] - return -np.log2(hist / hist.sum()).sum() - + shared.state.nextjob() \ No newline at end of file From 0ddaf8d2028a7251e8c4ad93551a43b5d4700841 Mon Sep 17 00:00:00 2001 From: captin411 Date: Thu, 20 Oct 2022 00:34:55 -0700 Subject: [PATCH 024/321] improve face detection a lot --- modules/textual_inversion/autocrop.py | 95 +++++++++++++++++---------- 1 file changed, 60 insertions(+), 35 deletions(-) diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index f858a958..5a551c25 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -8,12 +8,18 @@ GREEN = "#0F0" BLUE = "#00F" RED = "#F00" + def crop_image(im, settings): """ Intelligently crop an image to the subject matter """ if im.height > im.width: im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width)) - else: + elif im.width > im.height: im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height)) + else: + im = im.resize((settings.crop_width, settings.crop_height)) + + if im.height == im.width: + return im focus = focal_point(im, settings) @@ -78,13 +84,18 @@ def focal_point(im, settings): [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ] ) + average_point = poi_average(pois, settings) + if settings.annotate_image: d = ImageDraw.Draw(im) - - average_point = poi_average(pois, settings, im=im) - - if settings.annotate_image: - d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN) + for f in face_points: + d.rectangle(f.bounding(f.size), outline=RED) + for f in entropy_points: + d.rectangle(f.bounding(30), outline=BLUE) + for poi in pois: + w = max(4, 4 * 0.5 * sqrt(poi.weight)) + d.ellipse(poi.bounding(w), fill=BLUE) + d.ellipse(average_point.bounding(25), outline=GREEN) return average_point @@ -92,22 +103,32 @@ def focal_point(im, settings): def image_face_points(im, settings): np_im = np.array(im) gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) - classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml') - minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side - faces = classifier.detectMultiScale(gray, scaleFactor=1.05, - minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) + tries = [ + [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] + ] - if len(faces) == 0: - return [] + for t in tries: + # print(t[0]) + classifier = cv2.CascadeClassifier(t[0]) + minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side + try: + faces = classifier.detectMultiScale(gray, scaleFactor=1.1, + minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) + except: + continue - rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] - if settings.annotate_image: - for f in rects: - d = ImageDraw.Draw(im) - d.rectangle(f, outline=RED) - - return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects] + if len(faces) > 0: + rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] + return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects] + return [] def image_corner_points(im, settings): @@ -132,8 +153,8 @@ def image_corner_points(im, settings): focal_points = [] for point in points: - x, y = point.ravel() - focal_points.append(PointOfInterest(x, y)) + x, y = point.ravel() + focal_points.append(PointOfInterest(x, y, size=4)) return focal_points @@ -167,31 +188,26 @@ def image_entropy_points(im, settings): x_mid = int(crop_best[0] + settings.crop_width/2) y_mid = int(crop_best[1] + settings.crop_height/2) - return [PointOfInterest(x_mid, y_mid)] + return [PointOfInterest(x_mid, y_mid, size=25)] def image_entropy(im): # greyscale image entropy - band = np.asarray(im.convert("1")) + # band = np.asarray(im.convert("L")) + band = np.asarray(im.convert("1"), dtype=np.uint8) hist, _ = np.histogram(band, bins=range(0, 256)) hist = hist[hist > 0] return -np.log2(hist / hist.sum()).sum() -def poi_average(pois, settings, im=None): +def poi_average(pois, settings): weight = 0.0 x = 0.0 y = 0.0 - for pois in pois: - if settings.annotate_image and im is not None: - w = 4 * 0.5 * sqrt(pois.weight) - d = ImageDraw.Draw(im) - d.ellipse([ - pois.x - w, pois.y - w, - pois.x + w, pois.y + w ], fill=BLUE) - weight += pois.weight - x += pois.x * pois.weight - y += pois.y * pois.weight + for poi in pois: + weight += poi.weight + x += poi.x * poi.weight + y += poi.y * poi.weight avg_x = round(x / weight) avg_y = round(y / weight) @@ -199,10 +215,19 @@ def poi_average(pois, settings, im=None): class PointOfInterest: - def __init__(self, x, y, weight=1.0): + def __init__(self, x, y, weight=1.0, size=10): self.x = x self.y = y self.weight = weight + self.size = size + + def bounding(self, size): + return [ + self.x - size//2, + self.y - size//2, + self.x + size//2, + self.y + size//2 + ] class Settings: From 21364c5c39b269497944b56dd6664792d779333b Mon Sep 17 00:00:00 2001 From: Dynamic Date: Thu, 20 Oct 2022 19:20:39 +0900 Subject: [PATCH 025/321] Updated file with basic template and added new translations Translation done in txt2img-img2img windows and following scripts --- localizations/ko-KR.json | 498 +++++++++++++++++++++++++++++++-------- 1 file changed, 400 insertions(+), 98 deletions(-) diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json index b263b13c..7cc431c6 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko-KR.json @@ -1,120 +1,422 @@ { - "⤡": "⤡", - "⊞": "⊞", "×": "×", + "•": "•", + "⊞": "⊞", "❮": "❮", "❯": "❯", - "Loading...": "", - "view": "api 보이기", - "hide": "api 숨기기", - "api": "", - "•": "•", - "txt2img": "텍스트→이미지", - "img2img": "이미지→이미지", - "Extras": "부가기능", - "PNG Info": "PNG 정보", - "History": "기록", - "Checkpoint Merger": "체크포인트 병합", - "Train": "훈련", - "Settings": "설정", - "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", - "Hypernetwork": "하이퍼네트워크", - "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", - "Generate": "생성", - "Style 1": "스타일 1", - "Style 2": "스타일 2", + "⤡": "⤡", + "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", + "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", + "A merger of the two checkpoints will be generated in your": "A merger of the two checkpoints will be generated in your", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", - "Save style": "스타일 저장", + "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", + "Add difference": "Add difference", + "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", + "Add layer normalization": "Add layer normalization", + "Add model hash to generation information": "Add model hash to generation information", + "Add model name to generation information": "Add model name to generation information", + "Always print all generation info to standard output": "Always print all generation info to standard output", + "Always save all generated image grids": "Always save all generated image grids", + "Always save all generated images": "생성된 이미지 항상 저장하기", + "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", - "Do not do anything special": "아무것도 하지 않기", - "Generate forever": "반복 생성", - "Cancel generate forever": "반복 생성 취소", - "Interrupt": "중단", - "Skip": "건너뛰기", - "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", - "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", - "Prompt": "프롬프트", - "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Negative prompt": "네거티브 프롬프트", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Sampling Steps": "샘플링 스텝 수", - "Sampling method": "샘플링 방법", - "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", - "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", - "Width": "가로", - "Height": "세로", - "Restore faces": "얼굴 보정", - "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", - "Tiling": "타일링", - "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", - "Highres. fix": "고해상도 보정", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", - "Firstpass width": "초기 가로길이", - "Firstpass height": "초기 세로길이", - "Denoising strength": "디노이즈 강도", - "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Apply settings": "설정 적용하기", + "BSRGAN 4x": "BSRGAN 4x", + "Batch Process": "Batch Process", "Batch count": "배치 수", + "Batch from Directory": "Batch from Directory", + "Batch img2img": "이미지→이미지 배치", "Batch size": "배치 크기", + "CFG Scale": "CFG 스케일", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "Cancel generate forever": "반복 생성 취소", + "Check progress (first)": "Check progress (first)", + "Check progress": "Check progress", + "Checkpoint Merger": "체크포인트 병합", + "Checkpoint name": "체크포인트 이름", + "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Clip skip": "클립 건너뛰기", + "CodeFormer visibility": "CodeFormer visibility", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", + "Color variation": "색깔 다양성", + "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", + "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", + "Create embedding": "Create embedding", + "Create flipped copies": "Create flipped copies", + "Create hypernetwork": "Create hypernetwork", + "Crop and resize": "잘라낸 후 리사이징", + "Crop to fit": "Crop to fit", + "Custom Name (Optional)": "Custom Name (Optional)", + "DDIM": "DDIM", + "DPM adaptive": "DPM adaptive", + "DPM fast": "DPM fast", + "DPM2 Karras": "DPM2 Karras", + "DPM2 a Karras": "DPM2 a Karras", + "DPM2 a": "DPM2 a", + "DPM2": "DPM2", + "Dataset directory": "Dataset directory", + "Decode CFG scale": "디코딩 CFG 스케일", + "Decode steps": "디코딩 스텝 수", + "Delete": "Delete", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Denoising strength change factor": "디노이즈 강도 변경 배수", + "Denoising strength": "디노이즈 강도", + "Denoising": "디노이징", + "Destination directory": "Destination directory", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Directory for saving images using the Save button": "Directory for saving images using the Save button", + "Directory name pattern": "Directory name pattern", + "Do not add watermark to images": "Do not add watermark to images", + "Do not do anything special": "아무것도 하지 않기", + "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", + "Do not show any images in results for web": "Do not show any images in results for web", + "Download localization template": "Download localization template", + "Draw legend": "범례 그리기", + "Draw mask": "마스크 직접 그리기", + "Drop File Here": "Drop File Here", + "Drop Image Here": "Drop Image Here", + "ESRGAN_4x": "ESRGAN_4x", + "Embedding": "Embedding", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", + "Enable full page image viewer": "Enable full page image viewer", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", + "End Page": "End Page", + "Enter hypernetwork layer structure": "Enter hypernetwork layer structure", + "Eta noise seed delta": "Eta noise seed delta", + "Eta": "Eta", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Euler a": "Euler a", + "Euler": "Euler", + "Extra": "고급", + "Extras": "부가기능", + "Face restoration": "Face restoration", + "Fall-off exponent (lower=higher detail)": "감쇠 지수 (낮을수록 디테일이 올라감)", + "File Name": "File Name", + "File format for grids": "File format for grids", + "File format for images": "File format for images", + "File with inputs": "설정값 파일", + "File": "File", + "Filename join string": "Filename join string", + "Filename word regex": "Filename word regex", + "Filter NSFW content": "Filter NSFW content", + "First Page": "First Page", + "Firstpass height": "초기 세로길이", + "Firstpass width": "초기 가로길이", + "Font for image grids that have text": "Font for image grids that have text", + "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SD 업스케일링에서 타일 간 몇 픽셀을 겹치게 할지 결정하는 설정값입니다. 타일들이 다시 한 이미지로 합쳐질 때, 눈에 띄는 이음매가 없도록 서로 겹치게 됩니다.", + "GFPGAN visibility": "GFPGAN visibility", + "Generate Info": "Generate Info", + "Generate forever": "반복 생성", + "Generate": "생성", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", + "Height": "세로", + "Heun": "Heun", + "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", + "Highres. fix": "고해상도 보정", + "History": "기록", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", - "CFG Scale": "CFG 스케일", - "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", - "Seed": "시드", - "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", - "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", - "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", - "Extra": "고급", - "Variation seed": "바리에이션 시드", - "Variation strength": "바리에이션 강도", - "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", + "How many times to repeat processing an image and using it as input for the next iteration": "이미지를 생성 후 원본으로 몇 번 반복해서 사용할지 결정하는 값", + "How much to blur the mask before processing, in pixels.": "이미지 생성 전 마스크를 얼마나 블러처리할지 결정하는 값. 픽셀 단위", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", + "Hypernet str.": "하이퍼네트워크 강도", + "Hypernetwork strength": "Hypernetwork strength", + "Hypernetwork": "하이퍼네트워크", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "Image for img2img": "Image for img2img", + "Image for inpainting with mask": "Image for inpainting with mask", + "Image": "Image", + "Images filename pattern": "Images filename pattern", + "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "루프백 모드에서는 매 루프마다 디노이즈 강도에 이 값이 곱해집니다. 1보다 작을 경우 다양성이 낮아져 결과 이미지들이 고정된 형태로 모일 겁니다. 1보다 클 경우 다양성이 높아져 결과 이미지들이 갈수록 혼란스러워지겠죠.", + "Include Separate Images": "분리된 이미지 포함하기", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", + "Initialization text": "Initialization text", + "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", + "Inpaint at full resolution": "전체 해상도로 인페인트하기", + "Inpaint masked": "마스크만 처리", + "Inpaint not masked": "마스크 이외만 처리", + "Inpaint": "인페인트", + "Input directory": "인풋 이미지 경로", + "Interpolation Method": "Interpolation Method", + "Interrogate\nCLIP": "CLIP\n분석", + "Interrogate\nDeepBooru": "DeepBooru\n분석", + "Interrogate Options": "Interrogate Options", + "Interrogate: deepbooru score threshold": "Interrogate: deepbooru score threshold", + "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", + "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).", + "Interrogate: keep models in VRAM": "Interrogate: keep models in VRAM", + "Interrogate: maximum description length": "Interrogate: maximum description length", + "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", + "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", + "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", + "Interrupt": "중단", + "Just resize": "리사이징", + "Keep -1 for seeds": "시드값 -1로 유지", + "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "LDSR": "LDSR", + "LMS Karras": "LMS Karras", + "LMS": "LMS", + "Label": "Label", + "Lanczos": "Lanczos", + "Learning rate": "Learning rate", + "Leave blank to save images to the default path.": "Leave blank to save images to the default path.", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "Loading...": "로딩 중...", + "Localization (requires restart)": "Localization (requires restart)", + "Log directory": "Log directory", + "Loopback": "루프백", + "Loops": "루프 수", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", + "Make Zip when Save?": "저장 시 Zip 생성하기", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Mask blur": "마스크 블러", + "Mask mode": "Mask mode", + "Mask": "마스크", + "Masked content": "마스크된 부분", + "Masking mode": "Masking mode", + "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", + "Max steps": "Max steps", + "Modules": "Modules", + "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", + "Multiplier (M) - set to 0 to get model A": "Multiplier (M) - set to 0 to get model A", + "Name": "Name", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Negative prompt": "네거티브 프롬프트", + "Next Page": "Next Page", + "None": "None", + "Nothing": "없음", + "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", + "Number of vectors per token": "Number of vectors per token", + "Open images output directory": "이미지 저장 경로 열기", + "Open output directory": "Open output directory", + "Original negative prompt": "기존 네거티브 프롬프트", + "Original prompt": "기존 프롬프트", + "Outpainting direction": "아웃페인팅 방향", + "Outpainting mk2": "아웃페인팅 마크 2", + "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", + "Output directory for images from extras tab": "Output directory for images from extras tab", + "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", + "Output directory for img2img grids": "Output directory for img2img grids", + "Output directory for img2img images": "Output directory for img2img images", + "Output directory for txt2img grids": "Output directory for txt2img grids", + "Output directory for txt2img images": "Output directory for txt2img images", + "Output directory": "이미지 저장 경로", + "Override `Denoising strength` to 1?": "디노이즈 강도를 1로 적용할까요?", + "Override `Sampling Steps` to the same value as `Decode steps`?": "샘플링 스텝 수를 디코딩 스텝 수와 동일하게 적용할까요?", + "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", + "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "프롬프트 값을 기존 프롬프트와 동일하게 적용할까요?(네거티브 프롬프트 포함)", + "PLMS": "PLMS", + "PNG Info": "PNG 정보", + "Page Index": "Page Index", + "Path to directory where to write outputs": "Path to directory where to write outputs", + "Path to directory with input images": "Path to directory with input images", + "Paths for saving": "Paths for saving", + "Pixels to expand": "확장할 픽셀 수", + "Poor man's outpainting": "가난뱅이의 아웃페인팅", + "Preprocess images": "Preprocess images", + "Preprocess": "Preprocess", + "Prev Page": "Prev Page", + "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", + "Primary model (A)": "Primary model (A)", + "Process an image, use it as an input, repeat.": "이미지를 생성하고, 생성한 이미지를 다시 원본으로 사용하는 과정을 반복합니다.", + "Process images in a directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리의 이미지들을 처리합니다.", + "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Prompt S/R": "프롬프트 스타일 변경", + "Prompt matrix": "프롬프트 매트릭스", + "Prompt order": "프롬프트 순서", + "Prompt template file": "Prompt template file", + "Prompt": "프롬프트", + "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", + "Prompts": "프롬프트", + "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", + "Quality for saved jpeg images": "Quality for saved jpeg images", + "Quicksettings list": "Quicksettings list", + "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", + "Randomness": "랜덤성", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", + "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "추천 설정값 - 샘플링 스텝 수 : 80-100 , 샘플러 : Euler a, 디노이즈 강도 : 0.8", + "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "Renew Page": "Renew Page", + "Request browser notifications": "Request browser notifications", + "Resize and fill": "리사이징 후 채우기", + "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "설정된 해상도로 이미지 리사이징을 진행합니다. 원본과 가로/세로 길이가 일치하지 않을 경우, 부정확한 화면비의 이미지를 얻게 됩니다.", + "Resize mode": "Resize mode", "Resize seed from height": "시드 리사이징 가로길이", "Resize seed from width": "시드 리사이징 세로길이", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", - "Script": "스크립트", + "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "이미지 전체가 설정된 해상도 내부에 들어가게 리사이징을 진행합니다. 빈 공간은 이미지의 색상으로 채웁니다.", + "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "설정된 해상도 전체가 이미지로 가득차게 리사이징을 진행합니다. 튀어나오는 부분은 잘라냅니다.", + "Resize": "Resize", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", + "Restore faces": "얼굴 보정", + "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", + "Result = A * (1 - M) + B * M": "Result = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "Result = A + (B - C) * M", + "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", + "Run": "Run", + "SD upscale": "SD 업스케일링", + "Sampler parameters": "Sampler parameters", + "Sampler": "샘플러", + "Sampling Steps": "샘플링 스텝 수", + "Sampling method": "샘플링 방법", + "Save a copy of embedding to log directory every N steps, 0 to disable": "Save a copy of embedding to log directory every N steps, 0 to disable", + "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", + "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", + "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", + "Save an image to log directory every N steps, 0 to disable": "Save an image to log directory every N steps, 0 to disable", + "Save as float16": "Save as float16", + "Save grids to a subdirectory": "Save grids to a subdirectory", + "Save images to a subdirectory": "Save images to a subdirectory", + "Save images with embedding in PNG chunks": "Save images with embedding in PNG chunks", + "Save style": "스타일 저장", + "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", "Save": "저장", - "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "Saving images/grids": "Saving images/grids", + "Saving to a directory": "Saving to a directory", + "Scale by": "Scale by", + "Scale to": "Scale to", + "Script": "스크립트", + "ScuNET GAN": "ScuNET GAN", + "ScuNET PSNR": "ScuNET PSNR", + "Secondary model (B)": "Secondary model (B)", + "See": "See", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "Seed": "시드", + "Send to extras": "부가기능으로 전송", "Send to img2img": "이미지→이미지로 전송", "Send to inpaint": "인페인트로 전송", - "Send to extras": "부가기능으로 전송", - "Open images output directory": "이미지 저장 경로 열기", - "Make Zip when Save?": "저장 시 Zip 생성하기", - "Prompt matrix": "프롬프트 매트릭스", + "Send to txt2img": "텍스트→이미지로 전송", "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)": "(|)를 이용해 프롬프트를 분리할 시 첫 프롬프트를 제외하고 모든 프롬프트의 조합마다 이미지를 생성합니다. 첫 프롬프트는 모든 조합에 포함되게 됩니다.", - "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", - "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", - "Show Textbox": "텍스트박스 보이기", - "File with inputs": "설정값 파일", - "Prompts": "프롬프트", - "X/Y plot": "X/Y 플롯", - "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", - "X type": "X축", - "Y type": "Y축", - "X values": "X 설정값", - "Y values": "Y 설정값", "Separate values for X axis using commas.": "쉼표로 X축에 적용할 값 분리", "Separate values for Y axis using commas.": "쉼표로 Y축에 적용할 값 분리", - "Draw legend": "범례 그리기", - "Include Separate Images": "분리된 이미지 포함하기", - "Keep -1 for seeds": "시드값 -1로 유지", + "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "Settings": "설정", + "Show Textbox": "텍스트박스 보이기", + "Show generation progress in window title.": "Show generation progress in window title.", + "Show grid in results for web": "Show grid in results for web", + "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", + "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", + "Show progressbar": "Show progressbar", + "Show result images": "Show result images", + "Sigma Churn": "시그마 섞기", + "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", + "Sigma max": "시그마 최댓값", + "Sigma min": "시그마 최솟값", + "Sigma noise": "시그마 노이즈", + "Single Image": "Single Image", + "Skip": "건너뛰기", + "Source directory": "Source directory", + "Source": "Source", + "Split oversized images into two": "Split oversized images into two", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Stable Diffusion": "Stable Diffusion", + "Steps": "스텝 수", + "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", + "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", + "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", + "Style 1": "스타일 1", + "Style 2": "스타일 2", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", + "SwinIR 4x": "SwinIR 4x", + "System": "System", + "Tertiary model (C)": "Tertiary model (C)", + "Textbox": "Textbox", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", + "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", + "Tile overlap": "타일 겹침", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", + "Tile size for all SwinIR.": "Tile size for all SwinIR.", + "Tiling": "타일링", + "Train Embedding": "Train Embedding", + "Train Hypernetwork": "Train Hypernetwork", + "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Train an embedding; must specify a directory with a set of 1:1 ratio images", + "Train": "훈련", + "Training": "Training", + "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", + "Upload mask": "마스크 업로드하기", + "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", + "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "마스크된 부분을 설정된 해상도로 업스케일하고, 인페인팅을 진행한 뒤, 다시 다운스케일 후 원본 이미지에 붙여넣습니다.", + "Upscaler 2 visibility": "Upscaler 2 visibility", + "Upscaler for img2img": "Upscaler for img2img", + "Upscaler": "업스케일러", + "Upscaling": "Upscaling", + "Use BLIP for caption": "Use BLIP for caption", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Use an empty output directory to save pictures normally instead of writing to the output directory.": "저장 경로를 비워두면 기본 저장 폴더에 이미지들이 저장됩니다.", + "Use deepbooru for caption": "Use deepbooru for caption", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", + "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", + "User interface": "User interface", + "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", "Var. seed": "바리에이션 시드", "Var. strength": "바리에이션 강도", - "Steps": "스텝 수", - "Prompt S/R": "프롬프트 스타일 변경", - "Prompt order": "프롬프트 순서", - "Sampler": "샘플러", - "Checkpoint name": "체크포인트 이름", - "Hypernet str.": "하이퍼네트워크 강도", - "Sigma Churn": "시그마 섞기", - "Sigma min": "시그마 최솟값", - "Sigma max": "시그마 최댓값", - "Sigma noise": "시그마 노이즈", - "Clip skip": "클립 건너뛰기", - "Denoising": "디노이징", - "Nothing": "없음", - "Apply settings": "설정 적용하기", - "Always save all generated images": "생성된 이미지 항상 저장하기" + "Variation seed": "바리에이션 시드", + "Variation strength": "바리에이션 강도", + "Weighted sum": "Weighted sum", + "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusion으로 이미지를 생성하기 전 마스크된 부분에 무엇을 채울지 결정하는 설정값", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", + "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", + "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", + "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", + "Width": "가로", + "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "이미지를 설정된 사이즈의 2배로 업스케일합니다. 상단의 가로와 세로 슬라이더를 이용해 타일 사이즈를 지정하세요.", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "X type": "X축", + "X values": "X 설정값", + "X/Y plot": "X/Y 플롯", + "Y type": "Y축", + "Y values": "Y 설정값", + "api": "", + "built with gradio": "gradio로 제작되었습니다", + "checkpoint": "checkpoint", + "directory.": "directory.", + "down": "아래쪽", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", + "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", + "extras history": "extras history", + "fill it with colors of the image": "이미지의 색상으로 채우기", + "fill it with latent space noise": "잠재 공간 노이즈로 채우기", + "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", + "fill": "채우기", + "for detailed explanation.": "for detailed explanation.", + "hide": "api 숨기기", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", + "img2img DDIM discretize": "img2img DDIM discretize", + "img2img alternative test": "이미지→이미지 대체버전 테스트", + "img2img history": "img2img history", + "img2img": "이미지→이미지", + "keep whatever was there originally": "이미지 원본 유지", + "latent noise": "잠재 노이즈", + "latent nothing": "잠재 공백", + "left": "왼쪽", + "number of images to delete consecutively next": "number of images to delete consecutively next", + "or": "or", + "original": "원본 유지", + "quad": "quad", + "right": "오른쪽", + "set_index": "set_index", + "should be 2 or lower.": "이 2 이하여야 합니다.", + "sigma churn": "sigma churn", + "sigma noise": "sigma noise", + "sigma tmin": "sigma tmin", + "txt2img history": "txt2img history", + "txt2img": "텍스트→이미지", + "uniform": "uniform", + "up": "위쪽", + "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", + "view": "api 보이기", + "wiki": "wiki" } \ No newline at end of file From d8acd34f66ab35a91f10d66330bcc95a83bfcac6 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Thu, 20 Oct 2022 23:43:03 +0900 Subject: [PATCH 026/321] generalized some functions and option for ignoring first layer --- modules/hypernetworks/hypernetwork.py | 23 +++++++++++++++-------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 7d617680..3a44b377 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -21,21 +21,27 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler class HypernetworkModule(torch.nn.Module): multiplier = 1.0 - + activation_dict = {"relu": torch.nn.ReLU, "leakyrelu": torch.nn.LeakyReLU, "elu": torch.nn.ELU, + "swish": torch.nn.Hardswish} + def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None): super().__init__() assert layer_structure is not None, "layer_structure must not be None" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" - + linears = [] for i in range(len(layer_structure) - 1): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) - if activation_func == "relu": - linears.append(torch.nn.ReLU()) - if activation_func == "leakyrelu": - linears.append(torch.nn.LeakyReLU()) + # if skip_first_layer because first parameters potentially contain negative values + if i < 1: continue + if activation_func in HypernetworkModule.activation_dict: + linears.append(HypernetworkModule.activation_dict[activation_func]()) + else: + print("Invalid key {} encountered as activation function!".format(activation_func)) + # if use_dropout: + linears.append(torch.nn.Dropout(p=0.3)) if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) @@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module): self.load_state_dict(state_dict) else: for layer in self.linear: - if not "ReLU" in layer.__str__(): + if isinstance(layer, torch.nn.Linear): layer.weight.data.normal_(mean=0.0, std=0.01) layer.bias.data.zero_() @@ -298,7 +304,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) + # if optimizer == "Adam": or else Adam / AdamW / etc... + optimizer = torch.optim.Adam(weights, lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: From a71e0212363979c7cbbb797c9fbd5f8cd03b29d3 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Thu, 20 Oct 2022 23:48:52 +0900 Subject: [PATCH 027/321] only linear --- modules/hypernetworks/hypernetwork.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 3a44b377..905cbeef 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -35,13 +35,13 @@ class HypernetworkModule(torch.nn.Module): for i in range(len(layer_structure) - 1): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) # if skip_first_layer because first parameters potentially contain negative values - if i < 1: continue + # if i < 1: continue if activation_func in HypernetworkModule.activation_dict: linears.append(HypernetworkModule.activation_dict[activation_func]()) else: print("Invalid key {} encountered as activation function!".format(activation_func)) # if use_dropout: - linears.append(torch.nn.Dropout(p=0.3)) + # linears.append(torch.nn.Dropout(p=0.3)) if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) @@ -80,7 +80,7 @@ class HypernetworkModule(torch.nn.Module): def trainables(self): layer_structure = [] for layer in self.linear: - if not "ReLU" in layer.__str__(): + if isinstance(layer, torch.nn.Linear): layer_structure += [layer.weight, layer.bias] return layer_structure @@ -304,8 +304,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - # if optimizer == "Adam": or else Adam / AdamW / etc... - optimizer = torch.optim.Adam(weights, lr=scheduler.learn_rate) + # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc... + optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: From d07cb46f34b3d9fe7a78b102f899ebef352ea56b Mon Sep 17 00:00:00 2001 From: yfszzx Date: Thu, 20 Oct 2022 23:58:52 +0800 Subject: [PATCH 028/321] inspiration pull request --- .gitignore | 3 +- javascript/imageviewer.js | 1 - javascript/inspiration.js | 42 +++++++++ modules/inspiration.py | 122 +++++++++++++++++++++++++++ modules/shared.py | 1 + modules/ui.py | 13 +-- scripts/create_inspiration_images.py | 45 ++++++++++ webui.py | 5 ++ 8 files changed, 225 insertions(+), 7 deletions(-) create mode 100644 javascript/inspiration.js create mode 100644 modules/inspiration.py create mode 100644 scripts/create_inspiration_images.py diff --git a/.gitignore b/.gitignore index f9c3357c..434d50b7 100644 --- a/.gitignore +++ b/.gitignore @@ -27,4 +27,5 @@ __pycache__ notification.mp3 /SwinIR /textual_inversion -.vscode \ No newline at end of file +.vscode +/inspiration \ No newline at end of file diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js index 9e380c65..d4ab6984 100644 --- a/javascript/imageviewer.js +++ b/javascript/imageviewer.js @@ -116,7 +116,6 @@ function showGalleryImage() { e.dataset.modded = true; if(e && e.parentElement.tagName == 'DIV'){ e.style.cursor='pointer' - e.style.userSelect='none' e.addEventListener('click', function (evt) { if(!opts.js_modal_lightbox) return; modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed) diff --git a/javascript/inspiration.js b/javascript/inspiration.js new file mode 100644 index 00000000..e1c0e114 --- /dev/null +++ b/javascript/inspiration.js @@ -0,0 +1,42 @@ +function public_image_index_in_gallery(item, gallery){ + var index; + var i = 0; + gallery.querySelectorAll("img").forEach(function(e){ + if (e == item) + index = i; + i += 1; + }); + return index; +} + +function inspiration_selected(name, types, name_list){ + var btn = gradioApp().getElementById("inspiration_select_button") + return [gradioApp().getElementById("inspiration_select_button").getAttribute("img-index"), types]; +} +var inspiration_image_click = function(){ + var index = public_image_index_in_gallery(this, gradioApp().getElementById("inspiration_gallery")); + var btn = gradioApp().getElementById("inspiration_select_button") + btn.setAttribute("img-index", index) + setTimeout(function(btn){btn.click();}, 10, btn) +} + +document.addEventListener("DOMContentLoaded", function() { + var mutationObserver = new MutationObserver(function(m){ + var gallery = gradioApp().getElementById("inspiration_gallery") + if (gallery) { + var node = gallery.querySelector(".absolute.backdrop-blur.h-full") + if (node) { + node.style.display = "None"; //parentNode.removeChild(node) + } + + gallery.querySelectorAll('img').forEach(function(e){ + e.onclick = inspiration_image_click + }) + + } + + + }); + mutationObserver.observe( gradioApp(), { childList:true, subtree:true }); + +}); diff --git a/modules/inspiration.py b/modules/inspiration.py new file mode 100644 index 00000000..456bfcb5 --- /dev/null +++ b/modules/inspiration.py @@ -0,0 +1,122 @@ +import os +import random +import gradio +inspiration_path = "inspiration" +inspiration_system_path = os.path.join(inspiration_path, "system") +def read_name_list(file): + if not os.path.exists(file): + return [] + f = open(file, "r") + ret = [] + line = f.readline() + while len(line) > 0: + line = line.rstrip("\n") + ret.append(line) + print(ret) + return ret + +def save_name_list(file, name): + print(file) + f = open(file, "a") + f.write(name + "\n") + +def get_inspiration_images(source, types): + path = os.path.join(inspiration_path , types) + if source == "Favorites": + names = read_name_list(os.path.join(inspiration_system_path, types + "_faverites.txt")) + names = random.sample(names, 25) + elif source == "Abandoned": + names = read_name_list(os.path.join(inspiration_system_path, types + "_abondened.txt")) + names = random.sample(names, 25) + elif source == "Exclude abandoned": + abondened = read_name_list(os.path.join(inspiration_system_path, types + "_abondened.txt")) + all_names = os.listdir(path) + names = [] + while len(names) < 25: + name = random.choice(all_names) + if name not in abondened: + names.append(name) + else: + names = random.sample(os.listdir(path), 25) + names = random.sample(names, 25) + image_list = [] + for a in names: + image_path = os.path.join(path, a) + images = os.listdir(image_path) + image_list.append(os.path.join(image_path, random.choice(images))) + return image_list, names + +def select_click(index, types, name_list): + name = name_list[int(index)] + path = os.path.join(inspiration_path, types, name) + images = os.listdir(path) + return name, [os.path.join(path, x) for x in images] + +def give_up_click(name, types): + file = os.path.join(inspiration_system_path, types + "_abandoned.txt") + name_list = read_name_list(file) + if name not in name_list: + save_name_list(file, name) + +def collect_click(name, types): + file = os.path.join(inspiration_system_path, types + "_faverites.txt") + print(file) + name_list = read_name_list(file) + print(name_list) + if name not in name_list: + save_name_list(file, name) + +def moveout_click(name, types): + file = os.path.join(inspiration_system_path, types + "_faverites.txt") + name_list = read_name_list(file) + if name not in name_list: + save_name_list(file, name) + +def source_change(source): + if source == "Abandoned" or source == "Favorites": + return gradio.Button.update(visible=True, value=f"Move out {source}") + else: + return gradio.Button.update(visible=False) + +def ui(gr, opts): + with gr.Blocks(analytics_enabled=False) as inspiration: + flag = os.path.exists(inspiration_path) + if flag: + types = os.listdir(inspiration_path) + types = [x for x in types if x != "system"] + flag = len(types) > 0 + if not flag: + os.mkdir(inspiration_path) + gr.HTML(""" +
" + """) + return inspiration + if not os.path.exists(inspiration_system_path): + os.mkdir(inspiration_system_path) + gallery, names = get_inspiration_images("Exclude abandoned", types[0]) + with gr.Row(): + with gr.Column(scale=2): + inspiration_gallery = gr.Gallery(gallery, show_label=False, elem_id="inspiration_gallery").style(grid=5, height='auto') + with gr.Column(scale=1): + types = gr.Dropdown(choices=types, value=types[0], label="Type", visible=len(types) > 1) + with gr.Row(): + source = gr.Dropdown(choices=["All", "Favorites", "Exclude abandoned", "Abandoned"], value="Exclude abandoned", label="Source") + get_inspiration = gr.Button("Get inspiration") + name = gr.Textbox(show_label=False, interactive=False) + with gr.Row(): + send_to_txt2img = gr.Button('to txt2img') + send_to_img2img = gr.Button('to img2img') + style_gallery = gr.Gallery(show_label=False, elem_id="inspiration_style_gallery").style(grid=2, height='auto') + + collect = gr.Button('Collect') + give_up = gr.Button("Don't show any more") + moveout = gr.Button("Move out", visible=False) + with gr.Row(): + select_button = gr.Button('set button', elem_id="inspiration_select_button") + name_list = gr.State(names) + source.change(source_change, inputs=[source], outputs=[moveout]) + get_inspiration.click(get_inspiration_images, inputs=[source, types], outputs=[inspiration_gallery, name_list]) + select_button.click(select_click, _js="inspiration_selected", inputs=[name, types, name_list], outputs=[name, style_gallery]) + give_up.click(give_up_click, inputs=[name, types], outputs=None) + collect.click(collect_click, inputs=[name, types], outputs=None) + return inspiration diff --git a/modules/shared.py b/modules/shared.py index faede821..ae033710 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -78,6 +78,7 @@ parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencode parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False) parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui") parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui") +parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI") cmd_opts = parser.parse_args() restricted_opts = [ diff --git a/modules/ui.py b/modules/ui.py index a2dbd41e..6a0a3c3b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -41,7 +41,8 @@ from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui import modules.hypernetworks.ui -import modules.images_history as img_his +import modules.images_history as images_history +import modules.inspiration as inspiration # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() @@ -1082,9 +1083,9 @@ def create_ui(wrap_gradio_gpu_call): upscaling_resize_w = gr.Number(label="Width", value=512, precision=0) upscaling_resize_h = gr.Number(label="Height", value=512, precision=0) upscaling_crop = gr.Checkbox(label='Crop to fit', value=True) - + with gr.Group(): - extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") + extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers] , value=shared.sd_upscalers[0].name, type="index") with gr.Group(): extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") @@ -1178,7 +1179,8 @@ def create_ui(wrap_gradio_gpu_call): "i2i":img2img_paste_fields } - images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) + browser_interface = images_history.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) + inspiration_interface = inspiration.ui(gr, opts) with gr.Blocks() as modelmerger_interface: with gr.Row().style(equal_height=False): @@ -1595,7 +1597,8 @@ Requested path was: {f} (img2img_interface, "img2img", "img2img"), (extras_interface, "Extras", "extras"), (pnginfo_interface, "PNG Info", "pnginfo"), - (images_history, "History", "images_history"), + (browser_interface, "History", "images_history"), + (inspiration_interface, "Inspiration", "inspiration"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"), (train_interface, "Train", "ti"), (settings_interface, "Settings", "settings"), diff --git a/scripts/create_inspiration_images.py b/scripts/create_inspiration_images.py new file mode 100644 index 00000000..6a20def8 --- /dev/null +++ b/scripts/create_inspiration_images.py @@ -0,0 +1,45 @@ +import csv, os, shutil +import modules.scripts as scripts +from modules import processing, shared, sd_samplers, images +from modules.processing import Processed + + +class Script(scripts.Script): + def title(self): + return "Create artists style image" + + def show(self, is_img2img): + return not is_img2img + + def ui(self, is_img2img): + return [] + def show(self, is_img2img): + return not is_img2img + + def run(self, p): #, max_snapshoots_num): + path = os.path.join("style_snapshoot", "artist") + if not os.path.exists(path): + os.makedirs(path) + p.do_not_save_samples = True + p.do_not_save_grid = True + p.negative_prompt = "portrait photo" + f = open('artists.csv') + f_csv = csv.reader(f) + for row in f_csv: + name = row[0] + artist_path = os.path.join(path, name) + if not os.path.exists(artist_path): + os.mkdir(artist_path) + if len(os.listdir(artist_path)) > 0: + continue + print(name) + p.prompt = name + processed = processing.process_images(p) + for img in processed.images: + i = 0 + filename = os.path.join(artist_path, format(0, "03d") + ".jpg") + while os.path.exists(filename): + i += 1 + filename = os.path.join(artist_path, format(i, "03d") + ".jpg") + img.save(filename, quality=70) + return processed diff --git a/webui.py b/webui.py index 177bef74..5923905f 100644 --- a/webui.py +++ b/webui.py @@ -72,6 +72,11 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) def initialize(): + if cmd_opts.ui_debug_mode: + class enmpty(): + name = None + shared.sd_upscalers = [enmpty()] + return modelloader.cleanup_models() modules.sd_models.setup_model() codeformer.setup_model(cmd_opts.codeformer_models_path) From 108be15500aac590b4e00420635d7b61fccfa530 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Fri, 21 Oct 2022 01:00:41 +0900 Subject: [PATCH 029/321] fix bugs and optimizations --- modules/hypernetworks/hypernetwork.py | 93 +++++++++++++++------------ 1 file changed, 53 insertions(+), 40 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 905cbeef..893ba110 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) # if skip_first_layer because first parameters potentially contain negative values # if i < 1: continue + if add_layer_norm: + linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) if activation_func in HypernetworkModule.activation_dict: linears.append(HypernetworkModule.activation_dict[activation_func]()) else: print("Invalid key {} encountered as activation function!".format(activation_func)) # if use_dropout: # linears.append(torch.nn.Dropout(p=0.3)) - if add_layer_norm: - linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) self.linear = torch.nn.Sequential(*linears) @@ -115,11 +115,24 @@ class Hypernetwork: for k, layers in self.layers.items(): for layer in layers: - layer.train() res += layer.trainables() return res + def eval(self): + for k, layers in self.layers.items(): + for layer in layers: + layer.eval() + for items in self.weights(): + items.requires_grad = False + + def train(self): + for k, layers in self.layers.items(): + for layer in layers: + layer.train() + for items in self.weights(): + items.requires_grad = True + def save(self, filename): state_dict = {} @@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.sd_model.first_stage_model.to(devices.cpu) hypernetwork = shared.loaded_hypernetwork - weights = hypernetwork.weights() - for weight in weights: - weight.requires_grad = True - losses = torch.zeros((32,)) last_saved_file = "" @@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc... - optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) + optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) + hypernetwork.train() for i, entries in pbar: hypernetwork.step = i + ititial_step @@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item() - optimizer.zero_grad() + optimizer.zero_grad(set_to_none=True) loss.backward() + del loss optimizer.step() mean_loss = losses.mean() if torch.isnan(mean_loss): @@ -346,44 +356,47 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log }) if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: + torch.cuda.empty_cache() last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') + with torch.no_grad(): + hypernetwork.eval() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) - optimizer.zero_grad() - shared.sd_model.cond_stage_model.to(devices.device) - shared.sd_model.first_stage_model.to(devices.device) + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + ) - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - ) + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 + preview_text = p.prompt - preview_text = p.prompt + processed = processing.process_images(p) + image = processed.images[0] if len(processed.images)>0 else None - processed = processing.process_images(p) - image = processed.images[0] if len(processed.images)>0 else None + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) - if unload: - shared.sd_model.cond_stage_model.to(devices.cpu) - shared.sd_model.first_stage_model.to(devices.cpu) + if image is not None: + shared.state.current_image = image + image.save(last_saved_image) + last_saved_image += f", prompt: {preview_text}" - if image is not None: - shared.state.current_image = image - image.save(last_saved_image) - last_saved_image += f", prompt: {preview_text}" + hypernetwork.train() shared.state.job_no = hypernetwork.step From f89829ec3a0baceb445451ad98d4fb4323e922aa Mon Sep 17 00:00:00 2001 From: aria1th <35677394+aria1th@users.noreply.github.com> Date: Fri, 21 Oct 2022 01:37:11 +0900 Subject: [PATCH 030/321] Revert "fix bugs and optimizations" This reverts commit 108be15500aac590b4e00420635d7b61fccfa530. --- modules/hypernetworks/hypernetwork.py | 93 ++++++++++++--------------- 1 file changed, 40 insertions(+), 53 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 893ba110..905cbeef 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) # if skip_first_layer because first parameters potentially contain negative values # if i < 1: continue - if add_layer_norm: - linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) if activation_func in HypernetworkModule.activation_dict: linears.append(HypernetworkModule.activation_dict[activation_func]()) else: print("Invalid key {} encountered as activation function!".format(activation_func)) # if use_dropout: # linears.append(torch.nn.Dropout(p=0.3)) + if add_layer_norm: + linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) self.linear = torch.nn.Sequential(*linears) @@ -115,24 +115,11 @@ class Hypernetwork: for k, layers in self.layers.items(): for layer in layers: + layer.train() res += layer.trainables() return res - def eval(self): - for k, layers in self.layers.items(): - for layer in layers: - layer.eval() - for items in self.weights(): - items.requires_grad = False - - def train(self): - for k, layers in self.layers.items(): - for layer in layers: - layer.train() - for items in self.weights(): - items.requires_grad = True - def save(self, filename): state_dict = {} @@ -303,6 +290,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.sd_model.first_stage_model.to(devices.cpu) hypernetwork = shared.loaded_hypernetwork + weights = hypernetwork.weights() + for weight in weights: + weight.requires_grad = True + losses = torch.zeros((32,)) last_saved_file = "" @@ -313,10 +304,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate) + # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc... + optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - hypernetwork.train() for i, entries in pbar: hypernetwork.step = i + ititial_step @@ -337,9 +328,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item() - optimizer.zero_grad(set_to_none=True) + optimizer.zero_grad() loss.backward() - del loss optimizer.step() mean_loss = losses.mean() if torch.isnan(mean_loss): @@ -356,47 +346,44 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log }) if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: - torch.cuda.empty_cache() last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') - with torch.no_grad(): - hypernetwork.eval() - shared.sd_model.cond_stage_model.to(devices.device) - shared.sd_model.first_stage_model.to(devices.device) - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - ) + optimizer.zero_grad() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + ) - preview_text = p.prompt + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 - processed = processing.process_images(p) - image = processed.images[0] if len(processed.images)>0 else None + preview_text = p.prompt - if unload: - shared.sd_model.cond_stage_model.to(devices.cpu) - shared.sd_model.first_stage_model.to(devices.cpu) + processed = processing.process_images(p) + image = processed.images[0] if len(processed.images)>0 else None - if image is not None: - shared.state.current_image = image - image.save(last_saved_image) - last_saved_image += f", prompt: {preview_text}" + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) - hypernetwork.train() + if image is not None: + shared.state.current_image = image + image.save(last_saved_image) + last_saved_image += f", prompt: {preview_text}" shared.state.job_no = hypernetwork.step From bb0f1a2cdae3410a41d06ae878f56e29b8154c41 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 22 Oct 2022 01:23:00 +0800 Subject: [PATCH 031/321] inspiration finished --- javascript/inspiration.js | 27 +++--- modules/inspiration.py | 192 +++++++++++++++++++++++++------------- modules/shared.py | 6 ++ modules/ui.py | 2 +- webui.py | 3 +- 5 files changed, 151 insertions(+), 79 deletions(-) diff --git a/javascript/inspiration.js b/javascript/inspiration.js index e1c0e114..791a80c9 100644 --- a/javascript/inspiration.js +++ b/javascript/inspiration.js @@ -1,25 +1,31 @@ function public_image_index_in_gallery(item, gallery){ + var imgs = gallery.querySelectorAll("img.h-full") var index; var i = 0; - gallery.querySelectorAll("img").forEach(function(e){ + imgs.forEach(function(e){ if (e == item) index = i; i += 1; }); + var num = imgs.length / 2 + index = (index < num) ? index : (index - num) return index; } -function inspiration_selected(name, types, name_list){ +function inspiration_selected(name, name_list){ var btn = gradioApp().getElementById("inspiration_select_button") - return [gradioApp().getElementById("inspiration_select_button").getAttribute("img-index"), types]; -} + return [gradioApp().getElementById("inspiration_select_button").getAttribute("img-index")]; +} +function inspiration_click_get_button(){ + gradioApp().getElementById("inspiration_get_button").click(); +} var inspiration_image_click = function(){ var index = public_image_index_in_gallery(this, gradioApp().getElementById("inspiration_gallery")); - var btn = gradioApp().getElementById("inspiration_select_button") - btn.setAttribute("img-index", index) - setTimeout(function(btn){btn.click();}, 10, btn) + var btn = gradioApp().getElementById("inspiration_select_button"); + btn.setAttribute("img-index", index); + setTimeout(function(btn){btn.click();}, 10, btn); } - + document.addEventListener("DOMContentLoaded", function() { var mutationObserver = new MutationObserver(function(m){ var gallery = gradioApp().getElementById("inspiration_gallery") @@ -27,11 +33,10 @@ document.addEventListener("DOMContentLoaded", function() { var node = gallery.querySelector(".absolute.backdrop-blur.h-full") if (node) { node.style.display = "None"; //parentNode.removeChild(node) - } - + } gallery.querySelectorAll('img').forEach(function(e){ e.onclick = inspiration_image_click - }) + }); } diff --git a/modules/inspiration.py b/modules/inspiration.py index 456bfcb5..f72ebf3a 100644 --- a/modules/inspiration.py +++ b/modules/inspiration.py @@ -1,122 +1,182 @@ import os import random -import gradio -inspiration_path = "inspiration" -inspiration_system_path = os.path.join(inspiration_path, "system") -def read_name_list(file): +import gradio +from modules.shared import opts +inspiration_system_path = os.path.join(opts.inspiration_dir, "system") +def read_name_list(file, types=None, keyword=None): if not os.path.exists(file): return [] - f = open(file, "r") ret = [] + f = open(file, "r") line = f.readline() while len(line) > 0: line = line.rstrip("\n") - ret.append(line) - print(ret) + if types is not None: + dirname = os.path.split(line) + if dirname[0] in types and keyword in dirname[1]: + ret.append(line) + else: + ret.append(line) + line = f.readline() return ret def save_name_list(file, name): - print(file) - f = open(file, "a") - f.write(name + "\n") + with open(file, "a") as f: + f.write(name + "\n") -def get_inspiration_images(source, types): - path = os.path.join(inspiration_path , types) +def get_types_list(): + files = os.listdir(opts.inspiration_dir) + types = [] + for x in files: + path = os.path.join(opts.inspiration_dir, x) + if x[0] == ".": + continue + if not os.path.isdir(path): + continue + if path == inspiration_system_path: + continue + types.append(x) + return types + +def get_inspiration_images(source, types, keyword): + get_num = int(opts.inspiration_rows_num * opts.inspiration_cols_num) if source == "Favorites": - names = read_name_list(os.path.join(inspiration_system_path, types + "_faverites.txt")) - names = random.sample(names, 25) + names = read_name_list(os.path.join(inspiration_system_path, "faverites.txt"), types, keyword) + names = random.sample(names, get_num) if len(names) > get_num else names elif source == "Abandoned": - names = read_name_list(os.path.join(inspiration_system_path, types + "_abondened.txt")) - names = random.sample(names, 25) - elif source == "Exclude abandoned": - abondened = read_name_list(os.path.join(inspiration_system_path, types + "_abondened.txt")) - all_names = os.listdir(path) - names = [] - while len(names) < 25: - name = random.choice(all_names) - if name not in abondened: - names.append(name) + names = read_name_list(os.path.join(inspiration_system_path, "abandoned.txt"), types, keyword) + print(names) + names = random.sample(names, get_num) if len(names) > get_num else names + elif source == "Exclude abandoned": + abandoned = read_name_list(os.path.join(inspiration_system_path, "abandoned.txt"), types, keyword) + all_names = [] + for tp in types: + name_list = os.listdir(os.path.join(opts.inspiration_dir, tp)) + all_names += [os.path.join(tp, x) for x in name_list if keyword in x] + + if len(all_names) > get_num: + names = [] + while len(names) < get_num: + name = random.choice(all_names) + if name not in abandoned: + names.append(name) + else: + names = all_names else: - names = random.sample(os.listdir(path), 25) - names = random.sample(names, 25) + all_names = [] + for tp in types: + name_list = os.listdir(os.path.join(opts.inspiration_dir, tp)) + all_names += [os.path.join(tp, x) for x in name_list if keyword in x] + names = random.sample(all_names, get_num) if len(all_names) > get_num else all_names image_list = [] for a in names: - image_path = os.path.join(path, a) + image_path = os.path.join(opts.inspiration_dir, a) images = os.listdir(image_path) - image_list.append(os.path.join(image_path, random.choice(images))) - return image_list, names + image_list.append((os.path.join(image_path, random.choice(images)), a)) + return image_list, names, "" -def select_click(index, types, name_list): +def select_click(index, name_list): name = name_list[int(index)] - path = os.path.join(inspiration_path, types, name) + path = os.path.join(opts.inspiration_dir, name) images = os.listdir(path) - return name, [os.path.join(path, x) for x in images] + return name, [os.path.join(path, x) for x in images], "" -def give_up_click(name, types): - file = os.path.join(inspiration_system_path, types + "_abandoned.txt") +def give_up_click(name): + file = os.path.join(inspiration_system_path, "abandoned.txt") name_list = read_name_list(file) if name not in name_list: save_name_list(file, name) + return "Added to abandoned list" -def collect_click(name, types): - file = os.path.join(inspiration_system_path, types + "_faverites.txt") - print(file) +def collect_click(name): + file = os.path.join(inspiration_system_path, "faverites.txt") name_list = read_name_list(file) - print(name_list) if name not in name_list: save_name_list(file, name) + return "Added to faverite list" -def moveout_click(name, types): - file = os.path.join(inspiration_system_path, types + "_faverites.txt") +def moveout_click(name, source): + if source == "Abandoned": + file = os.path.join(inspiration_system_path, "abandoned.txt") + if source == "Favorites": + file = os.path.join(inspiration_system_path, "faverites.txt") + else: + return None name_list = read_name_list(file) - if name not in name_list: - save_name_list(file, name) + os.remove(file) + with open(file, "a") as f: + for a in name_list: + if a != name: + f.write(a) + return "Moved out {name} from {source} list" def source_change(source): - if source == "Abandoned" or source == "Favorites": - return gradio.Button.update(visible=True, value=f"Move out {source}") + if source in ["Abandoned", "Favorites"]: + return gradio.update(visible=True), [] else: - return gradio.Button.update(visible=False) + return gradio.update(visible=False), [] +def add_to_prompt(name, prompt): + print(name, prompt) + name = os.path.basename(name) + return prompt + "," + name -def ui(gr, opts): +def ui(gr, opts, txt2img_prompt, img2img_prompt): with gr.Blocks(analytics_enabled=False) as inspiration: - flag = os.path.exists(inspiration_path) + flag = os.path.exists(opts.inspiration_dir) if flag: - types = os.listdir(inspiration_path) - types = [x for x in types if x != "system"] + types = get_types_list() flag = len(types) > 0 - if not flag: - os.mkdir(inspiration_path) + else: + os.makedirs(opts.inspiration_dir) + if not flag: gr.HTML(""" -
" +

To activate inspiration function, you need get "inspiration" images first.


+ You can create these images by run "Create inspiration images" script in txt2img page,
you can get the artists or art styles list from here
+ https://github.com/pharmapsychotic/clip-interrogator/tree/main/data
+ download these files, and select these files in the "Create inspiration images" script UI
+ There about 6000 artists and art styles in these files.
This takes server hours depending on your GPU type and how many pictures you generate for each artist/style +
I suggest at least four images for each


+

You can also download generated pictures from here:


+ https://huggingface.co/datasets/yfszzx/inspiration
+ unzip the file to the project directory of webui
+ and restart webui, and enjoy the joy of creation!
""") return inspiration if not os.path.exists(inspiration_system_path): os.mkdir(inspiration_system_path) - gallery, names = get_inspiration_images("Exclude abandoned", types[0]) with gr.Row(): with gr.Column(scale=2): - inspiration_gallery = gr.Gallery(gallery, show_label=False, elem_id="inspiration_gallery").style(grid=5, height='auto') + inspiration_gallery = gr.Gallery(show_label=False, elem_id="inspiration_gallery").style(grid=opts.inspiration_cols_num, height='auto') with gr.Column(scale=1): - types = gr.Dropdown(choices=types, value=types[0], label="Type", visible=len(types) > 1) + print(types) + types = gr.CheckboxGroup(choices=types, value=types) + keyword = gr.Textbox("", label="Key word") with gr.Row(): source = gr.Dropdown(choices=["All", "Favorites", "Exclude abandoned", "Abandoned"], value="Exclude abandoned", label="Source") - get_inspiration = gr.Button("Get inspiration") + get_inspiration = gr.Button("Get inspiration", elem_id="inspiration_get_button") name = gr.Textbox(show_label=False, interactive=False) with gr.Row(): send_to_txt2img = gr.Button('to txt2img') send_to_img2img = gr.Button('to img2img') - style_gallery = gr.Gallery(show_label=False, elem_id="inspiration_style_gallery").style(grid=2, height='auto') - + style_gallery = gr.Gallery(show_label=False).style(grid=2, height='auto') collect = gr.Button('Collect') - give_up = gr.Button("Don't show any more") + give_up = gr.Button("Don't show again") moveout = gr.Button("Move out", visible=False) - with gr.Row(): + warning = gr.HTML() + with gr.Row(visible=False): select_button = gr.Button('set button', elem_id="inspiration_select_button") - name_list = gr.State(names) - source.change(source_change, inputs=[source], outputs=[moveout]) - get_inspiration.click(get_inspiration_images, inputs=[source, types], outputs=[inspiration_gallery, name_list]) - select_button.click(select_click, _js="inspiration_selected", inputs=[name, types, name_list], outputs=[name, style_gallery]) - give_up.click(give_up_click, inputs=[name, types], outputs=None) - collect.click(collect_click, inputs=[name, types], outputs=None) + name_list = gr.State() + + get_inspiration.click(get_inspiration_images, inputs=[source, types, keyword], outputs=[inspiration_gallery, name_list, keyword]) + source.change(source_change, inputs=[source], outputs=[moveout, style_gallery]) + source.change(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) + keyword.submit(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) + select_button.click(select_click, _js="inspiration_selected", inputs=[name, name_list], outputs=[name, style_gallery, warning]) + give_up.click(give_up_click, inputs=[name], outputs=[warning]) + collect.click(collect_click, inputs=[name], outputs=[warning]) + moveout.click(moveout_click, inputs=[name, source], outputs=[warning]) + send_to_txt2img.click(add_to_prompt, inputs=[name, txt2img_prompt], outputs=[txt2img_prompt]) + send_to_img2img.click(add_to_prompt, inputs=[name, img2img_prompt], outputs=[img2img_prompt]) + send_to_txt2img.click(None, _js='switch_to_txt2img', inputs=None, outputs=None) + send_to_img2img.click(None, _js="switch_to_img2img_img2img", inputs=None, outputs=None) return inspiration diff --git a/modules/shared.py b/modules/shared.py index ae033710..564b1b8d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -316,6 +316,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), })) +options_templates.update(options_section(('inspiration', "Inspiration"), { + "inspiration_dir": OptionInfo("inspiration", "Directory of inspiration", component_args=hide_dirs), + "inspiration_max_samples": OptionInfo(4, "Maximum number of samples, used to determine which folders to skip when continue running the create script", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}), + "inspiration_rows_num": OptionInfo(4, "Rows of inspiration interface frame", gr.Slider, {"minimum": 4, "maximum": 16, "step": 1}), + "inspiration_cols_num": OptionInfo(8, "Columns of inspiration interface frame", gr.Slider, {"minimum": 4, "maximum": 16, "step": 1}), +})) class Options: data = None diff --git a/modules/ui.py b/modules/ui.py index 6a0a3c3b..b651eb9c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1180,7 +1180,7 @@ def create_ui(wrap_gradio_gpu_call): } browser_interface = images_history.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) - inspiration_interface = inspiration.ui(gr, opts) + inspiration_interface = inspiration.ui(gr, opts, txt2img_prompt, img2img_prompt) with gr.Blocks() as modelmerger_interface: with gr.Row().style(equal_height=False): diff --git a/webui.py b/webui.py index 5923905f..5ccae715 100644 --- a/webui.py +++ b/webui.py @@ -72,6 +72,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) def initialize(): + modules.scripts.load_scripts(os.path.join(script_path, "scripts")) if cmd_opts.ui_debug_mode: class enmpty(): name = None @@ -84,7 +85,7 @@ def initialize(): shared.face_restorers.append(modules.face_restoration.FaceRestoration()) modelloader.load_upscalers() - modules.scripts.load_scripts(os.path.join(script_path, "scripts")) + shared.sd_model = modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) From 2797b2cbf29a928ea84522d8d9478d47c7feede9 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 22 Oct 2022 01:28:02 +0800 Subject: [PATCH 032/321] inspiration finished --- javascript/imageviewer.js | 1 + 1 file changed, 1 insertion(+) diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js index d4ab6984..9e380c65 100644 --- a/javascript/imageviewer.js +++ b/javascript/imageviewer.js @@ -116,6 +116,7 @@ function showGalleryImage() { e.dataset.modded = true; if(e && e.parentElement.tagName == 'DIV'){ e.style.cursor='pointer' + e.style.userSelect='none' e.addEventListener('click', function (evt) { if(!opts.js_modal_lightbox) return; modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed) From 58ee008f0f559a947cc280a552d97050e638d611 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 22 Oct 2022 01:30:12 +0800 Subject: [PATCH 033/321] inspiration finished --- scripts/create_inspiration_images.py | 76 ++++++++++++++++------------ 1 file changed, 44 insertions(+), 32 deletions(-) diff --git a/scripts/create_inspiration_images.py b/scripts/create_inspiration_images.py index 6a20def8..2fd30578 100644 --- a/scripts/create_inspiration_images.py +++ b/scripts/create_inspiration_images.py @@ -2,44 +2,56 @@ import csv, os, shutil import modules.scripts as scripts from modules import processing, shared, sd_samplers, images from modules.processing import Processed - - +from modules.shared import opts +import gradio class Script(scripts.Script): def title(self): - return "Create artists style image" + return "Create inspiration images" def show(self, is_img2img): - return not is_img2img + return True def ui(self, is_img2img): - return [] - def show(self, is_img2img): - return not is_img2img + file = gradio.Files(label="Artist or styles name list. '.txt' files with one name per line",) + with gradio.Row(): + prefix = gradio.Textbox("a painting in", label="Prompt words before artist or style name", file_count="multiple") + suffix= gradio.Textbox("style", label="Prompt words after artist or style name") + negative_prompt = gradio.Textbox("picture frame, portrait photo", label="Negative Prompt") + with gradio.Row(): + batch_size = gradio.Number(1, label="Batch size") + batch_count = gradio.Number(2, label="Batch count") + return [batch_size, batch_count, prefix, suffix, negative_prompt, file] - def run(self, p): #, max_snapshoots_num): - path = os.path.join("style_snapshoot", "artist") - if not os.path.exists(path): - os.makedirs(path) + def run(self, p, batch_size, batch_count, prefix, suffix, negative_prompt, files): + p.batch_size = int(batch_size) + p.n_iterint = int(batch_count) + p.negative_prompt = negative_prompt p.do_not_save_samples = True - p.do_not_save_grid = True - p.negative_prompt = "portrait photo" - f = open('artists.csv') - f_csv = csv.reader(f) - for row in f_csv: - name = row[0] - artist_path = os.path.join(path, name) - if not os.path.exists(artist_path): - os.mkdir(artist_path) - if len(os.listdir(artist_path)) > 0: - continue - print(name) - p.prompt = name - processed = processing.process_images(p) - for img in processed.images: - i = 0 - filename = os.path.join(artist_path, format(0, "03d") + ".jpg") - while os.path.exists(filename): - i += 1 - filename = os.path.join(artist_path, format(i, "03d") + ".jpg") - img.save(filename, quality=70) + p.do_not_save_grid = True + for file in files: + tp = file.orig_name.split(".")[0] + print(tp) + path = os.path.join(opts.inspiration_dir, tp) + if not os.path.exists(path): + os.makedirs(path) + f = open(file.name, "r") + line = f.readline() + while len(line) > 0: + name = line.rstrip("\n").split(",")[0] + line = f.readline() + artist_path = os.path.join(path, name) + if not os.path.exists(artist_path): + os.mkdir(artist_path) + if len(os.listdir(artist_path)) >= opts.inspiration_max_samples: + continue + p.prompt = f"{prefix} {name} {suffix}" + print(p.prompt) + processed = processing.process_images(p) + for img in processed.images: + i = 0 + filename = os.path.join(artist_path, format(0, "03d") + ".jpg") + while os.path.exists(filename): + i += 1 + filename = os.path.join(artist_path, format(i, "03d") + ".jpg") + img.save(filename, quality=80) return processed From 57eb54b838faa383c10079e1bb5471b7bee6a695 Mon Sep 17 00:00:00 2001 From: Extraltodeus Date: Sat, 22 Oct 2022 00:11:07 +0200 Subject: [PATCH 034/321] implement CUDA device selection by ID --- modules/devices.py | 21 ++++++++++++++++++--- 1 file changed, 18 insertions(+), 3 deletions(-) diff --git a/modules/devices.py b/modules/devices.py index eb422583..8a159282 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -1,7 +1,6 @@ +import sys, os, shlex import contextlib - import torch - from modules import errors # has_mps is only available in nightly pytorch (for now), `getattr` for compatibility @@ -9,10 +8,26 @@ has_mps = getattr(torch, 'has_mps', False) cpu = torch.device("cpu") +def extract_device_id(args, name): + for x in range(len(args)): + if name in args[x]: return args[x+1] + return None def get_optimal_device(): if torch.cuda.is_available(): - return torch.device("cuda") + # CUDA device selection support: + if "shared" not in sys.modules: + commandline_args = os.environ.get('COMMANDLINE_ARGS', "") #re-parse the commandline arguments because using the shared.py module creates an import loop. + sys.argv += shlex.split(commandline_args) + device_id = extract_device_id(sys.argv, '--device-id') + else: + device_id = shared.cmd_opts.device_id + + if device_id is not None: + cuda_device = f"cuda:{device_id}" + return torch.device(cuda_device) + else: + return torch.device("cuda") if has_mps: return torch.device("mps") From 29bfacd63cb5c73b9643d94f255cca818fd49d9c Mon Sep 17 00:00:00 2001 From: Extraltodeus Date: Sat, 22 Oct 2022 00:12:46 +0200 Subject: [PATCH 035/321] implement CUDA device selection, --device-id arg --- modules/shared.py | 1 + 1 file changed, 1 insertion(+) diff --git a/modules/shared.py b/modules/shared.py index 41d7f08e..03032a47 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -80,6 +80,7 @@ parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencode parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False) parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui") parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui") +parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None) cmd_opts = parser.parse_args() restricted_opts = [ From 40ddb6df61564684263c7442bacf61efe3882b87 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 22 Oct 2022 10:16:22 +0800 Subject: [PATCH 036/321] inspiration perfected --- javascript/inspiration.js | 19 ++++++----- modules/inspiration.py | 71 +++++++++++++++++++++------------------ 2 files changed, 49 insertions(+), 41 deletions(-) diff --git a/javascript/inspiration.js b/javascript/inspiration.js index 791a80c9..39844544 100644 --- a/javascript/inspiration.js +++ b/javascript/inspiration.js @@ -1,5 +1,5 @@ function public_image_index_in_gallery(item, gallery){ - var imgs = gallery.querySelectorAll("img.h-full") + var imgs = gallery.querySelectorAll("img.h-full") var index; var i = 0; imgs.forEach(function(e){ @@ -7,18 +7,23 @@ function public_image_index_in_gallery(item, gallery){ index = i; i += 1; }); - var num = imgs.length / 2 - index = (index < num) ? index : (index - num) + var all_imgs = gallery.querySelectorAll("img") + if (all_imgs.length > imgs.length){ + var num = imgs.length / 2 + index = (index < num) ? index : (index - num) + } return index; } function inspiration_selected(name, name_list){ var btn = gradioApp().getElementById("inspiration_select_button") return [gradioApp().getElementById("inspiration_select_button").getAttribute("img-index")]; -} +} + function inspiration_click_get_button(){ gradioApp().getElementById("inspiration_get_button").click(); } + var inspiration_image_click = function(){ var index = public_image_index_in_gallery(this, gradioApp().getElementById("inspiration_gallery")); var btn = gradioApp().getElementById("inspiration_select_button"); @@ -32,16 +37,12 @@ document.addEventListener("DOMContentLoaded", function() { if (gallery) { var node = gallery.querySelector(".absolute.backdrop-blur.h-full") if (node) { - node.style.display = "None"; //parentNode.removeChild(node) + node.style.display = "None"; } gallery.querySelectorAll('img').forEach(function(e){ e.onclick = inspiration_image_click }); - } - - }); mutationObserver.observe( gradioApp(), { childList:true, subtree:true }); - }); diff --git a/modules/inspiration.py b/modules/inspiration.py index f72ebf3a..319183ab 100644 --- a/modules/inspiration.py +++ b/modules/inspiration.py @@ -13,7 +13,7 @@ def read_name_list(file, types=None, keyword=None): line = line.rstrip("\n") if types is not None: dirname = os.path.split(line) - if dirname[0] in types and keyword in dirname[1]: + if dirname[0] in types and keyword in dirname[1].lower(): ret.append(line) else: ret.append(line) @@ -21,8 +21,10 @@ def read_name_list(file, types=None, keyword=None): return ret def save_name_list(file, name): - with open(file, "a") as f: - f.write(name + "\n") + name_list = read_name_list(file) + if name not in name_list: + with open(file, "a") as f: + f.write(name + "\n") def get_types_list(): files = os.listdir(opts.inspiration_dir) @@ -39,20 +41,20 @@ def get_types_list(): return types def get_inspiration_images(source, types, keyword): + keyword = keyword.strip(" ").lower() get_num = int(opts.inspiration_rows_num * opts.inspiration_cols_num) if source == "Favorites": names = read_name_list(os.path.join(inspiration_system_path, "faverites.txt"), types, keyword) names = random.sample(names, get_num) if len(names) > get_num else names elif source == "Abandoned": names = read_name_list(os.path.join(inspiration_system_path, "abandoned.txt"), types, keyword) - print(names) names = random.sample(names, get_num) if len(names) > get_num else names elif source == "Exclude abandoned": abandoned = read_name_list(os.path.join(inspiration_system_path, "abandoned.txt"), types, keyword) all_names = [] for tp in types: name_list = os.listdir(os.path.join(opts.inspiration_dir, tp)) - all_names += [os.path.join(tp, x) for x in name_list if keyword in x] + all_names += [os.path.join(tp, x) for x in name_list if keyword in x.lower()] if len(all_names) > get_num: names = [] @@ -66,14 +68,14 @@ def get_inspiration_images(source, types, keyword): all_names = [] for tp in types: name_list = os.listdir(os.path.join(opts.inspiration_dir, tp)) - all_names += [os.path.join(tp, x) for x in name_list if keyword in x] + all_names += [os.path.join(tp, x) for x in name_list if keyword in x.lower()] names = random.sample(all_names, get_num) if len(all_names) > get_num else all_names image_list = [] for a in names: image_path = os.path.join(opts.inspiration_dir, a) images = os.listdir(image_path) image_list.append((os.path.join(image_path, random.choice(images)), a)) - return image_list, names, "" + return image_list, names def select_click(index, name_list): name = name_list[int(index)] @@ -83,22 +85,18 @@ def select_click(index, name_list): def give_up_click(name): file = os.path.join(inspiration_system_path, "abandoned.txt") - name_list = read_name_list(file) - if name not in name_list: - save_name_list(file, name) + save_name_list(file, name) return "Added to abandoned list" def collect_click(name): file = os.path.join(inspiration_system_path, "faverites.txt") - name_list = read_name_list(file) - if name not in name_list: - save_name_list(file, name) + save_name_list(file, name) return "Added to faverite list" def moveout_click(name, source): if source == "Abandoned": file = os.path.join(inspiration_system_path, "abandoned.txt") - if source == "Favorites": + elif source == "Favorites": file = os.path.join(inspiration_system_path, "faverites.txt") else: return None @@ -107,8 +105,8 @@ def moveout_click(name, source): with open(file, "a") as f: for a in name_list: if a != name: - f.write(a) - return "Moved out {name} from {source} list" + f.write(a + "\n") + return f"Moved out {name} from {source} list" def source_change(source): if source in ["Abandoned", "Favorites"]: @@ -116,10 +114,12 @@ def source_change(source): else: return gradio.update(visible=False), [] def add_to_prompt(name, prompt): - print(name, prompt) name = os.path.basename(name) return prompt + "," + name +def clear_keyword(): + return "" + def ui(gr, opts, txt2img_prompt, img2img_prompt): with gr.Blocks(analytics_enabled=False) as inspiration: flag = os.path.exists(opts.inspiration_dir) @@ -132,15 +132,15 @@ def ui(gr, opts, txt2img_prompt, img2img_prompt): gr.HTML("""

To activate inspiration function, you need get "inspiration" images first.


You can create these images by run "Create inspiration images" script in txt2img page,
you can get the artists or art styles list from here
- https://github.com/pharmapsychotic/clip-interrogator/tree/main/data
+ https://github.com/pharmapsychotic/clip-interrogator/tree/main/data
download these files, and select these files in the "Create inspiration images" script UI
There about 6000 artists and art styles in these files.
This takes server hours depending on your GPU type and how many pictures you generate for each artist/style
I suggest at least four images for each


You can also download generated pictures from here:


- https://huggingface.co/datasets/yfszzx/inspiration
+ https://huggingface.co/datasets/yfszzx/inspiration
unzip the file to the project directory of webui
and restart webui, and enjoy the joy of creation!
- """) + """) return inspiration if not os.path.exists(inspiration_system_path): os.mkdir(inspiration_system_path) @@ -148,35 +148,42 @@ def ui(gr, opts, txt2img_prompt, img2img_prompt): with gr.Column(scale=2): inspiration_gallery = gr.Gallery(show_label=False, elem_id="inspiration_gallery").style(grid=opts.inspiration_cols_num, height='auto') with gr.Column(scale=1): - print(types) types = gr.CheckboxGroup(choices=types, value=types) - keyword = gr.Textbox("", label="Key word") - with gr.Row(): - source = gr.Dropdown(choices=["All", "Favorites", "Exclude abandoned", "Abandoned"], value="Exclude abandoned", label="Source") - get_inspiration = gr.Button("Get inspiration", elem_id="inspiration_get_button") - name = gr.Textbox(show_label=False, interactive=False) with gr.Row(): + source = gr.Dropdown(choices=["All", "Favorites", "Exclude abandoned", "Abandoned"], value="Exclude abandoned", label="Source") + keyword = gr.Textbox("", label="Key word") + get_inspiration = gr.Button("Get inspiration", elem_id="inspiration_get_button") + name = gr.Textbox(show_label=False, interactive=False) + with gr.Row(): send_to_txt2img = gr.Button('to txt2img') send_to_img2img = gr.Button('to img2img') style_gallery = gr.Gallery(show_label=False).style(grid=2, height='auto') - collect = gr.Button('Collect') - give_up = gr.Button("Don't show again") - moveout = gr.Button("Move out", visible=False) warning = gr.HTML() + with gr.Row(): + collect = gr.Button('Collect') + give_up = gr.Button("Don't show again") + moveout = gr.Button("Move out", visible=False) + with gr.Row(visible=False): select_button = gr.Button('set button', elem_id="inspiration_select_button") name_list = gr.State() - get_inspiration.click(get_inspiration_images, inputs=[source, types, keyword], outputs=[inspiration_gallery, name_list, keyword]) - source.change(source_change, inputs=[source], outputs=[moveout, style_gallery]) - source.change(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) + get_inspiration.click(get_inspiration_images, inputs=[source, types, keyword], outputs=[inspiration_gallery, name_list]) keyword.submit(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) + source.change(source_change, inputs=[source], outputs=[moveout, style_gallery]) + source.change(fn=clear_keyword, _js="inspiration_click_get_button", inputs=None, outputs=[keyword]) + types.change(fn=clear_keyword, _js="inspiration_click_get_button", inputs=None, outputs=[keyword]) + select_button.click(select_click, _js="inspiration_selected", inputs=[name, name_list], outputs=[name, style_gallery, warning]) give_up.click(give_up_click, inputs=[name], outputs=[warning]) collect.click(collect_click, inputs=[name], outputs=[warning]) moveout.click(moveout_click, inputs=[name, source], outputs=[warning]) + moveout.click(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) + send_to_txt2img.click(add_to_prompt, inputs=[name, txt2img_prompt], outputs=[txt2img_prompt]) send_to_img2img.click(add_to_prompt, inputs=[name, img2img_prompt], outputs=[img2img_prompt]) + send_to_txt2img.click(collect_click, inputs=[name], outputs=[warning]) + send_to_img2img.click(collect_click, inputs=[name], outputs=[warning]) send_to_txt2img.click(None, _js='switch_to_txt2img', inputs=None, outputs=None) send_to_img2img.click(None, _js="switch_to_img2img_img2img", inputs=None, outputs=None) return inspiration From d93ea5cdeb2fd3607b7265271ccab2c9bf4c1156 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 22 Oct 2022 10:21:21 +0800 Subject: [PATCH 037/321] inspiration perfected --- modules/inspiration.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/modules/inspiration.py b/modules/inspiration.py index 319183ab..94ff139a 100644 --- a/modules/inspiration.py +++ b/modules/inspiration.py @@ -73,8 +73,11 @@ def get_inspiration_images(source, types, keyword): image_list = [] for a in names: image_path = os.path.join(opts.inspiration_dir, a) - images = os.listdir(image_path) - image_list.append((os.path.join(image_path, random.choice(images)), a)) + images = os.listdir(image_path) + if len(images) > 0: + image_list.append((os.path.join(image_path, random.choice(images)), a)) + else: + print(image_path) return image_list, names def select_click(index, name_list): From 67b78f0ea6f196bfdca49932da062631bb40d0b1 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Sat, 22 Oct 2022 10:29:23 +0800 Subject: [PATCH 038/321] inspiration perfected --- modules/inspiration.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/modules/inspiration.py b/modules/inspiration.py index 94ff139a..29cf8297 100644 --- a/modules/inspiration.py +++ b/modules/inspiration.py @@ -160,12 +160,13 @@ def ui(gr, opts, txt2img_prompt, img2img_prompt): with gr.Row(): send_to_txt2img = gr.Button('to txt2img') send_to_img2img = gr.Button('to img2img') - style_gallery = gr.Gallery(show_label=False).style(grid=2, height='auto') - warning = gr.HTML() - with gr.Row(): collect = gr.Button('Collect') give_up = gr.Button("Don't show again") - moveout = gr.Button("Move out", visible=False) + moveout = gr.Button("Move out", visible=False) + warning = gr.HTML() + style_gallery = gr.Gallery(show_label=False).style(grid=2, height='auto') + + with gr.Row(visible=False): select_button = gr.Button('set button', elem_id="inspiration_select_button") From 2b91251637078e04472c91a06a8d9c4db9c1dcf0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 12:23:45 +0300 Subject: [PATCH 039/321] removed aesthetic gradients as built-in added support for extensions --- .gitignore | 2 +- extensions/put extension here.txt | 0 modules/aesthetic_clip.py | 241 ------------------------------ modules/images_history.py | 2 +- modules/img2img.py | 5 +- modules/processing.py | 35 +++-- modules/script_callbacks.py | 42 ++++++ modules/scripts.py | 210 +++++++++++++++++++------- modules/sd_hijack.py | 1 - modules/sd_models.py | 7 +- modules/shared.py | 19 --- modules/txt2img.py | 5 +- modules/ui.py | 83 ++-------- webui.py | 7 +- 14 files changed, 249 insertions(+), 410 deletions(-) create mode 100644 extensions/put extension here.txt delete mode 100644 modules/aesthetic_clip.py create mode 100644 modules/script_callbacks.py diff --git a/.gitignore b/.gitignore index f9c3357c..2f1e08ed 100644 --- a/.gitignore +++ b/.gitignore @@ -27,4 +27,4 @@ __pycache__ notification.mp3 /SwinIR /textual_inversion -.vscode \ No newline at end of file +.vscode diff --git a/extensions/put extension here.txt b/extensions/put extension here.txt new file mode 100644 index 00000000..e69de29b diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py deleted file mode 100644 index 8c828541..00000000 --- a/modules/aesthetic_clip.py +++ /dev/null @@ -1,241 +0,0 @@ -import copy -import itertools -import os -from pathlib import Path -import html -import gc - -import gradio as gr -import torch -from PIL import Image -from torch import optim - -from modules import shared -from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer -from tqdm.auto import tqdm, trange -from modules.shared import opts, device - - -def get_all_images_in_folder(folder): - return [os.path.join(folder, f) for f in os.listdir(folder) if - os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)] - - -def check_is_valid_image_file(filename): - return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp")) - - -def batched(dataset, total, n=1): - for ndx in range(0, total, n): - yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))] - - -def iter_to_batched(iterable, n=1): - it = iter(iterable) - while True: - chunk = tuple(itertools.islice(it, n)) - if not chunk: - return - yield chunk - - -def create_ui(): - import modules.ui - - with gr.Group(): - with gr.Accordion("Open for Clip Aesthetic!", open=False): - with gr.Row(): - aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", - value=0.9) - aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5) - - with gr.Row(): - aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', - placeholder="Aesthetic learning rate", value="0.0001") - aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False) - aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()), - label="Aesthetic imgs embedding", - value="None") - - modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings") - - with gr.Row(): - aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', - placeholder="This text is used to rotate the feature space of the imgs embs", - value="") - aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01, - value=0.1) - aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False) - - return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative - - -aesthetic_clip_model = None - - -def aesthetic_clip(): - global aesthetic_clip_model - - if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path: - aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path) - aesthetic_clip_model.cpu() - - return aesthetic_clip_model - - -def generate_imgs_embd(name, folder, batch_size): - model = aesthetic_clip().to(device) - processor = CLIPProcessor.from_pretrained(model.name_or_path) - - with torch.no_grad(): - embs = [] - for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size), - desc=f"Generating embeddings for {name}"): - if shared.state.interrupted: - break - inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device) - outputs = model.get_image_features(**inputs).cpu() - embs.append(torch.clone(outputs)) - inputs.to("cpu") - del inputs, outputs - - embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True) - - # The generated embedding will be located here - path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt") - torch.save(embs, path) - - model.cpu() - del processor - del embs - gc.collect() - torch.cuda.empty_cache() - res = f""" - Done generating embedding for {name}! - Aesthetic embedding saved to {html.escape(path)} - """ - shared.update_aesthetic_embeddings() - return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding", - value="None"), \ - gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), - label="Imgs embedding", - value="None"), res, "" - - -def slerp(low, high, val): - low_norm = low / torch.norm(low, dim=1, keepdim=True) - high_norm = high / torch.norm(high, dim=1, keepdim=True) - omega = torch.acos((low_norm * high_norm).sum(1)) - so = torch.sin(omega) - res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high - return res - - -class AestheticCLIP: - def __init__(self): - self.skip = False - self.aesthetic_steps = 0 - self.aesthetic_weight = 0 - self.aesthetic_lr = 0 - self.slerp = False - self.aesthetic_text_negative = "" - self.aesthetic_slerp_angle = 0 - self.aesthetic_imgs_text = "" - - self.image_embs_name = None - self.image_embs = None - self.load_image_embs(None) - - def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None, - aesthetic_slerp=True, aesthetic_imgs_text="", - aesthetic_slerp_angle=0.15, - aesthetic_text_negative=False): - self.aesthetic_imgs_text = aesthetic_imgs_text - self.aesthetic_slerp_angle = aesthetic_slerp_angle - self.aesthetic_text_negative = aesthetic_text_negative - self.slerp = aesthetic_slerp - self.aesthetic_lr = aesthetic_lr - self.aesthetic_weight = aesthetic_weight - self.aesthetic_steps = aesthetic_steps - self.load_image_embs(image_embs_name) - - if self.image_embs_name is not None: - p.extra_generation_params.update({ - "Aesthetic LR": aesthetic_lr, - "Aesthetic weight": aesthetic_weight, - "Aesthetic steps": aesthetic_steps, - "Aesthetic embedding": self.image_embs_name, - "Aesthetic slerp": aesthetic_slerp, - "Aesthetic text": aesthetic_imgs_text, - "Aesthetic text negative": aesthetic_text_negative, - "Aesthetic slerp angle": aesthetic_slerp_angle, - }) - - def set_skip(self, skip): - self.skip = skip - - def load_image_embs(self, image_embs_name): - if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None": - image_embs_name = None - self.image_embs_name = None - if image_embs_name is not None and self.image_embs_name != image_embs_name: - self.image_embs_name = image_embs_name - self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device) - self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True) - self.image_embs.requires_grad_(False) - - def __call__(self, z, remade_batch_tokens): - if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None: - tokenizer = shared.sd_model.cond_stage_model.tokenizer - if not opts.use_old_emphasis_implementation: - remade_batch_tokens = [ - [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in - remade_batch_tokens] - - tokens = torch.asarray(remade_batch_tokens).to(device) - - model = copy.deepcopy(aesthetic_clip()).to(device) - model.requires_grad_(True) - if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0: - text_embs_2 = model.get_text_features( - **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device)) - if self.aesthetic_text_negative: - text_embs_2 = self.image_embs - text_embs_2 - text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True) - img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle) - else: - img_embs = self.image_embs - - with torch.enable_grad(): - - # We optimize the model to maximize the similarity - optimizer = optim.Adam( - model.text_model.parameters(), lr=self.aesthetic_lr - ) - - for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"): - text_embs = model.get_text_features(input_ids=tokens) - text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True) - sim = text_embs @ img_embs.T - loss = -sim - optimizer.zero_grad() - loss.mean().backward() - optimizer.step() - - zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) - if opts.CLIP_stop_at_last_layers > 1: - zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers] - zn = model.text_model.final_layer_norm(zn) - else: - zn = zn.last_hidden_state - model.cpu() - del model - gc.collect() - torch.cuda.empty_cache() - zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1) - if self.slerp: - z = slerp(z, zn, self.aesthetic_weight) - else: - z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight - - return z diff --git a/modules/images_history.py b/modules/images_history.py index 78fd0543..bc5cf11f 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -310,7 +310,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): forward = gr.Button('Prev batch') backward = gr.Button('Next batch') with gr.Column(scale=3): - load_info = gr.HTML(visible=not custom_dir) + load_info = gr.HTML(visible=not custom_dir) with gr.Row(visible=False) as warning: warning_box = gr.Textbox("Message", interactive=False) diff --git a/modules/img2img.py b/modules/img2img.py index eea5199b..8d9f7cf9 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args): processed_image.save(os.path.join(output_dir, filename)) -def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args): +def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args): is_inpaint = mode == 1 is_batch = mode == 2 @@ -109,7 +109,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro inpainting_mask_invert=inpainting_mask_invert, ) - shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative) + p.scripts = modules.scripts.scripts_txt2img + p.script_args = args if shared.cmd_opts.enable_console_prompts: print(f"\nimg2img: {prompt}", file=shared.progress_print_out) diff --git a/modules/processing.py b/modules/processing.py index ff1ec4c9..372489f7 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -104,6 +104,12 @@ class StableDiffusionProcessing(): self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 + self.scripts = None + self.script_args = None + self.all_prompts = None + self.all_seeds = None + self.all_subseeds = None + def init(self, all_prompts, all_seeds, all_subseeds): pass @@ -350,32 +356,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed: shared.prompt_styles.apply_styles(p) if type(p.prompt) == list: - all_prompts = p.prompt + p.all_prompts = p.prompt else: - all_prompts = p.batch_size * p.n_iter * [p.prompt] + p.all_prompts = p.batch_size * p.n_iter * [p.prompt] if type(seed) == list: - all_seeds = seed + p.all_seeds = seed else: - all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))] + p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))] if type(subseed) == list: - all_subseeds = subseed + p.all_subseeds = subseed else: - all_subseeds = [int(subseed) + x for x in range(len(all_prompts))] + p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))] def infotext(iteration=0, position_in_batch=0): - return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) + return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch) if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() + if p.scripts is not None: + p.scripts.run_alwayson_scripts(p) + infotexts = [] output_images = [] with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): - p.init(all_prompts, all_seeds, all_subseeds) + p.init(p.all_prompts, p.all_seeds, p.all_subseeds) if state.job_count == -1: state.job_count = p.n_iter @@ -387,9 +396,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if state.interrupted: break - prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size] - seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] - subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] + prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size] + seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size] + subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] if (len(prompts) == 0): break @@ -490,10 +499,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed: index_of_first_image = 1 if opts.grid_save: - images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) + images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) devices.torch_gc() - return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts) + return Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts) class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py new file mode 100644 index 00000000..866b7acd --- /dev/null +++ b/modules/script_callbacks.py @@ -0,0 +1,42 @@ + +callbacks_model_loaded = [] +callbacks_ui_tabs = [] + + +def clear_callbacks(): + callbacks_model_loaded.clear() + callbacks_ui_tabs.clear() + + +def model_loaded_callback(sd_model): + for callback in callbacks_model_loaded: + callback(sd_model) + + +def ui_tabs_callback(): + res = [] + + for callback in callbacks_ui_tabs: + res += callback() or [] + + return res + + +def on_model_loaded(callback): + """register a function to be called when the stable diffusion model is created; the model is + passed as an argument""" + callbacks_model_loaded.append(callback) + + +def on_ui_tabs(callback): + """register a function to be called when the UI is creating new tabs. + The function must either return a None, which means no new tabs to be added, or a list, where + each element is a tuple: + (gradio_component, title, elem_id) + + gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks) + title is tab text displayed to user in the UI + elem_id is HTML id for the tab + """ + callbacks_ui_tabs.append(callback) + diff --git a/modules/scripts.py b/modules/scripts.py index 1039fa9c..65f25f49 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -1,86 +1,153 @@ import os import sys import traceback +from collections import namedtuple import modules.ui as ui import gradio as gr from modules.processing import StableDiffusionProcessing -from modules import shared +from modules import shared, paths, script_callbacks + +AlwaysVisible = object() + class Script: filename = None args_from = None args_to = None + alwayson = False + + infotext_fields = None + """if set in ui(), this is a list of pairs of gradio component + text; the text will be used when + parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example + """ - # The title of the script. This is what will be displayed in the dropdown menu. def title(self): + """this function should return the title of the script. This is what will be displayed in the dropdown menu.""" + raise NotImplementedError() - # How the script is displayed in the UI. See https://gradio.app/docs/#components - # for the different UI components you can use and how to create them. - # Most UI components can return a value, such as a boolean for a checkbox. - # The returned values are passed to the run method as parameters. def ui(self, is_img2img): + """this function should create gradio UI elements. See https://gradio.app/docs/#components + The return value should be an array of all components that are used in processing. + Values of those returned componenbts will be passed to run() and process() functions. + """ + pass - # Determines when the script should be shown in the dropdown menu via the - # returned value. As an example: - # is_img2img is True if the current tab is img2img, and False if it is txt2img. - # Thus, return is_img2img to only show the script on the img2img tab. def show(self, is_img2img): + """ + is_img2img is True if this function is called for the img2img interface, and Fasle otherwise + + This function should return: + - False if the script should not be shown in UI at all + - True if the script should be shown in UI if it's scelected in the scripts drowpdown + - script.AlwaysVisible if the script should be shown in UI at all times + """ + return True - # This is where the additional processing is implemented. The parameters include - # self, the model object "p" (a StableDiffusionProcessing class, see - # processing.py), and the parameters returned by the ui method. - # Custom functions can be defined here, and additional libraries can be imported - # to be used in processing. The return value should be a Processed object, which is - # what is returned by the process_images method. - def run(self, *args): + def run(self, p, *args): + """ + This function is called if the script has been selected in the script dropdown. + It must do all processing and return the Processed object with results, same as + one returned by processing.process_images. + + Usually the processing is done by calling the processing.process_images function. + + args contains all values returned by components from ui() + """ + raise NotImplementedError() - # The description method is currently unused. - # To add a description that appears when hovering over the title, amend the "titles" - # dict in script.js to include the script title (returned by title) as a key, and - # your description as the value. + def process(self, p, *args): + """ + This function is called before processing begins for AlwaysVisible scripts. + scripts. You can modify the processing object (p) here, inject hooks, etc. + """ + + pass + def describe(self): + """unused""" return "" +current_basedir = paths.script_path + + +def basedir(): + """returns the base directory for the current script. For scripts in the main scripts directory, + this is the main directory (where webui.py resides), and for scripts in extensions directory + (ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic) + """ + return current_basedir + + scripts_data = [] +ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"]) +ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"]) -def load_scripts(basedir): - if not os.path.exists(basedir): - return +def list_scripts(scriptdirname, extension): + scripts_list = [] - for filename in sorted(os.listdir(basedir)): - path = os.path.join(basedir, filename) + basedir = os.path.join(paths.script_path, scriptdirname) + if os.path.exists(basedir): + for filename in sorted(os.listdir(basedir)): + scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename))) - if os.path.splitext(path)[1].lower() != '.py': - continue + extdir = os.path.join(paths.script_path, "extensions") + if os.path.exists(extdir): + for dirname in sorted(os.listdir(extdir)): + dirpath = os.path.join(extdir, dirname) + if not os.path.isdir(dirpath): + continue - if not os.path.isfile(path): - continue + for filename in sorted(os.listdir(os.path.join(dirpath, scriptdirname))): + scripts_list.append(ScriptFile(dirpath, filename, os.path.join(dirpath, scriptdirname, filename))) + scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)] + + return scripts_list + + +def load_scripts(): + global current_basedir + scripts_data.clear() + script_callbacks.clear_callbacks() + + scripts_list = list_scripts("scripts", ".py") + + syspath = sys.path + + for scriptfile in sorted(scripts_list): try: - with open(path, "r", encoding="utf8") as file: + if scriptfile.basedir != paths.script_path: + sys.path = [scriptfile.basedir] + sys.path + current_basedir = scriptfile.basedir + + with open(scriptfile.path, "r", encoding="utf8") as file: text = file.read() from types import ModuleType - compiled = compile(text, path, 'exec') - module = ModuleType(filename) + compiled = compile(text, scriptfile.path, 'exec') + module = ModuleType(scriptfile.filename) exec(compiled, module.__dict__) for key, script_class in module.__dict__.items(): if type(script_class) == type and issubclass(script_class, Script): - scripts_data.append((script_class, path)) + scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir)) except Exception: - print(f"Error loading script: {filename}", file=sys.stderr) + print(f"Error loading script: {scriptfile.filename}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) + finally: + sys.path = syspath + current_basedir = paths.script_path + def wrap_call(func, filename, funcname, *args, default=None, **kwargs): try: @@ -96,56 +163,80 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs): class ScriptRunner: def __init__(self): self.scripts = [] + self.selectable_scripts = [] + self.alwayson_scripts = [] self.titles = [] + self.infotext_fields = [] def setup_ui(self, is_img2img): - for script_class, path in scripts_data: + for script_class, path, basedir in scripts_data: script = script_class() script.filename = path - if not script.show(is_img2img): - continue + visibility = script.show(is_img2img) - self.scripts.append(script) + if visibility == AlwaysVisible: + self.scripts.append(script) + self.alwayson_scripts.append(script) + script.alwayson = True - self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts] + elif visibility: + self.scripts.append(script) + self.selectable_scripts.append(script) - dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index") - dropdown.save_to_config = True - inputs = [dropdown] + self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts] - for script in self.scripts: + inputs = [None] + inputs_alwayson = [True] + + def create_script_ui(script, inputs, inputs_alwayson): script.args_from = len(inputs) script.args_to = len(inputs) controls = wrap_call(script.ui, script.filename, "ui", is_img2img) if controls is None: - continue + return for control in controls: control.custom_script_source = os.path.basename(script.filename) - control.visible = False + if not script.alwayson: + control.visible = False + + if script.infotext_fields is not None: + self.infotext_fields += script.infotext_fields inputs += controls + inputs_alwayson += [script.alwayson for _ in controls] script.args_to = len(inputs) + for script in self.alwayson_scripts: + with gr.Group(): + create_script_ui(script, inputs, inputs_alwayson) + + dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index") + dropdown.save_to_config = True + inputs[0] = dropdown + + for script in self.selectable_scripts: + create_script_ui(script, inputs, inputs_alwayson) + def select_script(script_index): - if 0 < script_index <= len(self.scripts): - script = self.scripts[script_index-1] + if 0 < script_index <= len(self.selectable_scripts): + script = self.selectable_scripts[script_index-1] args_from = script.args_from args_to = script.args_to else: args_from = 0 args_to = 0 - return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))] + return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)] def init_field(title): if title == 'None': return script_index = self.titles.index(title) - script = self.scripts[script_index] + script = self.selectable_scripts[script_index] for i in range(script.args_from, script.args_to): inputs[i].visible = True @@ -164,7 +255,7 @@ class ScriptRunner: if script_index == 0: return None - script = self.scripts[script_index-1] + script = self.selectable_scripts[script_index-1] if script is None: return None @@ -176,6 +267,15 @@ class ScriptRunner: return processed + def run_alwayson_scripts(self, p): + for script in self.alwayson_scripts: + try: + script_args = p.script_args[script.args_from:script.args_to] + script.process(p, *script_args) + except Exception: + print(f"Error running alwayson script: {script.filename}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + def reload_sources(self): for si, script in list(enumerate(self.scripts)): with open(script.filename, "r", encoding="utf8") as file: @@ -197,19 +297,21 @@ class ScriptRunner: self.scripts[si].args_from = args_from self.scripts[si].args_to = args_to + scripts_txt2img = ScriptRunner() scripts_img2img = ScriptRunner() + def reload_script_body_only(): scripts_txt2img.reload_sources() scripts_img2img.reload_sources() -def reload_scripts(basedir): +def reload_scripts(): global scripts_txt2img, scripts_img2img - scripts_data.clear() - load_scripts(basedir) + load_scripts() scripts_txt2img = ScriptRunner() scripts_img2img = ScriptRunner() + diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 1f8587d1..0f10828e 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -332,7 +332,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): multipliers.append([1.0] * 75) z1 = self.process_tokens(tokens, multipliers) - z1 = shared.aesthetic_clip(z1, remade_batch_tokens) z = z1 if z is None else torch.cat((z, z1), axis=-2) remade_batch_tokens = rem_tokens diff --git a/modules/sd_models.py b/modules/sd_models.py index d99dbce8..f9b3063d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -7,7 +7,7 @@ from omegaconf import OmegaConf from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices +from modules import shared, modelloader, devices, script_callbacks from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting @@ -238,6 +238,9 @@ def load_model(checkpoint_info=None): sd_hijack.model_hijack.hijack(sd_model) sd_model.eval() + shared.sd_model = sd_model + + script_callbacks.model_loaded_callback(sd_model) print(f"Model loaded.") return sd_model @@ -252,7 +255,7 @@ def reload_model_weights(sd_model, info=None): if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): checkpoints_loaded.clear() - shared.sd_model = load_model(checkpoint_info) + load_model(checkpoint_info) return shared.sd_model if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: diff --git a/modules/shared.py b/modules/shared.py index 0dbe360d..7d786f07 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -31,7 +31,6 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") -parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)") parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") @@ -109,21 +108,6 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) loaded_hypernetwork = None - -os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True) -aesthetic_embeddings = {} - - -def update_aesthetic_embeddings(): - global aesthetic_embeddings - aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in - os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")} - aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings) - - -update_aesthetic_embeddings() - - def reload_hypernetworks(): global hypernetworks @@ -415,9 +399,6 @@ sd_model = None clip_model = None -from modules.aesthetic_clip import AestheticCLIP -aesthetic_clip = AestheticCLIP() - progress_print_out = sys.stdout diff --git a/modules/txt2img.py b/modules/txt2img.py index 1761cfa2..c9d5a090 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -7,7 +7,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args): +def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args): p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -36,7 +36,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: firstphase_height=firstphase_height if enable_hr else None, ) - shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative) + p.scripts = modules.scripts.scripts_txt2img + p.script_args = args if cmd_opts.enable_console_prompts: print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) diff --git a/modules/ui.py b/modules/ui.py index 70a9cf10..c977482c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -23,10 +23,10 @@ import gradio as gr import gradio.utils import gradio.routes -from modules import sd_hijack, sd_models, localization +from modules import sd_hijack, sd_models, localization, script_callbacks from modules.paths import script_path -from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings +from modules.shared import opts, cmd_opts, restricted_opts if cmd_opts.deepdanbooru: from modules.deepbooru import get_deepbooru_tags @@ -44,7 +44,6 @@ from modules.images import save_image import modules.textual_inversion.ui import modules.hypernetworks.ui -import modules.aesthetic_clip as aesthetic_clip import modules.images_history as img_his @@ -662,8 +661,6 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs() - aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui() - with gr.Group(): custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False) @@ -718,14 +715,6 @@ def create_ui(wrap_gradio_gpu_call): denoising_strength, firstphase_width, firstphase_height, - aesthetic_lr, - aesthetic_weight, - aesthetic_steps, - aesthetic_imgs, - aesthetic_slerp, - aesthetic_imgs_text, - aesthetic_slerp_angle, - aesthetic_text_negative ] + custom_inputs, outputs=[ @@ -804,14 +793,7 @@ def create_ui(wrap_gradio_gpu_call): (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), (firstphase_width, "First pass size-1"), (firstphase_height, "First pass size-2"), - (aesthetic_lr, "Aesthetic LR"), - (aesthetic_weight, "Aesthetic weight"), - (aesthetic_steps, "Aesthetic steps"), - (aesthetic_imgs, "Aesthetic embedding"), - (aesthetic_slerp, "Aesthetic slerp"), - (aesthetic_imgs_text, "Aesthetic text"), - (aesthetic_text_negative, "Aesthetic text negative"), - (aesthetic_slerp_angle, "Aesthetic slerp angle"), + *modules.scripts.scripts_txt2img.infotext_fields ] txt2img_preview_params = [ @@ -896,8 +878,6 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs() - aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui() - with gr.Group(): custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True) @@ -988,14 +968,6 @@ def create_ui(wrap_gradio_gpu_call): inpainting_mask_invert, img2img_batch_input_dir, img2img_batch_output_dir, - aesthetic_lr_im, - aesthetic_weight_im, - aesthetic_steps_im, - aesthetic_imgs_im, - aesthetic_slerp_im, - aesthetic_imgs_text_im, - aesthetic_slerp_angle_im, - aesthetic_text_negative_im, ] + custom_inputs, outputs=[ img2img_gallery, @@ -1087,14 +1059,7 @@ def create_ui(wrap_gradio_gpu_call): (seed_resize_from_w, "Seed resize from-1"), (seed_resize_from_h, "Seed resize from-2"), (denoising_strength, "Denoising strength"), - (aesthetic_lr_im, "Aesthetic LR"), - (aesthetic_weight_im, "Aesthetic weight"), - (aesthetic_steps_im, "Aesthetic steps"), - (aesthetic_imgs_im, "Aesthetic embedding"), - (aesthetic_slerp_im, "Aesthetic slerp"), - (aesthetic_imgs_text_im, "Aesthetic text"), - (aesthetic_text_negative_im, "Aesthetic text negative"), - (aesthetic_slerp_angle_im, "Aesthetic slerp angle"), + *modules.scripts.scripts_img2img.infotext_fields ] token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) @@ -1217,9 +1182,9 @@ def create_ui(wrap_gradio_gpu_call): ) #images history images_history_switch_dict = { - "fn":modules.generation_parameters_copypaste.connect_paste, - "t2i":txt2img_paste_fields, - "i2i":img2img_paste_fields + "fn": modules.generation_parameters_copypaste.connect_paste, + "t2i": txt2img_paste_fields, + "i2i": img2img_paste_fields } images_history = img_his.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) @@ -1264,18 +1229,6 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column(): create_embedding = gr.Button(value="Create embedding", variant='primary') - with gr.Tab(label="Create aesthetic images embedding"): - - new_embedding_name_ae = gr.Textbox(label="Name") - process_src_ae = gr.Textbox(label='Source directory') - batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256) - with gr.Row(): - with gr.Column(scale=3): - gr.HTML(value="") - - with gr.Column(): - create_embedding_ae = gr.Button(value="Create images embedding", variant='primary') - with gr.Tab(label="Create hypernetwork"): new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) @@ -1375,21 +1328,6 @@ def create_ui(wrap_gradio_gpu_call): ] ) - create_embedding_ae.click( - fn=aesthetic_clip.generate_imgs_embd, - inputs=[ - new_embedding_name_ae, - process_src_ae, - batch_ae - ], - outputs=[ - aesthetic_imgs, - aesthetic_imgs_im, - ti_output, - ti_outcome, - ] - ) - create_hypernetwork.click( fn=modules.hypernetworks.ui.create_hypernetwork, inputs=[ @@ -1580,10 +1518,10 @@ Requested path was: {f} if not opts.same_type(value, opts.data_labels[key].default): return gr.update(visible=True), opts.dumpjson() + oldval = opts.data.get(key, None) if cmd_opts.hide_ui_dir_config and key in restricted_opts: return gr.update(value=oldval), opts.dumpjson() - oldval = opts.data.get(key, None) opts.data[key] = value if oldval != value: @@ -1692,9 +1630,12 @@ Requested path was: {f} (images_history, "Image Browser", "images_history"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"), (train_interface, "Train", "ti"), - (settings_interface, "Settings", "settings"), ] + interfaces += script_callbacks.ui_tabs_callback() + + interfaces += [(settings_interface, "Settings", "settings")] + with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file: css = file.read() diff --git a/webui.py b/webui.py index 87589064..b1deca1b 100644 --- a/webui.py +++ b/webui.py @@ -71,6 +71,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) + def initialize(): modelloader.cleanup_models() modules.sd_models.setup_model() @@ -79,9 +80,9 @@ def initialize(): shared.face_restorers.append(modules.face_restoration.FaceRestoration()) modelloader.load_upscalers() - modules.scripts.load_scripts(os.path.join(script_path, "scripts")) + modules.scripts.load_scripts() - shared.sd_model = modules.sd_models.load_model() + modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) @@ -145,7 +146,7 @@ def webui(): sd_samplers.set_samplers() print('Reloading Custom Scripts') - modules.scripts.reload_scripts(os.path.join(script_path, "scripts")) + modules.scripts.reload_scripts() print('Reloading modules: modules.ui') importlib.reload(modules.ui) print('Refreshing Model List') From 6398dc9b1049f242576ca309f95a3fb1e654951c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 13:34:49 +0300 Subject: [PATCH 040/321] further support for extensions --- .gitignore | 1 + README.md | 3 +-- modules/scripts.py | 44 +++++++++++++++++++++++++++++++++++--------- modules/ui.py | 19 ++++++++++--------- style.css | 2 +- 5 files changed, 48 insertions(+), 21 deletions(-) diff --git a/.gitignore b/.gitignore index 2f1e08ed..8fa05852 100644 --- a/.gitignore +++ b/.gitignore @@ -28,3 +28,4 @@ notification.mp3 /SwinIR /textual_inversion .vscode +/extensions diff --git a/README.md b/README.md index 5b5dc8ba..6853aea0 100644 --- a/README.md +++ b/README.md @@ -83,8 +83,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. -- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - +- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. diff --git a/modules/scripts.py b/modules/scripts.py index 65f25f49..9323af3e 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -102,17 +102,39 @@ def list_scripts(scriptdirname, extension): if os.path.exists(extdir): for dirname in sorted(os.listdir(extdir)): dirpath = os.path.join(extdir, dirname) - if not os.path.isdir(dirpath): + scriptdirpath = os.path.join(dirpath, scriptdirname) + + if not os.path.isdir(scriptdirpath): continue - for filename in sorted(os.listdir(os.path.join(dirpath, scriptdirname))): - scripts_list.append(ScriptFile(dirpath, filename, os.path.join(dirpath, scriptdirname, filename))) + for filename in sorted(os.listdir(scriptdirpath)): + scripts_list.append(ScriptFile(dirpath, filename, os.path.join(scriptdirpath, filename))) scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)] return scripts_list +def list_files_with_name(filename): + res = [] + + dirs = [paths.script_path] + + extdir = os.path.join(paths.script_path, "extensions") + if os.path.exists(extdir): + dirs += [os.path.join(extdir, d) for d in sorted(os.listdir(extdir))] + + for dirpath in dirs: + if not os.path.isdir(dirpath): + continue + + path = os.path.join(dirpath, filename) + if os.path.isfile(filename): + res.append(path) + + return res + + def load_scripts(): global current_basedir scripts_data.clear() @@ -276,7 +298,7 @@ class ScriptRunner: print(f"Error running alwayson script: {script.filename}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - def reload_sources(self): + def reload_sources(self, cache): for si, script in list(enumerate(self.scripts)): with open(script.filename, "r", encoding="utf8") as file: args_from = script.args_from @@ -286,9 +308,12 @@ class ScriptRunner: from types import ModuleType - compiled = compile(text, filename, 'exec') - module = ModuleType(script.filename) - exec(compiled, module.__dict__) + module = cache.get(filename, None) + if module is None: + compiled = compile(text, filename, 'exec') + module = ModuleType(script.filename) + exec(compiled, module.__dict__) + cache[filename] = module for key, script_class in module.__dict__.items(): if type(script_class) == type and issubclass(script_class, Script): @@ -303,8 +328,9 @@ scripts_img2img = ScriptRunner() def reload_script_body_only(): - scripts_txt2img.reload_sources() - scripts_img2img.reload_sources() + cache = {} + scripts_txt2img.reload_sources(cache) + scripts_img2img.reload_sources(cache) def reload_scripts(): diff --git a/modules/ui.py b/modules/ui.py index c977482c..29986124 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1636,13 +1636,15 @@ Requested path was: {f} interfaces += [(settings_interface, "Settings", "settings")] - with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file: - css = file.read() + css = "" + + for cssfile in modules.scripts.list_files_with_name("style.css"): + with open(cssfile, "r", encoding="utf8") as file: + css += file.read() + "\n" if os.path.exists(os.path.join(script_path, "user.css")): with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file: - usercss = file.read() - css += usercss + css += file.read() + "\n" if not cmd_opts.no_progressbar_hiding: css += css_hide_progressbar @@ -1865,9 +1867,9 @@ def load_javascript(raw_response): with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile: javascript = f'' - jsdir = os.path.join(script_path, "javascript") - for filename in sorted(os.listdir(jsdir)): - with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile: + scripts_list = modules.scripts.list_scripts("javascript", ".js") + for basedir, filename, path in scripts_list: + with open(path, "r", encoding="utf8") as jsfile: javascript += f"\n" if cmd_opts.theme is not None: @@ -1885,6 +1887,5 @@ def load_javascript(raw_response): gradio.routes.templates.TemplateResponse = template_response -reload_javascript = partial(load_javascript, - gradio.routes.templates.TemplateResponse) +reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse) reload_javascript() diff --git a/style.css b/style.css index 5d2bacc9..26ae36a5 100644 --- a/style.css +++ b/style.css @@ -477,7 +477,7 @@ input[type="range"]{ padding: 0; } -#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_aesthetic_embeddings{ +#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{ max-width: 2.5em; min-width: 2.5em; height: 2.4em; From 5aa9525046b7520d39fe8fc8c5c6cc10ab4d5fdb Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 13:40:07 +0300 Subject: [PATCH 041/321] updated readme with info about Aesthetic Gradients --- README.md | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/README.md b/README.md index 6853aea0..1a0e4f6a 100644 --- a/README.md +++ b/README.md @@ -85,6 +85,16 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) +## Where are Aesthetic Gradients?!?! +Aesthetic Gradients are now an extension. You can install it using git: + +```commandline +git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients +``` + +After running this command, make sure that you have `aesthetic-gradients` dir in webui's `extensions` directory and restart +the UI. The interface for Aesthetic Gradients should appear exactly the same as it was. + ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. From 50b5504401e50b6c94eba41b37fe212b2f27b792 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 14:04:14 +0300 Subject: [PATCH 042/321] remove parsing command line from devices.py --- modules/devices.py | 14 +++++--------- modules/lowvram.py | 9 ++++----- 2 files changed, 9 insertions(+), 14 deletions(-) diff --git a/modules/devices.py b/modules/devices.py index 8a159282..dc1f3cdd 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -15,14 +15,10 @@ def extract_device_id(args, name): def get_optimal_device(): if torch.cuda.is_available(): - # CUDA device selection support: - if "shared" not in sys.modules: - commandline_args = os.environ.get('COMMANDLINE_ARGS', "") #re-parse the commandline arguments because using the shared.py module creates an import loop. - sys.argv += shlex.split(commandline_args) - device_id = extract_device_id(sys.argv, '--device-id') - else: - device_id = shared.cmd_opts.device_id - + from modules import shared + + device_id = shared.cmd_opts.device_id + if device_id is not None: cuda_device = f"cuda:{device_id}" return torch.device(cuda_device) @@ -49,7 +45,7 @@ def enable_tf32(): errors.run(enable_tf32, "Enabling TF32") -device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device() +device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = None dtype = torch.float16 dtype_vae = torch.float16 diff --git a/modules/lowvram.py b/modules/lowvram.py index 7eba1349..f327c3df 100644 --- a/modules/lowvram.py +++ b/modules/lowvram.py @@ -1,9 +1,8 @@ import torch -from modules.devices import get_optimal_device +from modules import devices module_in_gpu = None cpu = torch.device("cpu") -device = gpu = get_optimal_device() def send_everything_to_cpu(): @@ -33,7 +32,7 @@ def setup_for_low_vram(sd_model, use_medvram): if module_in_gpu is not None: module_in_gpu.to(cpu) - module.to(gpu) + module.to(devices.device) module_in_gpu = module # see below for register_forward_pre_hook; @@ -51,7 +50,7 @@ def setup_for_low_vram(sd_model, use_medvram): # send the model to GPU. Then put modules back. the modules will be in CPU. stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None - sd_model.to(device) + sd_model.to(devices.device) sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored # register hooks for those the first two models @@ -70,7 +69,7 @@ def setup_for_low_vram(sd_model, use_medvram): # so that only one of them is in GPU at a time stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None - sd_model.model.to(device) + sd_model.model.to(devices.device) diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored # install hooks for bits of third model From 0e8ca8e7af05be22d7d2c07a47c3c7febe0f0ab6 Mon Sep 17 00:00:00 2001 From: discus0434 Date: Sat, 22 Oct 2022 11:07:00 +0000 Subject: [PATCH 043/321] add dropout --- modules/hypernetworks/hypernetwork.py | 70 ++++++++++++++++----------- modules/hypernetworks/ui.py | 10 ++-- modules/ui.py | 45 +++++++++-------- 3 files changed, 72 insertions(+), 53 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 905cbeef..e493f366 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -1,47 +1,60 @@ +import csv import datetime import glob import html import os import sys import traceback -import tqdm -import csv -import torch - -from ldm.util import default -from modules import devices, shared, processing, sd_models -import torch -from torch import einsum -from einops import rearrange, repeat import modules.textual_inversion.dataset +import torch +import tqdm +from einops import rearrange, repeat +from ldm.util import default +from modules import devices, processing, sd_models, shared from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler +from torch import einsum class HypernetworkModule(torch.nn.Module): multiplier = 1.0 - activation_dict = {"relu": torch.nn.ReLU, "leakyrelu": torch.nn.LeakyReLU, "elu": torch.nn.ELU, - "swish": torch.nn.Hardswish} - - def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None): + activation_dict = { + "relu": torch.nn.ReLU, + "leakyrelu": torch.nn.LeakyReLU, + "elu": torch.nn.ELU, + "swish": torch.nn.Hardswish, + } + + def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False): super().__init__() assert layer_structure is not None, "layer_structure must not be None" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" - + assert activation_func not in self.activation_dict.keys() + "linear", f"Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'" + linears = [] for i in range(len(layer_structure) - 1): + + # Add a fully-connected layer linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) - # if skip_first_layer because first parameters potentially contain negative values - # if i < 1: continue - if activation_func in HypernetworkModule.activation_dict: - linears.append(HypernetworkModule.activation_dict[activation_func]()) + + # Add an activation func + if activation_func == "linear": + pass + elif activation_func in self.activation_dict: + linears.append(self.activation_dict[activation_func]()) else: - print("Invalid key {} encountered as activation function!".format(activation_func)) - # if use_dropout: - # linears.append(torch.nn.Dropout(p=0.3)) + raise NotImplementedError( + "Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'" + ) + + # Add dropout + if use_dropout: + linears.append(torch.nn.Dropout(p=0.3)) + + # Add layer normalization if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) @@ -93,7 +106,7 @@ class Hypernetwork: filename = None name = None - def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None): + def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False): self.filename = None self.name = name self.layers = {} @@ -101,13 +114,14 @@ class Hypernetwork: self.sd_checkpoint = None self.sd_checkpoint_name = None self.layer_structure = layer_structure - self.add_layer_norm = add_layer_norm self.activation_func = activation_func + self.add_layer_norm = add_layer_norm + self.use_dropout = use_dropout for size in enable_sizes or []: self.layers[size] = ( - HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func), - HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func), + HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout), + HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout), ) def weights(self): @@ -129,8 +143,9 @@ class Hypernetwork: state_dict['step'] = self.step state_dict['name'] = self.name state_dict['layer_structure'] = self.layer_structure - state_dict['is_layer_norm'] = self.add_layer_norm state_dict['activation_func'] = self.activation_func + state_dict['is_layer_norm'] = self.add_layer_norm + state_dict['use_dropout'] = self.use_dropout state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name @@ -144,8 +159,9 @@ class Hypernetwork: state_dict = torch.load(filename, map_location='cpu') self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) - self.add_layer_norm = state_dict.get('is_layer_norm', False) self.activation_func = state_dict.get('activation_func', None) + self.add_layer_norm = state_dict.get('is_layer_norm', False) + self.use_dropout = state_dict.get('use_dropout', False) for size, sd in state_dict.items(): if type(size) == int: diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 1a5a27d8..5f6f17b6 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -3,14 +3,13 @@ import os import re import gradio as gr - -import modules.textual_inversion.textual_inversion import modules.textual_inversion.preprocess -from modules import sd_hijack, shared, devices +import modules.textual_inversion.textual_inversion +from modules import devices, sd_hijack, shared from modules.hypernetworks import hypernetwork -def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False, activation_func=None): +def create_hypernetwork(name, enable_sizes, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" @@ -21,8 +20,9 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm name=name, enable_sizes=[int(x) for x in enable_sizes], layer_structure=layer_structure, - add_layer_norm=add_layer_norm, activation_func=activation_func, + add_layer_norm=add_layer_norm, + use_dropout=use_dropout, ) hypernet.save(fn) diff --git a/modules/ui.py b/modules/ui.py index 716f14b8..d4b32c05 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -5,43 +5,44 @@ import json import math import mimetypes import os +import platform import random +import subprocess as sp import sys import tempfile import time import traceback -import platform -import subprocess as sp from functools import partial, reduce +import gradio as gr +import gradio.routes +import gradio.utils import numpy as np +import piexif import torch from PIL import Image, PngImagePlugin -import piexif -import gradio as gr -import gradio.utils -import gradio.routes - -from modules import sd_hijack, sd_models, localization +from modules import localization, sd_hijack, sd_models from modules.paths import script_path -from modules.shared import opts, cmd_opts, restricted_opts +from modules.shared import cmd_opts, opts, restricted_opts + if cmd_opts.deepdanbooru: from modules.deepbooru import get_deepbooru_tags -import modules.shared as shared -from modules.sd_samplers import samplers, samplers_for_img2img -from modules.sd_hijack import model_hijack -import modules.ldsr_model -import modules.scripts -import modules.gfpgan_model + import modules.codeformer_model -import modules.styles import modules.generation_parameters_copypaste -from modules import prompt_parser -from modules.images import save_image -import modules.textual_inversion.ui +import modules.gfpgan_model import modules.hypernetworks.ui import modules.images_history as img_his +import modules.ldsr_model +import modules.scripts +import modules.shared as shared +import modules.styles +import modules.textual_inversion.ui +from modules import prompt_parser +from modules.images import save_image +from modules.sd_hijack import model_hijack +from modules.sd_samplers import samplers, samplers_for_img2img # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() @@ -1223,8 +1224,9 @@ def create_ui(wrap_gradio_gpu_call): new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'") + new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu", "elu", "swish"]) new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization") - new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"]) + new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout") with gr.Row(): with gr.Column(scale=3): @@ -1308,8 +1310,9 @@ def create_ui(wrap_gradio_gpu_call): new_hypernetwork_name, new_hypernetwork_sizes, new_hypernetwork_layer_structure, - new_hypernetwork_add_layer_norm, new_hypernetwork_activation_func, + new_hypernetwork_add_layer_norm, + new_hypernetwork_use_dropout ], outputs=[ train_hypernetwork_name, From 1cd3ed7def40198f46d30f74dd37d2906ebdbaa6 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 14:28:56 +0300 Subject: [PATCH 044/321] fix for extensions without style.css --- modules/ui.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/modules/ui.py b/modules/ui.py index 29986124..d8d52db1 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1639,6 +1639,9 @@ Requested path was: {f} css = "" for cssfile in modules.scripts.list_files_with_name("style.css"): + if not os.path.isfile(cssfile): + continue + with open(cssfile, "r", encoding="utf8") as file: css += file.read() + "\n" From 7fd90128eb6d1820045bfe2c2c1269661023a712 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 14:48:43 +0300 Subject: [PATCH 045/321] added a guard for hypernet training that will stop early if weights are getting no gradients --- modules/hypernetworks/hypernetwork.py | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 47d91ea5..46039a49 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -310,6 +310,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) + steps_without_grad = 0 + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: hypernetwork.step = i + ititial_step @@ -332,8 +334,17 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item() optimizer.zero_grad() + weights[0].grad = None loss.backward() + + if weights[0].grad is None: + steps_without_grad += 1 + else: + steps_without_grad = 0 + assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' + optimizer.step() + mean_loss = losses.mean() if torch.isnan(mean_loss): raise RuntimeError("Loss diverged.") From fccba4729db341a299db3343e3264fecd9459a07 Mon Sep 17 00:00:00 2001 From: discus0434 Date: Sat, 22 Oct 2022 12:02:41 +0000 Subject: [PATCH 046/321] add an option to avoid dying relu --- modules/hypernetworks/hypernetwork.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index b7a04038..3132a56c 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -32,7 +32,6 @@ class HypernetworkModule(torch.nn.Module): assert layer_structure is not None, "layer_structure must not be None" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" - assert activation_func not in self.activation_dict.keys() + "linear", f"Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'" linears = [] for i in range(len(layer_structure) - 1): @@ -43,12 +42,13 @@ class HypernetworkModule(torch.nn.Module): # Add an activation func if activation_func == "linear" or activation_func is None: pass + # If ReLU, Skip adding it to the first layer to avoid dying ReLU + elif activation_func == "relu" and i < 1: + pass elif activation_func in self.activation_dict: linears.append(self.activation_dict[activation_func]()) else: - raise RuntimeError( - "Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'" - ) + raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') # Add dropout if use_dropout: @@ -166,8 +166,8 @@ class Hypernetwork: for size, sd in state_dict.items(): if type(size) == int: self.layers[size] = ( - HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func), - HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func), + HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout), + HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout), ) self.name = state_dict.get('name', self.name) From 7912acef725832debef58c4c7bf8ec22fb446c0b Mon Sep 17 00:00:00 2001 From: discus0434 Date: Sat, 22 Oct 2022 13:00:44 +0000 Subject: [PATCH 047/321] small fix --- modules/hypernetworks/hypernetwork.py | 12 +++++------- modules/ui.py | 1 - 2 files changed, 5 insertions(+), 8 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 3132a56c..7d12e0ff 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -42,22 +42,20 @@ class HypernetworkModule(torch.nn.Module): # Add an activation func if activation_func == "linear" or activation_func is None: pass - # If ReLU, Skip adding it to the first layer to avoid dying ReLU - elif activation_func == "relu" and i < 1: - pass elif activation_func in self.activation_dict: linears.append(self.activation_dict[activation_func]()) else: raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') - # Add dropout - if use_dropout: - linears.append(torch.nn.Dropout(p=0.3)) - # Add layer normalization if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) + # Add dropout + if use_dropout: + p = 0.5 if 0 <= i <= len(layer_structure) - 3 else 0.2 + linears.append(torch.nn.Dropout(p=p)) + self.linear = torch.nn.Sequential(*linears) if state_dict is not None: diff --git a/modules/ui.py b/modules/ui.py index cd118552..eca887ca 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1244,7 +1244,6 @@ def create_ui(wrap_gradio_gpu_call): new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization") new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout") overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork") - new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"]) with gr.Row(): with gr.Column(scale=3): From 6a4fa73a38935a18779ce1809892730fd1572bee Mon Sep 17 00:00:00 2001 From: discus0434 Date: Sat, 22 Oct 2022 13:44:39 +0000 Subject: [PATCH 048/321] small fix --- modules/hypernetworks/hypernetwork.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 3372aae2..3bc71ee5 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -51,10 +51,9 @@ class HypernetworkModule(torch.nn.Module): if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) - # Add dropout - if use_dropout: - p = 0.5 if 0 <= i <= len(layer_structure) - 3 else 0.2 - linears.append(torch.nn.Dropout(p=p)) + # Add dropout expect last layer + if use_dropout and i < len(layer_structure) - 3: + linears.append(torch.nn.Dropout(p=0.3)) self.linear = torch.nn.Sequential(*linears) From d37cfffd537cd29309afbcb192c4f979995c6a34 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 19:18:56 +0300 Subject: [PATCH 049/321] added callback for creating new settings in extensions --- modules/script_callbacks.py | 11 +++++++++++ modules/shared.py | 19 +++++++++++++++++-- modules/ui.py | 6 +++++- 3 files changed, 33 insertions(+), 3 deletions(-) diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 866b7acd..1270e50f 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -1,6 +1,7 @@ callbacks_model_loaded = [] callbacks_ui_tabs = [] +callbacks_ui_settings = [] def clear_callbacks(): @@ -22,6 +23,11 @@ def ui_tabs_callback(): return res +def ui_settings_callback(): + for callback in callbacks_ui_settings: + callback() + + def on_model_loaded(callback): """register a function to be called when the stable diffusion model is created; the model is passed as an argument""" @@ -40,3 +46,8 @@ def on_ui_tabs(callback): """ callbacks_ui_tabs.append(callback) + +def on_ui_settings(callback): + """register a function to be called before UI settingsare populated; add your settings + by using shared.opts.add_option(shared.OptionInfo(...)) """ + callbacks_ui_settings.append(callback) diff --git a/modules/shared.py b/modules/shared.py index 5d83971e..d9cb65ef 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -165,13 +165,13 @@ def realesrgan_models_names(): class OptionInfo: - def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False, refresh=None): + def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None): self.default = default self.label = label self.component = component self.component_args = component_args self.onchange = onchange - self.section = None + self.section = section self.refresh = refresh @@ -327,6 +327,7 @@ options_templates.update(options_section(('images-history', "Images Browser"), { })) + class Options: data = None data_labels = options_templates @@ -389,6 +390,20 @@ class Options: d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()} return json.dumps(d) + def add_option(self, key, info): + self.data_labels[key] = info + + def reorder(self): + """reorder settings so that all items related to section always go together""" + + section_ids = {} + settings_items = self.data_labels.items() + for k, item in settings_items: + if item.section not in section_ids: + section_ids[item.section] = len(section_ids) + + self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])} + opts = Options() if os.path.exists(config_filename): diff --git a/modules/ui.py b/modules/ui.py index d8d52db1..2849b111 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1461,6 +1461,9 @@ def create_ui(wrap_gradio_gpu_call): components = [] component_dict = {} + script_callbacks.ui_settings_callback() + opts.reorder() + def open_folder(f): if not os.path.exists(f): print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.') @@ -1564,7 +1567,8 @@ Requested path was: {f} previous_section = item.section - gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='

{}

'.format(item.section[1])) + elem_id, text = item.section + gr.HTML(elem_id="settings_header_text_{}".format(elem_id), value='

{}

'.format(text)) if k in quicksettings_names: quicksettings_list.append((i, k, item)) From dbc8ab65f6d496459a76547776b656c96ad1350d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 19:19:17 +0300 Subject: [PATCH 050/321] typo --- modules/script_callbacks.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 1270e50f..5bcccd67 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -48,6 +48,6 @@ def on_ui_tabs(callback): def on_ui_settings(callback): - """register a function to be called before UI settingsare populated; add your settings + """register a function to be called before UI settings are populated; add your settings by using shared.opts.add_option(shared.OptionInfo(...)) """ callbacks_ui_settings.append(callback) From 72383abacdc6a101704a6f73758ce4d0bb68c9d1 Mon Sep 17 00:00:00 2001 From: Greendayle Date: Sat, 22 Oct 2022 16:50:07 +0200 Subject: [PATCH 051/321] Deepdanbooru linux fix --- modules/deepbooru.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 8914662d..3c34ab7c 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -50,7 +50,8 @@ def create_deepbooru_process(threshold, deepbooru_opts): the tags. """ from modules import shared # prevents circular reference - shared.deepbooru_process_manager = multiprocessing.Manager() + context = multiprocessing.get_context("spawn") + shared.deepbooru_process_manager = context.Manager() shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() shared.deepbooru_process_return["value"] = -1 From e38625011cd4955da4bc67fe95d1d0f4c0c53899 Mon Sep 17 00:00:00 2001 From: Greendayle Date: Sat, 22 Oct 2022 16:56:52 +0200 Subject: [PATCH 052/321] fix part2 --- modules/deepbooru.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 3c34ab7c..8bbc90a4 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -55,7 +55,7 @@ def create_deepbooru_process(threshold, deepbooru_opts): shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() shared.deepbooru_process_return["value"] = -1 - shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts)) + shared.deepbooru_process = context.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts)) shared.deepbooru_process.start() From 7613ea12f267143ceb70a9aeb45eb20aca086e3e Mon Sep 17 00:00:00 2001 From: random_thoughtss Date: Fri, 21 Oct 2022 11:32:56 -0700 Subject: [PATCH 053/321] Fixed img2imgalt after inpainting update --- scripts/img2imgalt.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index d438175c..88abc093 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -34,6 +34,9 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): sigma_in = torch.cat([sigmas[i] * s_in] * 2) cond_in = torch.cat([uncond, cond]) + image_conditioning = torch.cat([p.image_conditioning] * 2) + cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} + c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] t = dnw.sigma_to_t(sigma_in) @@ -78,6 +81,9 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2) cond_in = torch.cat([uncond, cond]) + image_conditioning = torch.cat([p.image_conditioning] * 2) + cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} + c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] if i == 1: @@ -194,7 +200,7 @@ class Script(scripts.Script): p.seed = p.seed + 1 - return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning) + return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning) p.sample = sample_extra From 96ee7d77077eb3c1eacff802e9ccf194adc04592 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 14:16:26 +0900 Subject: [PATCH 054/321] add ja localization --- localizations/ja_JP.json | 413 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 413 insertions(+) create mode 100644 localizations/ja_JP.json diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json new file mode 100644 index 00000000..5da28cb6 --- /dev/null +++ b/localizations/ja_JP.json @@ -0,0 +1,413 @@ +{ + "⤡": "⤡", + "⊞": "⊞", + "×": "×", + "❮": "❮", + "❯": "❯", + "Loading...": "読み込み中...", + "view": "view", + "api": "api", + "•": "•", + "gradioで作ろう": "gradioで作ろう", + "Stable Diffusion checkpoint": "Stable Diffusion checkpoint", + "txt2img": "txt2img", + "img2img": "img2img", + "Extras": "その他", + "PNG Info": "PNG Info", + "History": "履歴", + "Checkpoint Merger": "Checkpoint Merger", + "Train": "学習", + "Settings": "設定", + "Prompt": "プロンプト", + "Negative prompt": "ネガティブ プロンプト", + "Run": "実行", + "Skip": "スキップ", + "Interrupt": "中断", + "Generate": "生成!", + "Style 1": "スタイル 1", + "Style 2": "スタイル 2", + "Label": "Label", + "File": "ファイル", + "ここにファイルをドロップ": "ここにファイルをドロップ", + "-": "-", + "または": "または", + "クリックしてアップロード": "クリックしてアップロード", + "Image": "Image", + "Check progress": "Check progress", + "Check progress (first)": "Check progress (first)", + "Sampling Steps": "Sampling Steps", + "Sampling method": "Sampling method", + "Euler a": "Euler a", + "Euler": "Euler", + "LMS": "LMS", + "Heun": "Heun", + "DPM2": "DPM2", + "DPM2 a": "DPM2 a", + "DPM fast": "DPM fast", + "DPM adaptive": "DPM adaptive", + "LMS Karras": "LMS Karras", + "DPM2 Karras": "DPM2 Karras", + "DPM2 a Karras": "DPM2 a Karras", + "DDIM": "DDIM", + "PLMS": "PLMS", + "Width": "幅", + "Height": "高さ", + "Restore faces": "顔修復", + "Tiling": "テクスチャ生成モード", + "Highres. fix": "*高解像度 fix", + "Firstpass width": "Firstpass width", + "Firstpass height": "Firstpass height", + "Denoising strength": "Denoising 強度", + "Batch count": "連続生成回数", + "Batch size": "同時生成枚数", + "CFG Scale": "CFG Scale", + "Seed": "Seed", + "Extra": "Extra", + "Variation seed": "Variation seed", + "Variation strength": "Variation 強度", + "Resize seed from width": "Resize seed from width", + "Resize seed from height": "Resize seed from height", + "Script": "Script", + "None": "None", + "Prompt matrix": "Prompt matrix", + "Prompts from file or textbox": "Prompts from file or textbox", + "X/Y plot": "X/Y plot", + "Put variable parts at start of prompt": "Put variable parts at start of prompt", + "Show Textbox": "Show Textbox", + "File with inputs": "File with inputs", + "Prompts": "Prompts", + "X type": "X type", + "Nothing": "Nothing", + "Var. seed": "Var. seed", + "Var. strength": "Var. 強度", + "Steps": "Steps", + "Prompt S/R": "Prompt S/R", + "Prompt order": "Prompt order", + "Sampler": "Sampler", + "Checkpoint name": "Checkpoint name", + "Hypernetwork": "Hypernetwork", + "Hypernet str.": "Hypernet 強度", + "Sigma Churn": "Sigma Churn", + "Sigma min": "Sigma min", + "Sigma max": "Sigma max", + "Sigma noise": "Sigma noise", + "Eta": "Eta", + "Clip skip": "Clip skip", + "Denoising": "Denoising", + "X values": "X values", + "Y type": "Y type", + "Y values": "Y values", + "Draw legend": "Draw legend", + "Include Separate Images": "Include Separate Images", + "Keep -1 for seeds": "Keep -1 for seeds", + "ここに画像をドロップ": "ここに画像をドロップ", + "Save": "保存", + "Send to img2img": "img2imgに送る", + "Send to inpaint": "inpaintに送る", + "Send to extras": "その他タブに送る", + "Make Zip when Save?": "保存するときZipも同時に作る", + "Textbox": "Textbox", + "Interrogate\nCLIP": "Interrogate\nCLIP", + "Interrogate\nDeepBooru": "Interrogate\nDeepBooru", + "Inpaint": "Inpaint", + "Batch img2img": "Batch img2img", + "Image for img2img": "Image for img2img", + "Image for inpainting with mask": "Image for inpainting with mask", + "Mask": "Mask", + "Mask blur": "Mask blur", + "Mask mode": "Mask mode", + "Draw mask": "Draw mask", + "Upload mask": "Upload mask", + "Masking mode": "Masking mode", + "Inpaint masked": "Inpaint masked", + "Inpaint not masked": "Inpaint not masked", + "Masked content": "Masked content", + "fill": "fill", + "original": "original", + "latent noise": "latent noise", + "latent nothing": "latent nothing", + "Inpaint at full resolution": "Inpaint at full resolution", + "Inpaint at full resolution padding, pixels": "Inpaint at full resolution padding, pixels", + "Process images in a directory on the same machine where the server is running.": "Process images in a directory on the same machine where the server is running.", + "Use an empty output directory to save pictures normally instead of writing to the output directory.": "Use an empty output directory to save pictures normally instead of writing to the output directory.", + "Input directory": "Input directory", + "Output directory": "Output directory", + "Resize mode": "Resize mode", + "Just resize": "Just resize", + "Crop and resize": "Crop and resize", + "Resize and fill": "Resize and fill", + "img2img alternative test": "img2img alternative test", + "Loopback": "Loopback", + "Outpainting mk2": "Outpainting mk2", + "Poor man's outpainting": "Poor man's outpainting", + "SD upscale": "SD upscale", + "should be 2 or lower.": "should be 2 or lower.", + "Override `Sampling method` to Euler?(this method is built for it)": "Override `Sampling method` to Euler?(this method is built for it)", + "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", + "Original prompt": "Original prompt", + "Original negative prompt": "Original negative prompt", + "Override `Sampling Steps` to the same value as `Decode steps`?": "Override `Sampling Steps` to the same value as `Decode steps`?", + "Decode steps": "Decode steps", + "Override `Denoising strength` to 1?": "Override `Denoising strength` to 1?", + "Decode CFG scale": "Decode CFG scale", + "Randomness": "Randomness", + "Sigma adjustment for finding noise for image": "Sigma adjustment for finding noise for image", + "Loops": "Loops", + "Denoising strength change factor": "Denoising strength change factor", + "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8", + "Pixels to expand": "Pixels to expand", + "Outpainting direction": "Outpainting direction", + "left": "left", + "right": "right", + "up": "up", + "down": "down", + "Fall-off exponent (lower=higher detail)": "Fall-off exponent (lower=higher detail)", + "Color variation": "Color variation", + "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "Will upscale the image to twice the dimensions; use width and height sliders to set tile size", + "Tile overlap": "Tile overlap", + "Upscaler": "Upscaler", + "Lanczos": "Lanczos", + "LDSR": "LDSR", + "BSRGAN 4x": "BSRGAN 4x", + "ESRGAN_4x": "ESRGAN_4x", + "ScuNET GAN": "ScuNET GAN", + "ScuNET PSNR": "ScuNET PSNR", + "SwinIR 4x": "SwinIR 4x", + "Single Image": "Single Image", + "Batch Process": "Batch Process", + "Batch from Directory": "Batch from Directory", + "Source": "Source", + "Show result images": "Show result images", + "Scale by": "Scale by", + "Scale to": "Scale to", + "Resize": "Resize", + "Crop to fit": "Crop to fit", + "Upscaler 2": "Upscaler 2", + "Upscaler 2 visibility": "Upscaler 2 visibility", + "GFPGAN visibility": "GFPGAN visibility", + "CodeFormer visibility": "CodeFormer visibility", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", + "Open output directory": "出力フォルダを開く", + "Send to txt2img": "Send to txt2img", + "txt2img history": "txt2img history", + "img2img history": "img2img history", + "extras history": "extras history", + "Renew Page": "Renew Page", + "First Page": "First Page", + "Prev Page": "Prev Page", + "Page Index": "Page Index", + "Next Page": "Next Page", + "End Page": "End Page", + "number of images to delete consecutively next": "number of images to delete consecutively next", + "Delete": "Delete", + "Generate Info": "Generate Info", + "File Name": "File Name", + "set_index": "set_index", + "A merger of the two checkpoints will be generated in your": "A merger of the two checkpoints will be generated in your", + "checkpoint": "checkpoint", + "directory.": "directory.", + "Primary model (A)": "Primary model (A)", + "Secondary model (B)": "Secondary model (B)", + "Tertiary model (C)": "Tertiary model (C)", + "Custom Name (Optional)": "Custom Name (Optional)", + "Multiplier (M) - set to 0 to get model A": "Multiplier (M) - set to 0 to get model A", + "Interpolation Method": "Interpolation Method", + "Weighted sum": "Weighted sum", + "Add difference": "Add difference", + "Save as float16": "Save as float16", + "See": "See", + "wiki": "wiki", + "for detailed explanation.": "for detailed explanation.", + "Create embedding": "Create embedding", + "Create hypernetwork": "Create hypernetwork", + "Preprocess images": "Preprocess images", + "Name": "Name", + "Initialization text": "Initialization text", + "Number of vectors per token": "Number of vectors per token", + "Modules": "Modules", + "Source directory": "Source directory", + "Destination directory": "Destination directory", + "Create flipped copies": "Create flipped copies", + "Split oversized images into two": "Split oversized images into two", + "Use BLIP for caption": "Use BLIP for caption", + "Use deepbooru for caption": "Use deepbooru for caption", + "Preprocess": "Preprocess", + "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Train an embedding; must specify a directory with a set of 1:1 ratio images", + "Embedding": "Embedding", + "Learning rate": "Learning rate", + "Dataset directory": "Dataset directory", + "Log directory": "Log directory", + "Prompt template file": "Prompt template file", + "Max steps": "Max steps", + "Save an image to log directory every N steps, 0 to disable": "Save an image to log directory every N steps, 0 to disable", + "Save a copy of embedding to log directory every N steps, 0 to disable": "Save a copy of embedding to log directory every N steps, 0 to disable", + "Save images with embedding in PNG chunks": "Save images with embedding in PNG chunks", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", + "Train Hypernetwork": "Train Hypernetwork", + "Train Embedding": "Train Embedding", + "Apply settings": "Apply settings", + "Saving images/grids": "Saving images/grids", + "Always save all generated images": "Always save all generated images", + "File format for images": "File format for images", + "Images filename pattern": "Images filename pattern", + "Always save all generated image grids": "Always save all generated image grids", + "File format for grids": "File format for grids", + "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", + "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", + "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", + "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", + "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", + "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", + "Quality for saved jpeg images": "Quality for saved jpeg images", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", + "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", + "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", + "Do not add watermark to images": "Do not add watermark to images", + "Paths for saving": "Paths for saving", + "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", + "Output directory for txt2img images": "Output directory for txt2img images", + "Output directory for img2img images": "Output directory for img2img images", + "Output directory for images from extras tab": "Output directory for images from extras tab", + "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", + "Output directory for txt2img grids": "Output directory for txt2img grids", + "Output directory for img2img grids": "Output directory for img2img grids", + "Directory for saving images using the Save button": "Directory for saving images using the Save button", + "Saving to a directory": "Saving to a directory", + "Save images to a subdirectory": "Save images to a subdirectory", + "Save grids to a subdirectory": "Save grids to a subdirectory", + "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", + "Directory name pattern": "Directory name pattern", + "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", + "Upscaling": "Upscaling", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", + "Tile size for all SwinIR.": "Tile size for all SwinIR.", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", + "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "Upscaler for img2img": "Upscaler for img2img", + "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", + "Face restoration": "Face restoration", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", + "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", + "System": "System", + "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", + "Always print all generation info to standard output": "Always print all generation info to standard output", + "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", + "Training": "Training", + "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", + "Filename word regex": "Filename word regex", + "Filename join string": "Filename join string", + "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", + "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", + "Stable Diffusion": "Stable Diffusion", + "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", + "Hypernetwork strength": "Hypernetwork strength", + "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", + "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", + "Filter NSFW content": "Filter NSFW content", + "Stop At last layers of CLIP model": "Stop At last layers of CLIP model", + "Interrogate Options": "Interrogate Options", + "Interrogate: keep models in VRAM": "Interrogate: keep models in VRAM", + "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", + "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).", + "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", + "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", + "Interrogate: maximum description length": "Interrogate: maximum description length", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "Interrogate: deepbooru score threshold": "Interrogate: deepbooru score threshold", + "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", + "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "User interface": "User interface", + "Show progressbar": "Show progressbar", + "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", + "Show grid in results for web": "Show grid in results for web", + "Do not show any images in results for web": "Do not show any images in results for web", + "Add model hash to generation information": "Add model hash to generation information", + "Add model name to generation information": "Add model name to generation information", + "Font for image grids that have text": "Font for image grids that have text", + "Enable full page image viewer": "Enable full page image viewer", + "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", + "Show generation progress in window title.": "Show generation progress in window title.", + "Quicksettings list": "Quicksettings list", + "Localization (requires restart)": "Localization (requires restart)", + "ja_JP": "ja_JP", + "Sampler parameters": "Sampler parameters", + "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", + "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", + "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", + "img2img DDIM discretize": "img2img DDIM discretize", + "uniform": "uniform", + "quad": "quad", + "sigma churn": "sigma churn", + "sigma tmin": "sigma tmin", + "sigma noise": "sigma noise", + "Eta noise seed delta": "Eta noise seed delta", + "Request browser notifications": "Request browser notifications", + "Download localization template": "Download localization template", + "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "ネガティブ プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", + "Add a random artist to the prompt.": "Add a random artist to the prompt.", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", + "Save style": "Save style", + "Apply selected styles to current prompt": "Apply selected styles to current prompt", + "Stop processing current image and continue processing.": "Stop processing current image and continue processing.", + "Stop processing images and return any results accumulated so far.": "Stop processing images and return any results accumulated so far.", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", + "Do not do anything special": "Do not do anything special", + "Which algorithm to use to produce the image": "Which algorithm to use to produce the image", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - best at inpainting", + "Produce an image that can be tiled.": "Produce an image that can be tiled.", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", + "How many batches of images to create": "How many batches of images to create", + "How many image to create in a single batch": "How many image to create in a single batch", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result", + "Set seed to -1, which will cause a new random number to be used every time": "Set seed to -1, which will cause a new random number to be used every time", + "Reuse seed from last generation, mostly useful if it was randomed": "Reuse seed from last generation, mostly useful if it was randomed", + "Seed of a different picture to be mixed into the generation.": "Seed of a different picture to be mixed into the generation.", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", + "Separate values for X axis using commas.": "Separate values for X axis using commas.", + "Separate values for Y axis using commas.": "Separate values for Y axis using commas.", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "Write image to a directory (default - log/images) and generation parameters into csv file.", + "Open images output directory": "Open images output directory", + "How much to blur the mask before processing, in pixels.": "How much to blur the mask before processing, in pixels.", + "What to put inside the masked area before processing it with Stable Diffusion.": "What to put inside the masked area before processing it with Stable Diffusion.", + "fill it with colors of the image": "fill it with colors of the image", + "keep whatever was there originally": "keep whatever was there originally", + "fill it with latent space noise": "fill it with latent space noise", + "fill it with latent space zeroes": "fill it with latent space zeroes", + "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image", + "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.", + "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.", + "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.", + "How many times to repeat processing an image and using it as input for the next iteration": "How many times to repeat processing an image and using it as input for the next iteration", + "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.", + "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.", + "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", + "Leave blank to save images to the default path.": "Leave blank to save images to the default path.", + "Result = A * (1 - M) + B * M": "Result = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "Result = A + (B - C) * M", + "Path to directory with input images": "Path to directory with input images", + "Path to directory where to write outputs": "Path to directory where to write outputs", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "Restore low quality faces using GFPGAN neural network": "Restore low quality faces using GFPGAN neural network", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", + "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing." +} \ No newline at end of file From eb2dae196e5d901162d477f24c1ebb2597b13dfb Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 14:40:07 +0900 Subject: [PATCH 055/321] add ja translation --- localizations/ja_JP.json | 48 ++++++++++++++++++++-------------------- 1 file changed, 24 insertions(+), 24 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 5da28cb6..27bd342a 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -13,9 +13,9 @@ "txt2img": "txt2img", "img2img": "img2img", "Extras": "その他", - "PNG Info": "PNG Info", + "PNG Info": "PNG内の情報を表示", "History": "履歴", - "Checkpoint Merger": "Checkpoint Merger", + "Checkpoint Merger": "Checkpointの統合", "Train": "学習", "Settings": "設定", "Prompt": "プロンプト", @@ -35,8 +35,8 @@ "Image": "Image", "Check progress": "Check progress", "Check progress (first)": "Check progress (first)", - "Sampling Steps": "Sampling Steps", - "Sampling method": "Sampling method", + "Sampling Steps": "サンプリング回数", + "Sampling method": "サンプリングアルゴリズム", "Euler a": "Euler a", "Euler": "Euler", "LMS": "LMS", @@ -57,18 +57,18 @@ "Highres. fix": "*高解像度 fix", "Firstpass width": "Firstpass width", "Firstpass height": "Firstpass height", - "Denoising strength": "Denoising 強度", + "Denoising strength": "ノイズ除去 強度", "Batch count": "連続生成回数", "Batch size": "同時生成枚数", "CFG Scale": "CFG Scale", - "Seed": "Seed", - "Extra": "Extra", - "Variation seed": "Variation seed", + "Seed": "シード値", + "Extra": "その他", + "Variation seed": "Variation シード値", "Variation strength": "Variation 強度", "Resize seed from width": "Resize seed from width", "Resize seed from height": "Resize seed from height", - "Script": "Script", - "None": "None", + "Script": "スクリプト", + "None": "なし", "Prompt matrix": "Prompt matrix", "Prompts from file or textbox": "Prompts from file or textbox", "X/Y plot": "X/Y plot", @@ -84,7 +84,7 @@ "Prompt S/R": "Prompt S/R", "Prompt order": "Prompt order", "Sampler": "Sampler", - "Checkpoint name": "Checkpoint name", + "Checkpoint name": "Checkpoint名", "Hypernetwork": "Hypernetwork", "Hypernet str.": "Hypernet 強度", "Sigma Churn": "Sigma Churn", @@ -103,13 +103,13 @@ "ここに画像をドロップ": "ここに画像をドロップ", "Save": "保存", "Send to img2img": "img2imgに送る", - "Send to inpaint": "inpaintに送る", + "Send to inpaint": "描き直しに送る", "Send to extras": "その他タブに送る", "Make Zip when Save?": "保存するときZipも同時に作る", "Textbox": "Textbox", "Interrogate\nCLIP": "Interrogate\nCLIP", "Interrogate\nDeepBooru": "Interrogate\nDeepBooru", - "Inpaint": "Inpaint", + "Inpaint": "描き直し(Inpaint)", "Batch img2img": "Batch img2img", "Image for img2img": "Image for img2img", "Image for inpainting with mask": "Image for inpainting with mask", @@ -132,16 +132,16 @@ "Use an empty output directory to save pictures normally instead of writing to the output directory.": "Use an empty output directory to save pictures normally instead of writing to the output directory.", "Input directory": "Input directory", "Output directory": "Output directory", - "Resize mode": "Resize mode", - "Just resize": "Just resize", - "Crop and resize": "Crop and resize", - "Resize and fill": "Resize and fill", + "Resize mode": "リサイズモード", + "Just resize": "リサイズのみ", + "Crop and resize": "切り取ってからリサイズ", + "Resize and fill": "リサイズして埋める", "img2img alternative test": "img2img alternative test", "Loopback": "Loopback", "Outpainting mk2": "Outpainting mk2", "Poor man's outpainting": "Poor man's outpainting", - "SD upscale": "SD upscale", - "should be 2 or lower.": "should be 2 or lower.", + "SD upscale": "SD アップスケール", + "should be 2 or lower.": "2以下にすること", "Override `Sampling method` to Euler?(this method is built for it)": "Override `Sampling method` to Euler?(this method is built for it)", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", "Original prompt": "Original prompt", @@ -370,19 +370,19 @@ "Produce an image that can be tiled.": "Produce an image that can be tiled.", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", - "How many batches of images to create": "How many batches of images to create", - "How many image to create in a single batch": "How many image to create in a single batch", + "How many batches of images to create": "バッチ処理を何回行うか", + "How many image to create in a single batch": "1回のバッチ処理で何枚の画像を生成するか", "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results", "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result", - "Set seed to -1, which will cause a new random number to be used every time": "Set seed to -1, which will cause a new random number to be used every time", - "Reuse seed from last generation, mostly useful if it was randomed": "Reuse seed from last generation, mostly useful if it was randomed", + "Set seed to -1, which will cause a new random number to be used every time": "シード値を -1 に設定するとランダムに生成します。", + "Reuse seed from last generation, mostly useful if it was randomed": "前回生成時のシード値を読み出す。(ランダム生成時に便利)", "Seed of a different picture to be mixed into the generation.": "Seed of a different picture to be mixed into the generation.", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).", "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", "Separate values for X axis using commas.": "Separate values for X axis using commas.", "Separate values for Y axis using commas.": "Separate values for Y axis using commas.", "Write image to a directory (default - log/images) and generation parameters into csv file.": "Write image to a directory (default - log/images) and generation parameters into csv file.", - "Open images output directory": "Open images output directory", + "Open images output directory": "画像の出力フォルダを開く", "How much to blur the mask before processing, in pixels.": "How much to blur the mask before processing, in pixels.", "What to put inside the masked area before processing it with Stable Diffusion.": "What to put inside the masked area before processing it with Stable Diffusion.", "fill it with colors of the image": "fill it with colors of the image", From 070fda592bf80fb348ffe8e17b7c71cc288db729 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 15:20:00 +0900 Subject: [PATCH 056/321] add ja translation --- localizations/ja_JP.json | 128 +++++++++++++++++++-------------------- 1 file changed, 64 insertions(+), 64 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 27bd342a..11f747b4 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -26,13 +26,13 @@ "Generate": "生成!", "Style 1": "スタイル 1", "Style 2": "スタイル 2", - "Label": "Label", + "Label": "ラベル", "File": "ファイル", "ここにファイルをドロップ": "ここにファイルをドロップ", "-": "-", "または": "または", "クリックしてアップロード": "クリックしてアップロード", - "Image": "Image", + "Image": "画像", "Check progress": "Check progress", "Check progress (first)": "Check progress (first)", "Sampling Steps": "サンプリング回数", @@ -54,12 +54,12 @@ "Height": "高さ", "Restore faces": "顔修復", "Tiling": "テクスチャ生成モード", - "Highres. fix": "*高解像度 fix", + "Highres. fix": "(※)高解像度 fix", "Firstpass width": "Firstpass width", "Firstpass height": "Firstpass height", "Denoising strength": "ノイズ除去 強度", - "Batch count": "連続生成回数", - "Batch size": "同時生成枚数", + "Batch count": "バッチ生成回数", + "Batch size": "バッチあたり生成枚数", "CFG Scale": "CFG Scale", "Seed": "シード値", "Extra": "その他", @@ -77,16 +77,16 @@ "File with inputs": "File with inputs", "Prompts": "Prompts", "X type": "X type", - "Nothing": "Nothing", + "Nothing": "なし", "Var. seed": "Var. seed", "Var. strength": "Var. 強度", - "Steps": "Steps", + "Steps": "ステップ数", "Prompt S/R": "Prompt S/R", "Prompt order": "Prompt order", - "Sampler": "Sampler", + "Sampler": "サンプラー", "Checkpoint name": "Checkpoint名", "Hypernetwork": "Hypernetwork", - "Hypernet str.": "Hypernet 強度", + "Hypernet str.": "Hypernet強度", "Sigma Churn": "Sigma Churn", "Sigma min": "Sigma min", "Sigma max": "Sigma max", @@ -192,78 +192,78 @@ "txt2img history": "txt2img history", "img2img history": "img2img history", "extras history": "extras history", - "Renew Page": "Renew Page", - "First Page": "First Page", - "Prev Page": "Prev Page", - "Page Index": "Page Index", - "Next Page": "Next Page", - "End Page": "End Page", + "Renew Page": "更新", + "First Page": "最初のぺージへ", + "Prev Page": "前ページへ", + "Page Index": "ページ番号", + "Next Page": "次ページへ", + "End Page": "最後のページへ", "number of images to delete consecutively next": "number of images to delete consecutively next", - "Delete": "Delete", + "Delete": "削除", "Generate Info": "Generate Info", "File Name": "File Name", "set_index": "set_index", - "A merger of the two checkpoints will be generated in your": "A merger of the two checkpoints will be generated in your", + "A merger of the two checkpoints will be generated in your": "統合されたチェックポイントはあなたの", "checkpoint": "checkpoint", - "directory.": "directory.", - "Primary model (A)": "Primary model (A)", - "Secondary model (B)": "Secondary model (B)", - "Tertiary model (C)": "Tertiary model (C)", - "Custom Name (Optional)": "Custom Name (Optional)", - "Multiplier (M) - set to 0 to get model A": "Multiplier (M) - set to 0 to get model A", + "directory.": "フォルダに保存されます.", + "Primary model (A)": "1つめのmodel (A)", + "Secondary model (B)": "2つめのmodel (B)", + "Tertiary model (C)": "3つめのmodel (C)", + "Custom Name (Optional)": "Custom Name (任意)", + "Multiplier (M) - set to 0 to get model A": "Multiplier (M) 0にすると完全にmodel Aとなります", "Interpolation Method": "Interpolation Method", "Weighted sum": "Weighted sum", "Add difference": "Add difference", - "Save as float16": "Save as float16", - "See": "See", + "Save as float16": "float16で保存", + "See": "詳細な説明については", "wiki": "wiki", - "for detailed explanation.": "for detailed explanation.", - "Create embedding": "Create embedding", - "Create hypernetwork": "Create hypernetwork", - "Preprocess images": "Preprocess images", - "Name": "Name", + "for detailed explanation.": "を見てください。", + "Create embedding": "Embeddingを作る", + "Create hypernetwork": "Hypernetworkを作る", + "Preprocess images": "画像の前処理", + "Name": "ファイル名", "Initialization text": "Initialization text", "Number of vectors per token": "Number of vectors per token", "Modules": "Modules", - "Source directory": "Source directory", - "Destination directory": "Destination directory", - "Create flipped copies": "Create flipped copies", - "Split oversized images into two": "Split oversized images into two", - "Use BLIP for caption": "Use BLIP for caption", - "Use deepbooru for caption": "Use deepbooru for caption", - "Preprocess": "Preprocess", - "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Train an embedding; must specify a directory with a set of 1:1 ratio images", + "Source directory": "入力フォルダ", + "Destination directory": "出力フォルダ", + "Create flipped copies": "反転画像を生成する", + "Split oversized images into two": "大きすぎる画像を2分割する", + "Use BLIP for caption": "BLIPで説明をつける", + "Use deepbooru for caption": "deepbooruで説明をつける", + "Preprocess": "前処理開始", + "Train an embedding; must specify a directory with a set of 1:1 ratio images": "embeddingの学習をします;データセット内の画像は正方形でなければなりません。", "Embedding": "Embedding", - "Learning rate": "Learning rate", - "Dataset directory": "Dataset directory", - "Log directory": "Log directory", + "Learning rate": "学習率", + "Dataset directory": "データセットフォルダ", + "Log directory": "ログフォルダ", "Prompt template file": "Prompt template file", - "Max steps": "Max steps", - "Save an image to log directory every N steps, 0 to disable": "Save an image to log directory every N steps, 0 to disable", - "Save a copy of embedding to log directory every N steps, 0 to disable": "Save a copy of embedding to log directory every N steps, 0 to disable", - "Save images with embedding in PNG chunks": "Save images with embedding in PNG chunks", + "Max steps": "最大ステップ数", + "Save an image to log directory every N steps, 0 to disable": "指定したステップ数ごとに画像を生成し、ログに保存する。0で無効化。", + "Save a copy of embedding to log directory every N steps, 0 to disable": "指定したステップ数ごとにEmbeddingのコピーをログに保存する。0で無効化。", + "Save images with embedding in PNG chunks": "保存する画像にembeddingを埋め込む", "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", - "Train Hypernetwork": "Train Hypernetwork", - "Train Embedding": "Train Embedding", + "Train Hypernetwork": "Hypernetworkの学習を開始", + "Train Embedding": "Embeddingの学習を開始", "Apply settings": "Apply settings", - "Saving images/grids": "Saving images/grids", - "Always save all generated images": "Always save all generated images", - "File format for images": "File format for images", - "Images filename pattern": "Images filename pattern", - "Always save all generated image grids": "Always save all generated image grids", - "File format for grids": "File format for grids", - "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", - "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", - "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", - "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", - "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", - "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", - "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", - "Quality for saved jpeg images": "Quality for saved jpeg images", - "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", + "Saving images/grids": "画像/グリッドの保存", + "Always save all generated images": "生成された画像をすべて保存する", + "File format for images": "画像ファイルの保存形式", + "Images filename pattern": "ファイル名のパターン", + "Always save all generated image grids": "グリッド画像を常に保存する", + "File format for grids": "グリッド画像の保存形式", + "Add extended info (seed, prompt) to filename when saving grid": "保存するグリッド画像のファイル名に追加情報(シード値、プロンプト)を加える", + "Do not save grids consisting of one picture": "1画像からなるグリッド画像は保存しない", + "Prevent empty spots in grid (when set to autodetect)": "(自動設定のとき)グリッドに空隙が生じるのを防ぐ", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "グリッドの列数; -1で自動設定、0でバッチ生成回数と同じにする", + "Save text information about generation parameters as chunks to png files": "生成に関するパラメーターをpng画像に含める", + "Create a text file next to every image with generation parameters.": "保存する画像とともに生成パラメータをテキストファイルで保存する", + "Save a copy of image before doing face restoration.": "顔修復を行う前にコピーを保存しておく。", + "Quality for saved jpeg images": "JPG保存時の画質", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "PNG画像が4MBを超えるか、どちらか1辺の長さが4000を超えたなら、ダウンスケールしてコピーを別にJPGで保存する", "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", - "Do not add watermark to images": "Do not add watermark to images", + "Do not add watermark to images": "電子透かしを画像に追加しない", "Paths for saving": "Paths for saving", "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", "Output directory for txt2img images": "Output directory for txt2img images", @@ -403,7 +403,7 @@ "Path to directory with input images": "Path to directory with input images", "Path to directory where to write outputs": "Path to directory where to write outputs", "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "このオプションを有効にすると、作成された画像にウォーターマークが追加されなくなります。警告:ウォーターマークを追加しない場合、非倫理的な行動とみなされる場合があります。", "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Restore low quality faces using GFPGAN neural network": "Restore low quality faces using GFPGAN neural network", "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", From 7043f4eff3913ac1ed0ae1621f622c90437c6843 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 15:57:39 +0900 Subject: [PATCH 057/321] improve ja translation --- localizations/ja_JP.json | 92 ++++++++++++++++++++-------------------- 1 file changed, 46 insertions(+), 46 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 11f747b4..87809d72 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -54,7 +54,7 @@ "Height": "高さ", "Restore faces": "顔修復", "Tiling": "テクスチャ生成モード", - "Highres. fix": "(※)高解像度 fix", + "Highres. fix": "高解像度 fix(マウスオーバーで詳細)", "Firstpass width": "Firstpass width", "Firstpass height": "Firstpass height", "Denoising strength": "ノイズ除去 強度", @@ -75,7 +75,7 @@ "Put variable parts at start of prompt": "Put variable parts at start of prompt", "Show Textbox": "Show Textbox", "File with inputs": "File with inputs", - "Prompts": "Prompts", + "Prompts": "プロンプト", "X type": "X type", "Nothing": "なし", "Var. seed": "Var. seed", @@ -123,26 +123,26 @@ "Inpaint not masked": "Inpaint not masked", "Masked content": "Masked content", "fill": "fill", - "original": "original", + "original": "オリジナル", "latent noise": "latent noise", "latent nothing": "latent nothing", "Inpaint at full resolution": "Inpaint at full resolution", "Inpaint at full resolution padding, pixels": "Inpaint at full resolution padding, pixels", "Process images in a directory on the same machine where the server is running.": "Process images in a directory on the same machine where the server is running.", "Use an empty output directory to save pictures normally instead of writing to the output directory.": "Use an empty output directory to save pictures normally instead of writing to the output directory.", - "Input directory": "Input directory", - "Output directory": "Output directory", + "Input directory": "入力フォルダ", + "Output directory": "出力フォルダ", "Resize mode": "リサイズモード", "Just resize": "リサイズのみ", "Crop and resize": "切り取ってからリサイズ", "Resize and fill": "リサイズして埋める", "img2img alternative test": "img2img alternative test", - "Loopback": "Loopback", + "Loopback": "ループバック", "Outpainting mk2": "Outpainting mk2", "Poor man's outpainting": "Poor man's outpainting", "SD upscale": "SD アップスケール", "should be 2 or lower.": "2以下にすること", - "Override `Sampling method` to Euler?(this method is built for it)": "Override `Sampling method` to Euler?(this method is built for it)", + "Override `Sampling method` to Euler?(this method is built for it)": "サンプリングアルゴリズムをEulerに上書きする(そうすることを前提に設計されています)", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", "Original prompt": "Original prompt", "Original negative prompt": "Original negative prompt", @@ -157,15 +157,15 @@ "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8", "Pixels to expand": "Pixels to expand", "Outpainting direction": "Outpainting direction", - "left": "left", - "right": "right", - "up": "up", - "down": "down", + "left": "左", + "right": "右", + "up": "上", + "down": "下", "Fall-off exponent (lower=higher detail)": "Fall-off exponent (lower=higher detail)", "Color variation": "Color variation", "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "Will upscale the image to twice the dimensions; use width and height sliders to set tile size", "Tile overlap": "Tile overlap", - "Upscaler": "Upscaler", + "Upscaler": "アップスケーラー", "Lanczos": "Lanczos", "LDSR": "LDSR", "BSRGAN 4x": "BSRGAN 4x", @@ -173,25 +173,25 @@ "ScuNET GAN": "ScuNET GAN", "ScuNET PSNR": "ScuNET PSNR", "SwinIR 4x": "SwinIR 4x", - "Single Image": "Single Image", - "Batch Process": "Batch Process", - "Batch from Directory": "Batch from Directory", - "Source": "Source", - "Show result images": "Show result images", - "Scale by": "Scale by", - "Scale to": "Scale to", - "Resize": "Resize", - "Crop to fit": "Crop to fit", - "Upscaler 2": "Upscaler 2", + "Single Image": "単一画像", + "Batch Process": "バッチ処理", + "Batch from Directory": "フォルダからバッチ処理", + "Source": "入力", + "Show result images": "出力画像を表示", + "Scale by": "倍率指定", + "Scale to": "解像度指定", + "Resize": "倍率", + "Crop to fit": "合うように切り抜き", + "Upscaler 2": "アップスケーラー 2", "Upscaler 2 visibility": "Upscaler 2 visibility", "GFPGAN visibility": "GFPGAN visibility", "CodeFormer visibility": "CodeFormer visibility", "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", "Open output directory": "出力フォルダを開く", - "Send to txt2img": "Send to txt2img", - "txt2img history": "txt2img history", - "img2img history": "img2img history", - "extras history": "extras history", + "Send to txt2img": "txt2imgに送る", + "txt2img history": "txt2imgの履歴", + "img2img history": "img2imgの履歴", + "extras history": "その他タブの履歴", "Renew Page": "更新", "First Page": "最初のぺージへ", "Prev Page": "前ページへ", @@ -200,8 +200,8 @@ "End Page": "最後のページへ", "number of images to delete consecutively next": "number of images to delete consecutively next", "Delete": "削除", - "Generate Info": "Generate Info", - "File Name": "File Name", + "Generate Info": "生成情報", + "File Name": "ファイル名", "set_index": "set_index", "A merger of the two checkpoints will be generated in your": "統合されたチェックポイントはあなたの", "checkpoint": "checkpoint", @@ -265,27 +265,27 @@ "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", "Do not add watermark to images": "電子透かしを画像に追加しない", "Paths for saving": "Paths for saving", - "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", - "Output directory for txt2img images": "Output directory for txt2img images", - "Output directory for img2img images": "Output directory for img2img images", - "Output directory for images from extras tab": "Output directory for images from extras tab", - "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", - "Output directory for txt2img grids": "Output directory for txt2img grids", - "Output directory for img2img grids": "Output directory for img2img grids", - "Directory for saving images using the Save button": "Directory for saving images using the Save button", - "Saving to a directory": "Saving to a directory", - "Save images to a subdirectory": "Save images to a subdirectory", - "Save grids to a subdirectory": "Save grids to a subdirectory", - "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", - "Directory name pattern": "Directory name pattern", + "Output directory for images; if empty, defaults to three directories below": "画像の保存先フォルダ(下項目のデフォルト値になります)", + "Output directory for txt2img images": "txt2imgで作った画像の保存先フォルダ", + "Output directory for img2img images": "img2imgで作った画像の保存先フォルダ", + "Output directory for images from extras tab": "その他タブで作った画像の保存先フォルダ", + "Output directory for grids; if empty, defaults to two directories below": "画像の保存先フォルダ(下項目のデフォルト値になります)", + "Output directory for txt2img grids": "txt2imgで作ったグリッドの保存先フォルダ", + "Output directory for img2img grids": "img2imgで作ったグリッドの保存先フォルダ", + "Directory for saving images using the Save button": "保存ボタンを押したときの画像の保存先フォルダ", + "Saving to a directory": "フォルダについて", + "Save images to a subdirectory": "画像をサブフォルダに保存する", + "Save grids to a subdirectory": "グリッドをサブフォルダに保存する", + "When using \"Save\" button, save images to a subdirectory": "保存ボタンを押した時、画像をサブフォルダに保存する", + "Directory name pattern": "フォルダ名のパターン", "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", - "Upscaling": "Upscaling", - "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", - "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", + "Upscaling": "アップスケール", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "ESRGANのタイルサイズ。0とするとタイルしない。", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "ESRGANのタイルの重複部分のピクセル数。少なくするとつなぎ目が見えやすくなる。", "Tile size for all SwinIR.": "Tile size for all SwinIR.", "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", - "Upscaler for img2img": "Upscaler for img2img", + "Upscaler for img2img": "img2imgで使うアップスケーラー", "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", "Face restoration": "Face restoration", "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", @@ -368,7 +368,7 @@ "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help", "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - best at inpainting", "Produce an image that can be tiled.": "Produce an image that can be tiled.", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "2ステップで、まず部分的に小さい解像度で画像を作成し、その後アップスケールすることで、構図を変えずにディテールが改善されます。", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", "How many batches of images to create": "バッチ処理を何回行うか", "How many image to create in a single batch": "1回のバッチ処理で何枚の画像を生成するか", From 0262bf64ddbf85e05ddd120929138d3c5dac3bac Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 16:38:31 +0900 Subject: [PATCH 058/321] improve ja translation --- localizations/ja_JP.json | 48 ++++++++++++++++++++-------------------- 1 file changed, 24 insertions(+), 24 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 87809d72..fc958656 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -282,19 +282,19 @@ "Upscaling": "アップスケール", "Tile size for ESRGAN upscalers. 0 = no tiling.": "ESRGANのタイルサイズ。0とするとタイルしない。", "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "ESRGANのタイルの重複部分のピクセル数。少なくするとつなぎ目が見えやすくなる。", - "Tile size for all SwinIR.": "Tile size for all SwinIR.", - "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", + "Tile size for all SwinIR.": "SwinIRのタイルサイズ", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "SwinIRのタイルの重複部分のピクセル数。少なくするとつなぎ目が見えやすくなる。", "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", "Upscaler for img2img": "img2imgで使うアップスケーラー", - "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", - "Face restoration": "Face restoration", - "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", + "Upscale latent space image when doing hires. fix": "高解像度 fix時に潜在空間(latent space)の画像をアップスケールする", + "Face restoration": "顔修復", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormerの重みパラメーター;0が最大で1が最小", "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", - "System": "System", + "System": "システム設定", "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", - "Always print all generation info to standard output": "Always print all generation info to standard output", + "Always print all generation info to standard output": "常にすべての生成に関する情報を標準出力(stdout)に出力する", "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", - "Training": "Training", + "Training": "学習", "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", "Filename word regex": "Filename word regex", "Filename join string": "Filename join string", @@ -307,15 +307,15 @@ "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", - "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", - "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "強調: (text)とするとモデルはtextをより強く扱い、[text]とするとモデルはtextをより弱く扱います。", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "古い強調の実装を使う。古い生成物を再現するのに使えます。", "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", "Filter NSFW content": "Filter NSFW content", - "Stop At last layers of CLIP model": "Stop At last layers of CLIP model", - "Interrogate Options": "Interrogate Options", - "Interrogate: keep models in VRAM": "Interrogate: keep models in VRAM", - "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", + "Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか(stop…layers of CLIP model)", + "Interrogate Options": "Interrogate 設定", + "Interrogate: keep models in VRAM": "Interrogate: モデルをVRAMに保持する", + "Interrogate: use artists from artists.csv": "Interrogate: artists.csvにある芸術家などの名称を利用する", "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).", "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", @@ -337,9 +337,9 @@ "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", "Show generation progress in window title.": "Show generation progress in window title.", "Quicksettings list": "Quicksettings list", - "Localization (requires restart)": "Localization (requires restart)", + "Localization (requires restart)": "言語 (プログラムの再起動が必要)", "ja_JP": "ja_JP", - "Sampler parameters": "Sampler parameters", + "Sampler parameters": "サンプラー parameters", "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", @@ -350,16 +350,16 @@ "sigma tmin": "sigma tmin", "sigma noise": "sigma noise", "Eta noise seed delta": "Eta noise seed delta", - "Request browser notifications": "Request browser notifications", - "Download localization template": "Download localization template", - "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", - "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", + "Request browser notifications": "ブラウザ通知の許可を要求する", + "Download localization template": "ローカライゼーション用のテンプレートをダウンロードする", + "Reload custom script bodies (No ui updates, No restart)": "カスタムスクリプトを再読み込み (UIは変更されず、再起動もしません。)", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradioを再起動してコンポーネントをリフレッシュする (Custom Scripts, ui.py, js, cssのみ影響を受ける)", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "ネガティブ プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Add a random artist to the prompt.": "Add a random artist to the prompt.", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", - "Save style": "Save style", - "Apply selected styles to current prompt": "Apply selected styles to current prompt", + "Save style": "スタイルを保存する", + "Apply selected styles to current prompt": "現在のプロンプトに選択したスタイルを適用する", "Stop processing current image and continue processing.": "Stop processing current image and continue processing.", "Stop processing images and return any results accumulated so far.": "Stop processing images and return any results accumulated so far.", "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", @@ -379,8 +379,8 @@ "Seed of a different picture to be mixed into the generation.": "Seed of a different picture to be mixed into the generation.", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).", "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", - "Separate values for X axis using commas.": "Separate values for X axis using commas.", - "Separate values for Y axis using commas.": "Separate values for Y axis using commas.", + "Separate values for X axis using commas.": "X軸に用いる値をカンマ(,)で区切って入力してください。", + "Separate values for Y axis using commas.": "Y軸に用いる値をカンマ(,)で区切って入力してください。", "Write image to a directory (default - log/images) and generation parameters into csv file.": "Write image to a directory (default - log/images) and generation parameters into csv file.", "Open images output directory": "画像の出力フォルダを開く", "How much to blur the mask before processing, in pixels.": "How much to blur the mask before processing, in pixels.", From f613c6b8c532dbcfb3570cdbb3ce56a0d2821d0b Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 23:01:41 +0900 Subject: [PATCH 059/321] improve ja translation --- localizations/ja_JP.json | 66 ++++++++++++++++++++-------------------- 1 file changed, 33 insertions(+), 33 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index fc958656..a9f6cb20 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -163,7 +163,7 @@ "down": "下", "Fall-off exponent (lower=higher detail)": "Fall-off exponent (lower=higher detail)", "Color variation": "Color variation", - "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "Will upscale the image to twice the dimensions; use width and height sliders to set tile size", + "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "画像を2倍の大きさにアップスケールします。幅と高さのスライダーでタイルの大きさを設定します。", "Tile overlap": "Tile overlap", "Upscaler": "アップスケーラー", "Lanczos": "Lanczos", @@ -210,10 +210,10 @@ "Secondary model (B)": "2つめのmodel (B)", "Tertiary model (C)": "3つめのmodel (C)", "Custom Name (Optional)": "Custom Name (任意)", - "Multiplier (M) - set to 0 to get model A": "Multiplier (M) 0にすると完全にmodel Aとなります", - "Interpolation Method": "Interpolation Method", - "Weighted sum": "Weighted sum", - "Add difference": "Add difference", + "Multiplier (M) - set to 0 to get model A": "Multiplier (M) 0にすると完全にmodel Aとなります (ツールチップ参照)", + "Interpolation Method": "混合(Interpolation)方式", + "Weighted sum": "加重平均", + "Add difference": "差を加える", "Save as float16": "float16で保存", "See": "詳細な説明については", "wiki": "wiki", @@ -289,7 +289,7 @@ "Upscale latent space image when doing hires. fix": "高解像度 fix時に潜在空間(latent space)の画像をアップスケールする", "Face restoration": "顔修復", "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormerの重みパラメーター;0が最大で1が最小", - "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", + "Move face restoration model from VRAM into RAM after processing": "処理終了後、顔修復モデルをVRAMからRAMへと移動する", "System": "システム設定", "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", "Always print all generation info to standard output": "常にすべての生成に関する情報を標準出力(stdout)に出力する", @@ -301,9 +301,9 @@ "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", "Stable Diffusion": "Stable Diffusion", - "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", + "Checkpoints to cache in RAM": "RAMにキャッシュするCheckpoint数", "Hypernetwork strength": "Hypernetwork strength", - "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", + "Apply color correction to img2img results to match original colors.": "元画像に合わせてimg2imgの結果を色補正する", "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", @@ -325,24 +325,24 @@ "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", - "User interface": "User interface", - "Show progressbar": "Show progressbar", - "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", - "Show grid in results for web": "Show grid in results for web", - "Do not show any images in results for web": "Do not show any images in results for web", - "Add model hash to generation information": "Add model hash to generation information", - "Add model name to generation information": "Add model name to generation information", - "Font for image grids that have text": "Font for image grids that have text", - "Enable full page image viewer": "Enable full page image viewer", - "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", - "Show generation progress in window title.": "Show generation progress in window title.", + "User interface": "UI設定", + "Show progressbar": "プログレスバーを表示", + "Show image creation progress every N sampling steps. Set 0 to disable.": "指定したステップ数ごとに画像の生成過程を表示する。0で無効化。", + "Show grid in results for web": "WebUI上でグリッド表示", + "Do not show any images in results for web": "WebUI上で一切画像を表示しない", + "Add model hash to generation information": "モデルのハッシュ値を生成情報に追加", + "Add model name to generation information": "モデルの名称を生成情報に追加", + "Font for image grids that have text": "画像グリッド内のテキストフォント", + "Enable full page image viewer": "フルページの画像ビューワーを有効化", + "Show images zoomed in by default in full page image viewer": "フルページ画像ビューアでデフォルトで画像を拡大して表示する", + "Show generation progress in window title.": "ウィンドウのタイトルで生成の進捗を表示", "Quicksettings list": "Quicksettings list", "Localization (requires restart)": "言語 (プログラムの再起動が必要)", "ja_JP": "ja_JP", "Sampler parameters": "サンプラー parameters", - "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", - "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", - "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", + "Hide samplers in user interface (requires restart)": "使わないサンプリングアルゴリズムを隠す (再起動が必要)", + "eta (noise multiplier) for DDIM": "DDIMで用いるeta (noise multiplier)", + "eta (noise multiplier) for ancestral samplers": "ancestral サンプラーで用いるeta (noise multiplier)", "img2img DDIM discretize": "img2img DDIM discretize", "uniform": "uniform", "quad": "quad", @@ -356,17 +356,17 @@ "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradioを再起動してコンポーネントをリフレッシュする (Custom Scripts, ui.py, js, cssのみ影響を受ける)", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "ネガティブ プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", - "Add a random artist to the prompt.": "Add a random artist to the prompt.", + "Add a random artist to the prompt.": "芸術家などの名称をプロンプトに追加", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", "Save style": "スタイルを保存する", "Apply selected styles to current prompt": "現在のプロンプトに選択したスタイルを適用する", - "Stop processing current image and continue processing.": "Stop processing current image and continue processing.", - "Stop processing images and return any results accumulated so far.": "Stop processing images and return any results accumulated so far.", + "Stop processing current image and continue processing.": "現在の処理を中断し、その後の処理は続ける", + "Stop processing images and return any results accumulated so far.": "処理を中断し、それまでに出来た結果を表示する", "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", - "Do not do anything special": "Do not do anything special", - "Which algorithm to use to produce the image": "Which algorithm to use to produce the image", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - best at inpainting", + "Do not do anything special": "特別なことをなにもしない", + "Which algorithm to use to produce the image": "どのアルゴリズムを使って生成するか", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 非常に独創的で、ステップ数によって全く異なる画像が得られる、ステップ数を30~40より高く設定しても効果がない。", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 描き直しには最適", "Produce an image that can be tiled.": "Produce an image that can be tiled.", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "2ステップで、まず部分的に小さい解像度で画像を作成し、その後アップスケールすることで、構図を変えずにディテールが改善されます。", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", @@ -397,15 +397,15 @@ "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.", "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.", "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", - "Leave blank to save images to the default path.": "Leave blank to save images to the default path.", - "Result = A * (1 - M) + B * M": "Result = A * (1 - M) + B * M", - "Result = A + (B - C) * M": "Result = A + (B - C) * M", + "Leave blank to save images to the default path.": "空欄でデフォルトの場所へ画像を保存", + "Result = A * (1 - M) + B * M": "結果モデル = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "結果モデル = A + (B - C) * M", "Path to directory with input images": "Path to directory with input images", "Path to directory where to write outputs": "Path to directory where to write outputs", "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "このオプションを有効にすると、作成された画像にウォーターマークが追加されなくなります。警告:ウォーターマークを追加しない場合、非倫理的な行動とみなされる場合があります。", "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "Restore low quality faces using GFPGAN neural network": "Restore low quality faces using GFPGAN neural network", + "Restore low quality faces using GFPGAN neural network": "GFPGANを用いて低クオリティーの画像を修復", "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", From 774be6d2f271415a82d9a83147e8ee8bbad018d0 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Tue, 18 Oct 2022 23:29:34 +0900 Subject: [PATCH 060/321] improve ja translation --- localizations/ja_JP.json | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index a9f6cb20..514b579e 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -76,7 +76,7 @@ "Show Textbox": "Show Textbox", "File with inputs": "File with inputs", "Prompts": "プロンプト", - "X type": "X type", + "X type": "X軸の種類", "Nothing": "なし", "Var. seed": "Var. seed", "Var. strength": "Var. 強度", @@ -94,12 +94,12 @@ "Eta": "Eta", "Clip skip": "Clip skip", "Denoising": "Denoising", - "X values": "X values", - "Y type": "Y type", - "Y values": "Y values", - "Draw legend": "Draw legend", + "X values": "Xの値", + "Y type": "Y軸の種類", + "Y values": "Yの値", + "Draw legend": "凡例を描画", "Include Separate Images": "Include Separate Images", - "Keep -1 for seeds": "Keep -1 for seeds", + "Keep -1 for seeds": "シード値を-1で固定", "ここに画像をドロップ": "ここに画像をドロップ", "Save": "保存", "Send to img2img": "img2imgに送る", @@ -295,7 +295,7 @@ "Always print all generation info to standard output": "常にすべての生成に関する情報を標準出力(stdout)に出力する", "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", "Training": "学習", - "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", + "Unload VAE and CLIP from VRAM when training": "学習を行う際、VAEとCLIPをVRAMから削除する", "Filename word regex": "Filename word regex", "Filename join string": "Filename join string", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", @@ -304,14 +304,14 @@ "Checkpoints to cache in RAM": "RAMにキャッシュするCheckpoint数", "Hypernetwork strength": "Hypernetwork strength", "Apply color correction to img2img results to match original colors.": "元画像に合わせてimg2imgの結果を色補正する", - "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", - "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", + "Save a copy of image before applying color correction to img2img results": "色補正をする前の画像も保存する", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "img2imgでスライダーで指定されたステップ数を正確に実行する(通常は、ノイズ除去を少なくするためにより少ないステップ数で実行します)。", "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "強調: (text)とするとモデルはtextをより強く扱い、[text]とするとモデルはtextをより弱く扱います。", "Use old emphasis implementation. Can be useful to reproduce old seeds.": "古い強調の実装を使う。古い生成物を再現するのに使えます。", "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", - "Filter NSFW content": "Filter NSFW content", + "Filter NSFW content": "NSFW(≒R-18)なコンテンツを検閲する", "Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか(stop…layers of CLIP model)", "Interrogate Options": "Interrogate 設定", "Interrogate: keep models in VRAM": "Interrogate: モデルをVRAMに保持する", @@ -321,10 +321,10 @@ "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", "Interrogate: maximum description length": "Interrogate: maximum description length", "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", - "Interrogate: deepbooru score threshold": "Interrogate: deepbooru score threshold", - "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", - "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", - "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "Interrogate: deepbooru score threshold": "Interrogate: deepbooruで拾う単語のスコア閾値", + "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooruで単語をアルファベット順に並べる", + "use spaces for tags in deepbooru": "deepbooruのタグでスペースを使う", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "deepbooruで括弧をエスケープする(\\) (強調を示す()ではなく、文字通りの()であることをモデルに示すため)", "User interface": "UI設定", "Show progressbar": "プログレスバーを表示", "Show image creation progress every N sampling steps. Set 0 to disable.": "指定したステップ数ごとに画像の生成過程を表示する。0で無効化。", From 324c7c732dd9afc3d4c397c354797ae5d655b514 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 20:09:37 +0300 Subject: [PATCH 061/321] record First pass size as 0x0 for #3328 --- modules/processing.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/modules/processing.py b/modules/processing.py index 372489f7..27c669b0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -524,6 +524,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: state.job_count = state.job_count * 2 + self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}" + if self.firstphase_width == 0 or self.firstphase_height == 0: desired_pixel_count = 512 * 512 actual_pixel_count = self.width * self.height @@ -545,7 +547,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): firstphase_width_truncated = self.firstphase_height * self.width / self.height firstphase_height_truncated = self.firstphase_height - self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}" self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f From 0df94d3fcf9d1fc47c4d39039352a3d5b3380c1f Mon Sep 17 00:00:00 2001 From: MrCheeze Date: Sat, 22 Oct 2022 12:59:21 -0400 Subject: [PATCH 062/321] fix aesthetic gradients doing nothing after loading a different model --- modules/sd_models.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index f9b3063d..49dc3238 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -236,12 +236,11 @@ def load_model(checkpoint_info=None): sd_model.to(shared.device) sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) sd_model.eval() shared.sd_model = sd_model - script_callbacks.model_loaded_callback(sd_model) - print(f"Model loaded.") return sd_model @@ -268,6 +267,7 @@ def reload_model_weights(sd_model, info=None): load_model_weights(sd_model, checkpoint_info) sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) From 321bacc6a9eaf4a25f31279f288fa752be507a20 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 20:15:12 +0300 Subject: [PATCH 063/321] call model_loaded_callback after setting shared.sd_model in case scripts refer to it using that --- modules/sd_models.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/modules/sd_models.py b/modules/sd_models.py index 49dc3238..e697bb72 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -236,11 +236,12 @@ def load_model(checkpoint_info=None): sd_model.to(shared.device) sd_hijack.model_hijack.hijack(sd_model) - script_callbacks.model_loaded_callback(sd_model) sd_model.eval() shared.sd_model = sd_model + script_callbacks.model_loaded_callback(sd_model) + print(f"Model loaded.") return sd_model From 24694e5983d0944b901892cb101878e6dec89a20 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 01:57:58 +0900 Subject: [PATCH 064/321] Update hypernetwork.py --- modules/hypernetworks/hypernetwork.py | 55 +++++++++++++++++++++------ 1 file changed, 44 insertions(+), 11 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 3bc71ee5..81132be4 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -16,6 +16,7 @@ from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum +from statistics import stdev, mean class HypernetworkModule(torch.nn.Module): multiplier = 1.0 @@ -268,6 +269,32 @@ def stack_conds(conds): return torch.stack(conds) +def log_statistics(loss_info:dict, key, value): + if key not in loss_info: + loss_info[key] = [value] + else: + loss_info[key].append(value) + if len(loss_info) > 1024: + loss_info.pop(0) + + +def statistics(data): + total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})" + recent_data = data[-32:] + recent_information = f"recent 32 loss:{mean(recent_data):.3f}"+u"\u00B1"+f"({stdev(recent_data)/ (len(recent_data)**0.5):.3f})" + return total_information, recent_information + + +def report_statistics(loss_info:dict): + keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x])) + for key in keys: + info, recent = statistics(loss_info[key]) + print("Loss statistics for file " + key) + print(info) + print(recent) + + + def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): # images allows training previews to have infotext. Importing it at the top causes a circular import problem. from modules import images @@ -310,7 +337,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log for weight in weights: weight.requires_grad = True - losses = torch.zeros((32,)) + size = len(ds.indexes) + loss_dict = {} + losses = torch.zeros((size,)) + previous_mean_loss = 0 + print("Mean loss of {} elements".format(size)) last_saved_file = "" last_saved_image = "" @@ -329,7 +360,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: hypernetwork.step = i + ititial_step - + if loss_dict and i % size == 0: + previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict) + scheduler.apply(optimizer, hypernetwork.step) if scheduler.finished: break @@ -346,7 +379,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log del c losses[hypernetwork.step % losses.shape[0]] = loss.item() - + for entry in entries: + log_statistics(loss_dict, entry.filename, loss.item()) + optimizer.zero_grad() weights[0].grad = None loss.backward() @@ -359,10 +394,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log optimizer.step() - mean_loss = losses.mean() - if torch.isnan(mean_loss): + if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): raise RuntimeError("Loss diverged.") - pbar.set_description(f"loss: {mean_loss:.7f}") + pbar.set_description(f"dataset loss: {previous_mean_loss:.7f}") if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: # Before saving, change name to match current checkpoint. @@ -371,7 +405,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log hypernetwork.save(last_saved_file) textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { - "loss": f"{mean_loss:.7f}", + "loss": f"{previous_mean_loss:.7f}", "learn_rate": scheduler.learn_rate }) @@ -420,14 +454,15 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.state.textinfo = f"""

-Loss: {mean_loss:.7f}
+Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

""" - + + report_statistics(loss_dict) checkpoint = sd_models.select_checkpoint() hypernetwork.sd_checkpoint = checkpoint.hash @@ -438,5 +473,3 @@ Last saved image: {html.escape(last_saved_image)}
hypernetwork.save(filename) return hypernetwork, filename - - From 4fdb53c1e9962507fc8336dad9a0fabfe6c418c0 Mon Sep 17 00:00:00 2001 From: Unnoen Date: Wed, 19 Oct 2022 21:38:10 +1100 Subject: [PATCH 065/321] Generate grid preview for progress image --- modules/sd_samplers.py | 26 +++++++++++++++++++++++++- modules/shared.py | 1 + modules/ui.py | 5 ++++- 3 files changed, 30 insertions(+), 2 deletions(-) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index f58a29b9..74a480e5 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -7,7 +7,7 @@ import inspect import k_diffusion.sampling import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from modules import prompt_parser, devices, processing +from modules import prompt_parser, devices, processing, images from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -89,6 +89,30 @@ def sample_to_image(samples): x_sample = x_sample.astype(np.uint8) return Image.fromarray(x_sample) +def samples_to_image_grid(samples): + progress_images = [] + for i in range(len(samples)): + # Decode the samples individually to reduce VRAM usage at the cost of a bit of speed. + x_sample = processing.decode_first_stage(shared.sd_model, samples[i:i+1])[0] + x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + progress_images.append(Image.fromarray(x_sample)) + + return images.image_grid(progress_images) + +def samples_to_image_grid_combined(samples): + progress_images = [] + # Decode all samples at once to increase speed at the cost of VRAM usage. + x_samples = processing.decode_first_stage(shared.sd_model, samples) + x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) + + for x_sample in x_samples: + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + progress_images.append(Image.fromarray(x_sample)) + + return images.image_grid(progress_images) def store_latent(decoded): state.current_latent = decoded diff --git a/modules/shared.py b/modules/shared.py index d9cb65ef..95d6e225 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -294,6 +294,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"), options_templates.update(options_section(('ui', "User interface"), { "show_progressbar": OptionInfo(True, "Show progressbar"), "show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), + "progress_decode_combined": OptionInfo(False, "Decode all progress images at once. (Slighty speeds up progress generation but consumes significantly more VRAM with large batches.)"), "return_grid": OptionInfo(True, "Show grid in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), diff --git a/modules/ui.py b/modules/ui.py index 56c233ab..de0abc7e 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -318,7 +318,10 @@ def check_progress_call(id_part): if shared.parallel_processing_allowed: if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None: - shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent) + if opts.progress_decode_combined: + shared.state.current_image = modules.sd_samplers.samples_to_image_grid_combined(shared.state.current_latent) + else: + shared.state.current_image = modules.sd_samplers.samples_to_image_grid(shared.state.current_latent) shared.state.current_image_sampling_step = shared.state.sampling_step image = shared.state.current_image From d213d6ca6f90094cb45c11e2f3cb37d25a8d1f94 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 20:48:13 +0300 Subject: [PATCH 066/321] removed the option to use 2x more memory when generating previews added an option to always only show one image in previews removed duplicate code --- modules/sd_samplers.py | 33 +++++++++------------------------ modules/shared.py | 2 +- modules/ui.py | 6 +++--- 3 files changed, 13 insertions(+), 28 deletions(-) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 74a480e5..0b408a70 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -71,6 +71,7 @@ sampler_extra_params = { 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], } + def setup_img2img_steps(p, steps=None): if opts.img2img_fix_steps or steps is not None: steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 @@ -82,37 +83,21 @@ def setup_img2img_steps(p, steps=None): return steps, t_enc -def sample_to_image(samples): - x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0] +def single_sample_to_image(sample): + x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) return Image.fromarray(x_sample) + +def sample_to_image(samples): + return single_sample_to_image(samples[0]) + + def samples_to_image_grid(samples): - progress_images = [] - for i in range(len(samples)): - # Decode the samples individually to reduce VRAM usage at the cost of a bit of speed. - x_sample = processing.decode_first_stage(shared.sd_model, samples[i:i+1])[0] - x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) - x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) - x_sample = x_sample.astype(np.uint8) - progress_images.append(Image.fromarray(x_sample)) + return images.image_grid([single_sample_to_image(sample) for sample in samples]) - return images.image_grid(progress_images) - -def samples_to_image_grid_combined(samples): - progress_images = [] - # Decode all samples at once to increase speed at the cost of VRAM usage. - x_samples = processing.decode_first_stage(shared.sd_model, samples) - x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) - - for x_sample in x_samples: - x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) - x_sample = x_sample.astype(np.uint8) - progress_images.append(Image.fromarray(x_sample)) - - return images.image_grid(progress_images) def store_latent(decoded): state.current_latent = decoded diff --git a/modules/shared.py b/modules/shared.py index 95d6e225..25bfc895 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -294,7 +294,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"), options_templates.update(options_section(('ui', "User interface"), { "show_progressbar": OptionInfo(True, "Show progressbar"), "show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), - "progress_decode_combined": OptionInfo(False, "Decode all progress images at once. (Slighty speeds up progress generation but consumes significantly more VRAM with large batches.)"), + "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), "return_grid": OptionInfo(True, "Show grid in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), diff --git a/modules/ui.py b/modules/ui.py index de0abc7e..ffa14cac 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -318,10 +318,10 @@ def check_progress_call(id_part): if shared.parallel_processing_allowed: if shared.state.sampling_step - shared.state.current_image_sampling_step >= opts.show_progress_every_n_steps and shared.state.current_latent is not None: - if opts.progress_decode_combined: - shared.state.current_image = modules.sd_samplers.samples_to_image_grid_combined(shared.state.current_latent) - else: + if opts.show_progress_grid: shared.state.current_image = modules.sd_samplers.samples_to_image_grid(shared.state.current_latent) + else: + shared.state.current_image = modules.sd_samplers.sample_to_image(shared.state.current_latent) shared.state.current_image_sampling_step = shared.state.sampling_step image = shared.state.current_image From be748e8b086bd9834d08bdd9160649a5e7700af7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 22:05:22 +0300 Subject: [PATCH 067/321] add --freeze-settings commandline argument to disable changing settings --- modules/shared.py | 1 + modules/ui.py | 11 +++++++++-- 2 files changed, 10 insertions(+), 2 deletions(-) diff --git a/modules/shared.py b/modules/shared.py index 25bfc895..b55371d3 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -64,6 +64,7 @@ parser.add_argument("--port", type=int, help="launch gradio with given server po parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json')) parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False) +parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False) parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json')) parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option") parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) diff --git a/modules/ui.py b/modules/ui.py index ffa14cac..2311572c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -580,6 +580,9 @@ def apply_setting(key, value): if value is None: return gr.update() + if shared.cmd_opts.freeze_settings: + return gr.update() + # dont allow model to be swapped when model hash exists in prompt if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap: return gr.update() @@ -1501,6 +1504,8 @@ Requested path was: {f} def run_settings(*args): changed = 0 + assert not shared.cmd_opts.freeze_settings, "changing settings is disabled" + for key, value, comp in zip(opts.data_labels.keys(), args, components): if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default): return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson() @@ -1530,6 +1535,8 @@ Requested path was: {f} return f'{changed} settings changed.', opts.dumpjson() def run_settings_single(value, key): + assert not shared.cmd_opts.freeze_settings, "changing settings is disabled" + if not opts.same_type(value, opts.data_labels[key].default): return gr.update(visible=True), opts.dumpjson() @@ -1582,7 +1589,7 @@ Requested path was: {f} elem_id, text = item.section gr.HTML(elem_id="settings_header_text_{}".format(elem_id), value='

{}

'.format(text)) - if k in quicksettings_names: + if k in quicksettings_names and not shared.cmd_opts.freeze_settings: quicksettings_list.append((i, k, item)) components.append(dummy_component) else: @@ -1615,7 +1622,7 @@ Requested path was: {f} def reload_scripts(): modules.scripts.reload_script_body_only() - reload_javascript() # need to refresh the html page + reload_javascript() # need to refresh the html page reload_script_bodies.click( fn=reload_scripts, From ca5a9e79dc28eeaa3a161427a82e34703bf15765 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 22 Oct 2022 22:06:54 +0300 Subject: [PATCH 068/321] fix for img2img color correction in a batch #3218 --- modules/processing.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index 27c669b0..b1877b80 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -403,8 +403,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if (len(prompts) == 0): break - #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) - #c = p.sd_model.get_learned_conditioning(prompts) with devices.autocast(): uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps) c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps) @@ -716,6 +714,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) if self.overlay_images is not None: self.overlay_images = self.overlay_images * self.batch_size + + if self.color_corrections is not None and len(self.color_corrections) == 1: + self.color_corrections = self.color_corrections * self.batch_size + elif len(imgs) <= self.batch_size: self.batch_size = len(imgs) batch_images = np.array(imgs) From 48dbf99e84045ee7af55bc5b1b86492a240e631e Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 04:17:16 +0900 Subject: [PATCH 069/321] Allow tracking real-time loss Someone had 6000 images in their dataset, and it was shown as 0, which was confusing. This will allow tracking real time dataset-average loss for registered objects. --- modules/hypernetworks/hypernetwork.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 81132be4..99fd0f8f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -360,7 +360,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: hypernetwork.step = i + ititial_step - if loss_dict and i % size == 0: + if len(loss_dict) > 0: previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict) scheduler.apply(optimizer, hypernetwork.step) From 1b4d04737ac513cbd55958bb60a4f85166f3484b Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 22 Oct 2022 20:13:16 -0300 Subject: [PATCH 070/321] Remove unused imports --- modules/api/api.py | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 5b0c934e..a5136b4b 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,11 +1,9 @@ from modules.api.processing import StableDiffusionProcessingAPI from modules.processing import StableDiffusionProcessingTxt2Img, process_images from modules.sd_samplers import all_samplers -from modules.extras import run_pnginfo import modules.shared as shared import uvicorn -from fastapi import Body, APIRouter, HTTPException -from fastapi.responses import JSONResponse +from fastapi import APIRouter, HTTPException from pydantic import BaseModel, Field, Json import json import io @@ -18,7 +16,6 @@ class TextToImageResponse(BaseModel): parameters: Json info: Json - class Api: def __init__(self, app, queue_lock): self.router = APIRouter() From b02926df1393df311db734af149fb9faf4389cbe Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 22 Oct 2022 20:24:04 -0300 Subject: [PATCH 071/321] Moved moodels to their own file and extracted base64 conversion to its own function --- modules/api/api.py | 17 ++++++----------- modules/api/models.py | 8 ++++++++ 2 files changed, 14 insertions(+), 11 deletions(-) create mode 100644 modules/api/models.py diff --git a/modules/api/api.py b/modules/api/api.py index a5136b4b..c17d7580 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -4,17 +4,17 @@ from modules.sd_samplers import all_samplers import modules.shared as shared import uvicorn from fastapi import APIRouter, HTTPException -from pydantic import BaseModel, Field, Json import json import io import base64 +from modules.api.models import * sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -class TextToImageResponse(BaseModel): - images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: Json - info: Json +def img_to_base64(img): + buffer = io.BytesIO() + img.save(buffer, format="png") + return base64.b64encode(buffer.getvalue()) class Api: def __init__(self, app, queue_lock): @@ -41,15 +41,10 @@ class Api: with self.queue_lock: processed = process_images(p) - b64images = [] - for i in processed.images: - buffer = io.BytesIO() - i.save(buffer, format="png") - b64images.append(base64.b64encode(buffer.getvalue())) + b64images = list(map(img_to_base64, processed.images)) return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info)) - def img2imgapi(self): raise NotImplementedError diff --git a/modules/api/models.py b/modules/api/models.py new file mode 100644 index 00000000..a7d247d8 --- /dev/null +++ b/modules/api/models.py @@ -0,0 +1,8 @@ +from pydantic import BaseModel, Field, Json + +class TextToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: Json + info: Json + + \ No newline at end of file From 28e26c2bef217ae82eb9e980cceb3f67ef22e109 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sat, 22 Oct 2022 23:13:32 -0300 Subject: [PATCH 072/321] Add "extra" single image operation - Separate extra modes into 3 endpoints so the user ddoesn't ahve to handle so many unused parameters. - Add response model for codumentation --- modules/api/api.py | 43 ++++++++++++++++++++++++++++++++++++++----- modules/api/models.py | 26 +++++++++++++++++++++++++- 2 files changed, 63 insertions(+), 6 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index c17d7580..3b804373 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -8,20 +8,42 @@ import json import io import base64 from modules.api.models import * +from PIL import Image +from modules.extras import run_extras + +def upscaler_to_index(name: str): + try: + return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) + except: + raise HTTPException(status_code=400, detail="Upscaler not found") sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -def img_to_base64(img): +def img_to_base64(img: str): buffer = io.BytesIO() img.save(buffer, format="png") return base64.b64encode(buffer.getvalue()) +def base64_to_bytes(base64Img: str): + if "," in base64Img: + base64Img = base64Img.split(",")[1] + return io.BytesIO(base64.b64decode(base64Img)) + +def base64_to_images(base64Imgs: list[str]): + imgs = [] + for img in base64Imgs: + img = Image.open(base64_to_bytes(img)) + imgs.append(img) + return imgs + + class Api: def __init__(self, app, queue_lock): self.router = APIRouter() self.app = app self.queue_lock = queue_lock - self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) + self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -45,12 +67,23 @@ class Api: return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info)) - def img2imgapi(self): raise NotImplementedError - def extrasapi(self): - raise NotImplementedError + def extras_single_image_api(self, req: ExtrasSingleImageRequest): + upscaler1Index = upscaler_to_index(req.upscaler_1) + upscaler2Index = upscaler_to_index(req.upscaler_2) + + reqDict = vars(req) + reqDict.pop('upscaler_1') + reqDict.pop('upscaler_2') + + reqDict['image'] = base64_to_images([reqDict['image']])[0] + + with self.queue_lock: + result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="") + + return ExtrasSingleImageResponse(image="data:image/png;base64,"+img_to_base64(result[0]), html_info_x=result[1], html_info=result[2]) def pnginfoapi(self): raise NotImplementedError diff --git a/modules/api/models.py b/modules/api/models.py index a7d247d8..dcf1ab54 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -1,8 +1,32 @@ from pydantic import BaseModel, Field, Json +from typing_extensions import Literal +from modules.shared import sd_upscalers class TextToImageResponse(BaseModel): images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") parameters: Json info: Json - \ No newline at end of file +class ExtrasBaseRequest(BaseModel): + resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") + show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") + gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") + codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") + codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") + upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") + upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?") + upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") + +class ExtraBaseResponse(BaseModel): + html_info_x: str + html_info: str + +class ExtrasSingleImageRequest(ExtrasBaseRequest): + image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + +class ExtrasSingleImageResponse(ExtraBaseResponse): + image: str = Field(default=None, title="Image", description="The generated image in base64 format.") \ No newline at end of file From 1fbfc052eb529d8cf8ce5baf578bcf93d0280c29 Mon Sep 17 00:00:00 2001 From: DepFA <35278260+dfaker@users.noreply.github.com> Date: Sun, 23 Oct 2022 05:43:34 +0100 Subject: [PATCH 073/321] Update hypernetwork.py --- modules/hypernetworks/hypernetwork.py | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 99fd0f8f..98a7b62e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -288,10 +288,13 @@ def statistics(data): def report_statistics(loss_info:dict): keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x])) for key in keys: - info, recent = statistics(loss_info[key]) - print("Loss statistics for file " + key) - print(info) - print(recent) + try: + print("Loss statistics for file " + key) + info, recent = statistics(loss_info[key]) + print(info) + print(recent) + except Exception as e: + print(e) From a7c213d0f5ebb10722629b8490a5863f9ce6c4fa Mon Sep 17 00:00:00 2001 From: Stephen Date: Fri, 21 Oct 2022 19:27:40 -0400 Subject: [PATCH 074/321] [API][Feature] - Add img2img API endpoint --- modules/api/api.py | 58 +++++++++++++++++++++++++++++++++++---- modules/api/processing.py | 11 ++++++-- modules/processing.py | 2 +- 3 files changed, 63 insertions(+), 8 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 5b0c934e..a04f2428 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,5 +1,5 @@ -from modules.api.processing import StableDiffusionProcessingAPI -from modules.processing import StableDiffusionProcessingTxt2Img, process_images +from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.sd_samplers import all_samplers from modules.extras import run_pnginfo import modules.shared as shared @@ -10,6 +10,7 @@ from pydantic import BaseModel, Field, Json import json import io import base64 +from PIL import Image sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) @@ -18,6 +19,11 @@ class TextToImageResponse(BaseModel): parameters: Json info: Json +class ImageToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: Json + info: Json + class Api: def __init__(self, app, queue_lock): @@ -25,8 +31,9 @@ class Api: self.app = app self.queue_lock = queue_lock self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"]) - def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) if sampler_index is None: @@ -54,8 +61,49 @@ class Api: - def img2imgapi(self): - raise NotImplementedError + def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + sampler_index = sampler_to_index(img2imgreq.sampler_index) + + if sampler_index is None: + raise HTTPException(status_code=404, detail="Sampler not found") + + + init_images = img2imgreq.init_images + if init_images is None: + raise HTTPException(status_code=404, detail="Init image not found") + + + populate = img2imgreq.copy(update={ # Override __init__ params + "sd_model": shared.sd_model, + "sampler_index": sampler_index[0], + "do_not_save_samples": True, + "do_not_save_grid": True + } + ) + p = StableDiffusionProcessingImg2Img(**vars(populate)) + + imgs = [] + for img in init_images: + # if has a comma, deal with prefix + if "," in img: + img = img.split(",")[1] + # convert base64 to PIL image + img = base64.b64decode(img) + img = Image.open(io.BytesIO(img)) + imgs = [img] * p.batch_size + + p.init_images = imgs + # Override object param + with self.queue_lock: + processed = process_images(p) + + b64images = [] + for i in processed.images: + buffer = io.BytesIO() + i.save(buffer, format="png") + b64images.append(base64.b64encode(buffer.getvalue())) + + return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info)) def extrasapi(self): raise NotImplementedError diff --git a/modules/api/processing.py b/modules/api/processing.py index 4c541241..9f1d65c0 100644 --- a/modules/api/processing.py +++ b/modules/api/processing.py @@ -1,7 +1,8 @@ +from array import array from inflection import underscore from typing import Any, Dict, Optional from pydantic import BaseModel, Field, create_model -from modules.processing import StableDiffusionProcessingTxt2Img +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img import inspect @@ -92,8 +93,14 @@ class PydanticModelGenerator: DynamicModel.__config__.allow_mutation = True return DynamicModel -StableDiffusionProcessingAPI = PydanticModelGenerator( +StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, [{"key": "sampler_index", "type": str, "default": "Euler"}] +).generate_model() + +StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingImg2Img", + StableDiffusionProcessingImg2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}] ).generate_model() \ No newline at end of file diff --git a/modules/processing.py b/modules/processing.py index b1877b80..1557ed8c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -623,7 +623,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None - def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs): + def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: str=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs): super().__init__(**kwargs) self.init_images = init_images From 9e1a8b7734a2881451a2efbf80def011ea41ba49 Mon Sep 17 00:00:00 2001 From: Stephen Date: Sat, 22 Oct 2022 15:42:00 -0400 Subject: [PATCH 075/321] non-implemented mask with any type --- modules/api/api.py | 4 ++++ modules/api/processing.py | 2 +- modules/processing.py | 2 +- 3 files changed, 6 insertions(+), 2 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index a04f2428..3df6ff96 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -72,6 +72,10 @@ class Api: if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") + mask = img2imgreq.mask + if mask: + raise HTTPException(status_code=400, detail="Mask not supported yet") + populate = img2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, diff --git a/modules/api/processing.py b/modules/api/processing.py index 9f1d65c0..f551fa35 100644 --- a/modules/api/processing.py +++ b/modules/api/processing.py @@ -102,5 +102,5 @@ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}] ).generate_model() \ No newline at end of file diff --git a/modules/processing.py b/modules/processing.py index 1557ed8c..ff83023c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -623,7 +623,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): sampler = None - def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: str=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs): + def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: Any=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs): super().__init__(**kwargs) self.init_images = init_images From 5dc0739ecdc1ade8fcf4eb77f2a503ef12489f32 Mon Sep 17 00:00:00 2001 From: Stephen Date: Sat, 22 Oct 2022 17:10:28 -0400 Subject: [PATCH 076/321] working mask --- modules/api/api.py | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 3df6ff96..3caa83a4 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -33,6 +33,14 @@ class Api: self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"]) + def __base64_to_image(self, base64_string): + # if has a comma, deal with prefix + if "," in base64_string: + base64_string = base64_string.split(",")[1] + imgdata = base64.b64decode(base64_string) + # convert base64 to PIL image + return Image.open(io.BytesIO(imgdata)) + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -74,26 +82,22 @@ class Api: mask = img2imgreq.mask if mask: - raise HTTPException(status_code=400, detail="Mask not supported yet") + mask = self.__base64_to_image(mask) populate = img2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, "sampler_index": sampler_index[0], "do_not_save_samples": True, - "do_not_save_grid": True + "do_not_save_grid": True, + "mask": mask } ) p = StableDiffusionProcessingImg2Img(**vars(populate)) imgs = [] for img in init_images: - # if has a comma, deal with prefix - if "," in img: - img = img.split(",")[1] - # convert base64 to PIL image - img = base64.b64decode(img) - img = Image.open(io.BytesIO(img)) + img = self.__base64_to_image(img) imgs = [img] * p.batch_size p.init_images = imgs From 1ef32c8b8fa3e16a1e7b287eb19d4fc943d1f2a5 Mon Sep 17 00:00:00 2001 From: kabachuha Date: Sun, 23 Oct 2022 00:01:13 +0300 Subject: [PATCH 077/321] Add ru_RU localization --- localizations/ru_RU.json | 475 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 475 insertions(+) create mode 100644 localizations/ru_RU.json diff --git a/localizations/ru_RU.json b/localizations/ru_RU.json new file mode 100644 index 00000000..664d36ea --- /dev/null +++ b/localizations/ru_RU.json @@ -0,0 +1,475 @@ +{ + "⤡": "⤡", + "⊞": "⊞", + "×": "×", + "❮": "❮", + "❯": "❯", + "Loading...": "Загрузка...", + "view": "просмотр", + "api": "api", + "•": "•", + "built with gradio": "На основе Gradio", + "Stable Diffusion checkpoint": "Веса Stable Diffusion", + "txt2img": "текст-в-рисунок", + "img2img": "рисунок-в-рисунок", + "Extras": "Дополнения", + "PNG Info": "Информация о PNG", + "Image Browser": "Просмотр изображений", + "History": "Журнал", + "Checkpoint Merger": "Слияние весов", + "Train": "Обучение", + "Create aesthetic embedding": "Создать эмбеддинг эстетики", + "Settings": "Настройки", + "Prompt": "Запрос", + "Negative prompt": "Исключающий запрос", + "Run": "Запустить", + "Skip": "Пропустить", + "Interrupt": "Прервать", + "Generate": "Создать", + "Style 1": "Стиль 1", + "Style 2": "Стиль 2", + "Label": "Метка", + "File": "Файл", + "Drop File Here": "Перетащите файл сюда", + "-": "-", + "or": "или", + "Click to Upload": "Нажмите, чтобы загрузить", + "Image": "Рисунок", + "Check progress": "Узнать состояние", + "Check progress (first)": "Узнать состояние первого", + "Sampling Steps": "Шагов семплера", + "Sampling method": "Метод семплирования", + "Euler a": "Euler a", + "Euler": "Euler", + "LMS": "LMS", + "Heun": "Heun", + "DPM2": "DPM2", + "DPM2 a": "DPM2 a", + "DPM fast": "DPM fast", + "DPM adaptive": "DPM adaptive", + "LMS Karras": "LMS Karras", + "DPM2 Karras": "DPM2 Karras", + "DPM2 a Karras": "DPM2 a Karras", + "DDIM": "DDIM", + "PLMS": "PLMS", + "Width": "Ширина", + "Height": "Высота", + "Restore faces": "Восстановить лица", + "Tiling": "Замощение", + "Highres. fix": "HD-режим", + "Firstpass width": "Ширина первого прохода", + "Firstpass height": "Высота первого прохода", + "Denoising strength": "Сила шумоподавления", + "Batch count": "Рисунков подряд", + "Batch size": "Рисунков параллельно", + "CFG Scale": "Близость к запросу", + "Seed": "Семя", + "Extra": "Дополнения", + "Variation seed": "Вариация семени", + "Variation strength": "Вариация шумоподавления", + "Resize seed from width": "Поправка в семя от ширины", + "Resize seed from height": "Поправка в семя от высоты", + "Open for Clip Aesthetic!": "Clip-эстетика!", + "▼": "▼", + "Aesthetic weight": "Вес эстетики", + "Aesthetic steps": "Шагов эстетики", + "Aesthetic learning rate": "Скорость обучения эстетики", + "Slerp interpolation": "Slerp-интерполяция", + "Aesthetic imgs embedding": "Рисунки - эмбеддинги эстетики", + "None": "Ничего", + "Aesthetic text for imgs": "Имя эстетики рисунков", + "Slerp angle": "Угол slerp", + "Is negative text": "Это текст для исключения", + "Script": "Скрипт", + "Prompt matrix": "Матрица запросов", + "Prompts from file or textbox": "Запросы из файла или текста", + "X/Y plot": "X/Y-график", + "Put variable parts at start of prompt": "Переменное начало запроса", + "Show Textbox": "Показать текстовый ввод", + "File with inputs": "Файл входа", + "Prompts": "Запросы", + "X type": "Ось X", + "Nothing": "Ничего", + "Var. seed": "Вариация семени", + "Var. strength": "Вариация силы", + "Steps": "Число шагов", + "Prompt S/R": "Вариация запроса", + "Prompt order": "Порядок запросов", + "Sampler": "Семплер", + "Checkpoint name": "Имя файла весов", + "Hypernetwork": "Гиперсеть", + "Hypernet str.": "Строка гиперсети", + "Sigma Churn": "Возмущение сигмы", + "Sigma min": "Мин. сигма", + "Sigma max": "Макс. сигма", + "Sigma noise": "Сигма-шум", + "Eta": "Расчётное время", + "Clip skip": "Пропустить Clip", + "Denoising": "Шумоподавление", + "X values": "Значения X", + "Y type": "Тип Y", + "Y values": "Значения Y", + "Draw legend": "Легенда графика", + "Include Separate Images": "Включить отдельные рисунки", + "Keep -1 for seeds": "-1 для семени", + "Drop Image Here": "Перетащите рисунок сюда", + "Save": "Сохранить", + "Send to img2img": "В рисунок-в-рисунок", + "Send to inpaint": "В режим врисовывания", + "Send to extras": "В дополнения", + "Make Zip when Save?": "Создать zip при сохранении?", + "Textbox": "Текст", + "Interrogate\nCLIP": "Распознавание\nCLIP", + "Interrogate\nDeepBooru": "Распознавание\nDeepBooru", + "Inpaint": "врисовать", + "Batch img2img": "рисунок-в-рисунок (набор)", + "Image for img2img": "рисунок-в-рисунок (вход)", + "Image for inpainting with mask": "врисовать (вход с трафаретом)", + "Mask": "Трафарет", + "Mask blur": "Размытие трафарета", + "Mask mode": "Режим трафарета", + "Draw mask": "Нарисовать трафарет", + "Upload mask": "Загрузить трафарет", + "Masking mode": "Режим трафарета", + "Inpaint masked": "Внутри трафарета", + "Inpaint not masked": "Вне трафарета", + "Masked content": "Под трафаретом", + "fill": "залить", + "original": "сохранить", + "latent noise": "латентный шум", + "latent nothing": "латентная пустота", + "Inpaint at full resolution": "Врисовать при полном разрешении", + "Inpaint at full resolution padding, pixels": "Врисовать с достройкой до полного разрешения, в пикселях", + "Process images in a directory on the same machine where the server is running.": "Обрабатывать рисунки на том же компьютере, где сервер", + "Use an empty output directory to save pictures normally instead of writing to the output directory.": "Использовать пустую папку вместо того, чтобы выводить в output", + "Disabled when launched with --hide-ui-dir-config.": "Выключено при запуске с --hide-ui-dir-config", + "Input directory": "Папка входа", + "Output directory": "Папка выхода", + "Resize mode": "Масштабирование", + "Just resize": "Только сжать", + "Crop and resize": "Сжать и обрезать", + "Resize and fill": "Сжать и залить", + "img2img alternative test": "рисунок-в-рисунок (альтернатива)", + "Loopback": "Прокручивание", + "Outpainting mk2": "Обрисовыватель mk2", + "Poor man's outpainting": "Хоть какой-то обрисовыватель", + "SD upscale": "SD-апскейл", + "should be 2 or lower.": "должно быть меньше равно 2", + "Override `Sampling method` to Euler?(this method is built for it)": "Сменить метод семплирования на метод Эйлера?(скрипт строился с его учётом)", + "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Сменить `запрос` на `изначальный запрос`?(и `запрос-исключение`)", + "Original prompt": "Изначальный запрос", + "Original negative prompt": "Изначальный запрос-исключение", + "Override `Sampling Steps` to the same value as `Decode steps`?": "Сменить число шагов на число шагов декодирования?", + "Decode steps": "Шагов декодирования", + "Override `Denoising strength` to 1?": "Сменить силу шумоподавления на 1?", + "Decode CFG scale": "Близость к запросу декодирования", + "Randomness": "Случайность", + "Sigma adjustment for finding noise for image": "Поправка к сигме подбора шума для рисунка", + "Loops": "Циклов", + "Denoising strength change factor": "Множитель силы шумоподавления", + "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "Рекоммендуемые настройки: Число шагов:80-100,Метод:Euler a,Шумоподавление:0.8", + "Pixels to expand": "Пикселов расширить", + "Outpainting direction": "Направление обрисовывания", + "left": "влево", + "right": "вправо", + "up": "вверх", + "down": "вниз", + "Fall-off exponent (lower=higher detail)": "Степень затухания (меньше=больше деталей)", + "Color variation": "Вариация цвета", + "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "Расширит рисунок дважды; ползунки ширины и высоты устанавливают размеры плиток", + "Tile overlap": "Перекрытие плиток", + "Upscaler": "Апскейлер", + "Lanczos": "Lanczos", + "LDSR": "LDSR", + "BSRGAN 4x": "BSRGAN 4x", + "ESRGAN_4x": "ESRGAN_4x", + "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", + "ScuNET GAN": "ScuNET GAN", + "ScuNET PSNR": "ScuNET PSNR", + "SwinIR_4x": "SwinIR 4x", + "Single Image": "Один рисунок", + "Batch Process": "Набор рисунков", + "Batch from Directory": "Рисунки из папки", + "Source": "Вход", + "Show result images": "Показать результаты", + "Scale by": "Увеличить в", + "Scale to": "Увеличить до", + "Resize": "Масштабировать", + "Crop to fit": "Обрезать до рамки", + "Upscaler 2": "Апскейлер 2", + "Upscaler 2 visibility": "Видимость Апскейлера 2", + "GFPGAN visibility": "Видимость GFPGAN", + "CodeFormer visibility": "Видимость CodeFormer", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "Вес CodeFormer (0 = максимальное действие, 1 = минимальное)", + "Open output directory": "Открыть папку выхода", + "Send to txt2img": "В текст-в-рисунок", + "txt2img history": "журнал текста-в-рисунок", + "img2img history": "журнал рисунка-в-рисунок", + "extras history": "журнал дополнений", + "Renew Page": "Обновить страницу", + "extras": "дополнения", + "favorites": "избранное", + "Load": "Загрузить", + "Images directory": "Папка с рисунками", + "Prev batch": "Пред. набор", + "Next batch": "След. набор", + "First Page": "Первая страница", + "Prev Page": "Пред. страница", + "Page Index": "Список страниц", + "Next Page": "След. страница", + "End Page": "Конец страницы", + "number of images to delete consecutively next": "сколько рисунков удалить подряд", + "Delete": "Удалить", + "Generate Info": "Сведения о генерации", + "File Name": "Имя файла", + "Collect": "Накопить", + "Refresh page": "Обновить страницу", + "Date to": "Дата", + "Number": "Число", + "set_index": "индекс", + "Checkbox": "Галочка", + "A merger of the two checkpoints will be generated in your": "Слияние весов будет создано, где хранятся", + "checkpoint": "ckpt", + "directory.": "веса", + "Primary model (A)": "Первичная модель (A)", + "Secondary model (B)": "Вторичная модель (B)", + "Tertiary model (C)": "Третичная модель (C)", + "Custom Name (Optional)": "Произвольное имя (необязательно)", + "Multiplier (M) - set to 0 to get model A": "Множитель (M) - 0 даст модель A", + "Interpolation Method": "Метод интерполяции", + "Weighted sum": "Взвешенная сумма", + "Add difference": "Сумма разностей", + "Save as float16": "Сохранить как float16", + "See": "См.", + "wiki": "вики", + "for detailed explanation.": "для подробных объяснений.", + "Create embedding": "Создать эмбеддинг", + "Create aesthetic images embedding": "Создать эмбеддинг эстетики по рисункам", + "Create hypernetwork": "Создать гиперсеть", + "Preprocess images": "Предобработать рисунки", + "Name": "Имя", + "Initialization text": "Соответствующий текст", + "Number of vectors per token": "Векторов на токен", + "Overwrite Old Embedding": "Перезаписать эмбеддинг", + "Source directory": "Исходная папка", + "Modules": "Модули", + "Enter hypernetwork layer structure": "Структура слоёв гиперсети", + "Add layer normalization": "Добавить нормализацию слоёв", + "Overwrite Old Hypernetwork": "Перезаписать гиперсеть", + "Select activation function of hypernetwork": "Функция активации гиперсети", + "linear": "линейная", + "relu": "relu", + "leakyrelu": "leakyrelu", + "Destination directory": "Папка назначения", + "Existing Caption txt Action": "Что делать с предыдущим текстом", + "ignore": "игнорировать", + "copy": "копировать", + "prepend": "в начало", + "append": "в конец", + "Create flipped copies": "Создать отражённые копии", + "Split oversized images into two": "Поделить слишком большие рисунки пополам", + "Split oversized images": "Поделить слишком большие рисунки", + "Use BLIP for caption": "Использовать BLIP для названий", + "Use deepbooru for caption": "Использовать deepbooru для тегов", + "Split image threshold": "Порог разделения рисунков", + "Split image overlap ratio": "Пропорции разделения рисунков", + "Preprocess": "Предобработка", + "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Обучить эмбеддинг; укажите папку рисунков с пропорциями 1:1", + "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "Обучить эмбеддинг или гиперсеть; укажите папку рисунков с пропорциями 1:1", + "[wiki]": "[вики]", + "Embedding": "Эмбеддинг", + "Embedding Learning rate": "Скорость обучения эмбеддинга", + "Hypernetwork Learning rate": "Скорость обучения гиперсети", + "Learning rate": "Скорость обучения", + "Dataset directory": "Папка датасета", + "Log directory": "Папка журнала", + "Prompt template file": "Файл шаблона запроса", + "Max steps": "Макс. шагов", + "Save an image to log directory every N steps, 0 to disable": "Сохранять рисунок каждые N шагов, 0 чтобы отключить", + "Save a copy of embedding to log directory every N steps, 0 to disable": "Сохранять эмбеддинг каждые N шагов, 0 чтобы отключить", + "Save images with embedding in PNG chunks": "Сохранить рисунок с эмбеддингом в виде PNG-фрагментов", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "Считать параметры (запрос и т.д.) из вкладки текст-в-рисунок для предпросмотра", + "Train Hypernetwork": "Обучить гиперсеть", + "Train Embedding": "Обучить эмбеддинг", + "Create an aesthetic embedding out of any number of images": "Создать эмбеддинг эстетики по любому числу рисунков", + "Create images embedding": "Создать эмбеддинг рисунков", + "Apply settings": "Применить настройки", + "Saving images/grids": "Сохранение рисунков/таблиц", + "Always save all generated images": "Всегда сохранять созданные рисунки", + "File format for images": "Формат файла рисунков", + "Images filename pattern": "Формат имени файлов рисунков", + "Always save all generated image grids": "Всегда сохранять созданные таблицы", + "File format for grids": "Формат файла таблиц", + "Add extended info (seed, prompt) to filename when saving grid": "Вставлять доп. сведения (семя, запрос) в имя файла таблиц", + "Do not save grids consisting of one picture": "Не сохранять таблицы из одного рисунка", + "Prevent empty spots in grid (when set to autodetect)": "Не допускать пустоты в таблицах (автообнаружение)", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Число строк таблицы; -1, чтобы автоматически, 0 — размер набора", + "Save text information about generation parameters as chunks to png files": "Встроить сведения о генерации в файлы png", + "Create a text file next to every image with generation parameters.": "Создать текстовый файл для каждого рисунка с параметрами генерации", + "Save a copy of image before doing face restoration.": "Сохранить копию перед восстановлением лиц", + "Quality for saved jpeg images": "Качество jpeg-рисунков", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "Если размер PNG больше 4МБ или рисунок шире 4000 пикселей, пересжать в JPEG", + "Use original name for output filename during batch process in extras tab": "Использовать исходное имя выходного файла для обработки набора во вкладке дополнений", + "When using 'Save' button, only save a single selected image": "Сохранять только один рисунок при нажатии кнопки Сохранить", + "Do not add watermark to images": "Не добавлять водяной знак", + "Paths for saving": "Папки сохранений", + "Output directory for images; if empty, defaults to three directories below": "Папка выхода рисунков; если пусто, использует те, что ниже", + "Output directory for txt2img images": "Папка выхода текста-в-рисунок", + "Output directory for img2img images": "Папка выхода рисунка-в-рисунок", + "Output directory for images from extras tab": "Папка выхода для дополнений", + "Output directory for grids; if empty, defaults to two directories below": "Папка выхода таблиц; если пусто, использует папки выше", + "Output directory for txt2img grids": "Папка выхода текста-в-рисунок", + "Output directory for img2img grids": "Папка выхода рисунка-в-рисунок", + "Directory for saving images using the Save button": "Папка выхода для кнопки Сохранить", + "Saving to a directory": "Сохранить в папку", + "Save images to a subdirectory": "Сохранить рисунки в подпапку", + "Save grids to a subdirectory": "Сохранить таблицы в подпапку", + "When using \"Save\" button, save images to a subdirectory": "При нажатии кнопки Сохранить, сложить рисунки в подпапку", + "Directory name pattern": "Шаблон имени папки", + "Max prompt words for [prompt_words] pattern": "Макс. число слов для шаблона [prompt_words]", + "Upscaling": "Апскейл", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "Размер плитки для ESRGAN. 0 = нет замощения", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Наложение плиток ESRGAN, в пикселях. Меньше = выделеннее шов", + "Tile size for all SwinIR.": "Размер плиток SwinIR", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Наложение плиток SwinIR, в пикселях. Меньше = выделеннее шов", + "LDSR processing steps. Lower = faster": "Число шагов LDSR. Меньше = быстрее", + "Upscaler for img2img": "Апскейлер рисунка-в-рисунок", + "Upscale latent space image when doing hires. fix": "Апскейлить образ латентного пространства для HD-режима", + "Face restoration": "Восстановление лиц", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "Вес CodeFormer; 0 = максимальное действие; 1 = минимальное", + "Move face restoration model from VRAM into RAM after processing": "Переместить модель восстановления лиц из ВОЗУ в ОЗУ после обработки", + "System": "Система", + "VRAM usage polls per second during generation. Set to 0 to disable.": "Сколько раз в секунду следить за потреблением ВОЗУ. 0, чтобы отключить", + "Always print all generation info to standard output": "Выводить все сведения о генерации в стандартный вывод", + "Add a second progress bar to the console that shows progress for an entire job.": "Вторая шкала прогресса для всей задачи", + "Training": "Обучение", + "Unload VAE and CLIP from VRAM when training": "Убрать VAE и CLIP из ВОЗУ на время обучения", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "Переместить VAE и CLIP в ОЗУ на время обучения гиперсети. Сохраняет ВОЗУ", + "Filename word regex": "Regex имени файла", + "Filename join string": "Дополнить к имени файла", + "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Число повторов для каждого рисунка за эпоху; используется только, чтобы отобразить число эпохи", + "Save an csv containing the loss to log directory every N steps, 0 to disable": "Сохранять csv с параметром loss в папку журнала каждые N шагов, 0 - отключить", + "Stable Diffusion": "Stable Diffusion", + "Checkpoints to cache in RAM": "Удерживать веса в ОЗУ", + "Hypernetwork strength": "Сила гиперсети", + "Apply color correction to img2img results to match original colors.": "Цветокоррекция вывода рисунка-в-рисунок, сохраняющая исходные цвета", + "Save a copy of image before applying color correction to img2img results": "Сохранить копию рисунка перед цветокоррекцией", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "В режиме рисунок-в-рисунок сделать ровно указанное ползунком число шагов (обычно шумоподавление их уменьшает)", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Включить квантование К-семплерах для более резких и чистых результатов. Может потребовать поменять семя. Требует перезапуска.", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Скобки: (понятие) - больше внимания к тексту, [понятие] - меньше внимания к тексту", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Включить старую обработку скобок. Может потребоваться, чтобы воспроизвести старые семена.", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "Заставить семплеры K-diffusion производить тот же самый рисунок в наборе, как и в единичной генерации", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Увеличить связность, достраивая запрос от последней запятой до n токенов, когда используется свыше 75 токенов", + "Filter NSFW content": "Фильтровать небезопасный контент", + "Stop At last layers of CLIP model": "Остановиться на последних слоях модели CLIP", + "Interrogate Options": "Опции распознавания", + "Interrogate: keep models in VRAM": "Распознавание: хранить модели в ВОЗУ", + "Interrogate: use artists from artists.csv": "Распознавание: использовать художников из artists.csv", + "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Распознавание: включить ранжирование совпавших тегов в результате (не работает для распознавателей-создателей заголовков)", + "Interrogate: num_beams for BLIP": "Распознавание: num_beams для BLIP", + "Interrogate: minimum description length (excluding artists, etc..)": "Распознавание: минимальная длина описания (исключая художников и т.п.)", + "Interrogate: maximum description length": "Распознавание: максимальная длина описания", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: максимальное число строк в текстовом файле (0 = без ограничений)", + "Interrogate: deepbooru score threshold": "Распознавание: ограничение счёта deepbooru", + "Interrogate: deepbooru sort alphabetically": "Распознавание: сортировать deepbooru по алфавиту", + "use spaces for tags in deepbooru": "Пробелы для тегов deepbooru", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "Использовать скобки в deepbooru как обычные скобки, а не для усиления", + "User interface": "Пользовательский интерфейс", + "Show progressbar": "Шкала прогресса", + "Show image creation progress every N sampling steps. Set 0 to disable.": "Показывать процесс созданния рисунка каждые N шагов. 0 - отключить", + "Show grid in results for web": "Показать таблицу в выводе браузера", + "Do not show any images in results for web": "Не показывать выходные рисунки в браузере", + "Add model hash to generation information": "Добавить хеш весов к параметрам генерации", + "Add model name to generation information": "Добавить имя весов к параметрам генерации", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "При считывании параметров генерации из текста в интерфейс, не менять выбранную модель/веса.", + "Font for image grids that have text": "Шрифт для таблиц, содержащих текст", + "Enable full page image viewer": "Включить полноэкранный просмотр картинок", + "Show images zoomed in by default in full page image viewer": "По умолчанию увеличивать картинки в полноэкранном просмотре", + "Show generation progress in window title.": "Отображать прогресс в имени вкладки", + "Quicksettings list": "Список быстрых настроек", + "Localization (requires restart)": "Перевод (требует перезапуск)", + "Sampler parameters": "Параметры семплера", + "Hide samplers in user interface (requires restart)": "Убрать семплеры из интерфейса (требует перезапуск)", + "eta (noise multiplier) for DDIM": "eta (множитель шума) DDIM", + "eta (noise multiplier) for ancestral samplers": "eta (множитель шума) для ancestral-семплеров", + "img2img DDIM discretize": "дискретизация DDIM для рисунка-в-рисунок", + "uniform": "однородная", + "quad": "квадратичная", + "sigma churn": "сигма-вариация", + "sigma tmin": "сигма-tmin", + "sigma noise": "сигма-шум", + "Eta noise seed delta": "Eta (дельта шума семени)", + "Images Browser": "Просмотр изображений", + "Preload images at startup": "Предзагружать рисунки во время запуска", + "Number of pictures displayed on each page": "Число рисунков на каждой странице", + "Minimum number of pages per load": "Мин. число загружаемых страниц", + "Number of grids in each row": "Число таблиц в каждой строке", + "Request browser notifications": "Запросить уведомления браузера", + "Download localization template": "Загрузить щаблон перевода", + "Reload custom script bodies (No ui updates, No restart)": "Перезагрузить пользовательские скрипты (не требует обновления интерфейса и перезапуска)", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Перезагрузить Gradio и обновить компоненты (только пользовательские скрипты, ui.py, js и css)", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "Запрос (нажмите Ctrl+Enter или Alt+Enter для генерации)", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "Запрос-исключение (нажмите Ctrl+Enter или Alt+Enter для генерации)", + "Add a random artist to the prompt.": "Добавить случайного художника к запросу", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Считать параметры генерации из запроса или из предыдущей генерации в пользовательский интерфейс, если пусто", + "Save style": "Сохранить стиль", + "Apply selected styles to current prompt": "Применить выбранные стили к текущему промпту", + "Stop processing current image and continue processing.": "Прекратить обрабатывать текущий рисунок, но продолжить работу", + "Stop processing images and return any results accumulated so far.": "Прекратить обрабатку рисунков и вернуть всё, что успели сделать.", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "Стиль к применению; стили содержат как запрос, так и исключение, и применяют их оба", + "Do not do anything special": "Не делать ничего особенного", + "Which algorithm to use to produce the image": "Какой алгоритм использовать для того, чтобы произвести рисунок", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - очень творческий, в зависимости от числа шагов может привести совершенно к различным результатам, выше 30-40 лучше не ставить", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit модели - лучше всего для обрисовки", + "Produce an image that can be tiled.": "Сделать из рисунка непрерывную обёртку", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "Применить двушаговый процесс, чтобы создать рисунок на меньшем разрешении, апскейлнуть, а затем улучшить детали без смены композиции", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Определяет, насколько сильно алгоритм будет опираться на содержание изображения. 0 - не меняет ничего, 1 - совсем не связанный выход. Меньше 1.0 процесс использует меньше шагов, чем указано их ползунком.", + "How many batches of images to create": "Сколько создать наборов из картинок", + "How many image to create in a single batch": "Сколько картинок создать в каждом наборе", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale: насколько сильно изображение должно соответсвтовать запросу — меньшие значения приведут к более свободным итогам", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "Значение, которое определяет выход генератора случайных чисел — если вы создадите рисунок с теми же параметрами и семенем, как у другого изображения, вы получите тот же результат", + "Set seed to -1, which will cause a new random number to be used every time": "Установить семя в -1, что вызовет каждый раз случайное число", + "Reuse seed from last generation, mostly useful if it was randomed": "Использовать семя предыдущей генерации, обычно полезно, если оно было случайным", + "Seed of a different picture to be mixed into the generation.": "Семя с другого рисунка, подмешенного в генерацию.", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "Насколько сильную вариацию произвести. При 0м значении действия не будет. Для 1 вы получите полноценный рисунок с семенем вариации (кроме ancestral-семплеров, где вы просто что-то получите).", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Попытаться воспроизвести изображение, похожее на то, чтобы получилось с тем же семенем на выбранном разрешении", + "This text is used to rotate the feature space of the imgs embs": "Этот текст используется, чтобы произвести вращение пространства признаков из эмбеддинга рисунков", + "Separate values for X axis using commas.": "Отдельные значения оси X через запятую.", + "Separate values for Y axis using commas.": "Отдельные значения оси Y через запятую.", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "Записать изображение в папку (по-умолчанию - log/images), а параметры генерации - в csv файл", + "Open images output directory": "Открыть папку сохранения изображений", + "How much to blur the mask before processing, in pixels.": "Насколько пикселей размыть трафарет перед обработкой", + "What to put inside the masked area before processing it with Stable Diffusion.": "Что поместить в область под трафаретом перед обработкой Stable Diffusion", + "fill it with colors of the image": "залить цветами изображения", + "keep whatever was there originally": "сохранить то, что было до этого", + "fill it with latent space noise": "залить латентным шумом", + "fill it with latent space zeroes": "залить латентными нулями", + "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "апскейл до нужного разрешения, врисовка, сжатие до начального размера и вставка в исходный рисунок", + "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "Масшабировать изображение до нужного разрешения. Если только высота и ширина не совпадают, вы получите неверное соотношение сторон.", + "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "Масштабировать изображение так, чтобы им заполнялось всё выбранное выходное разрешение. Обрезать выступающие части", + "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "Масштабировать изображение так, всё изображение помещалось в выбранное выходное разрешение. Заполнить пустое место цветами изображения.", + "How many times to repeat processing an image and using it as input for the next iteration": "Сколько раз повторить обработку изображения и использовать её как вход для следующией итерации", + "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "В режиме прокрутки, для каждого цикла сила шумоподавления умножается на это значение. <1 уменьшает вариации так, чтобы последовательность сошлась на какой-то одной картинке. >1 увеличивает вариации, так что ваша последовательность станет всё более и более сумбурной.", + "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "Для SD-апскейла, как много перекрытия в пикселях должно быть между плитками. Плитки перекрываются таким образом, чтобы они могли сойтись обратно в единое изображение, без видимого шва.", + "A directory on the same machine where the server is running.": "Папка на той же машине, где запущен сервер", + "Leave blank to save images to the default path.": "Оставьте пустым, чтобы сохранить рисунки в папку по-умолчанию", + "Result = A * (1 - M) + B * M": "Выход = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "Выход = A + (B - C) * M", + "1st and last digit must be 1. ex:'1, 2, 1'": "1я и последняя цифры должны быть 1. напр.'1, 2, 1'", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "как быстро будет происходить обучение. Меньшие значения увеличат время обучения, но высокие могут нарушить сходимость модели (не будет создавать должные результаты) и/или сломать эмбеддинг. (Это случилось, если вы видете Loss: nan в текстовом окне вывода обучения. В этом случае вам придётся восстанавливать эмбеддинг вручную из старой, не повреждённой резервной копии).\n\nВы также можете указать единичное значение или последовательность из нескольких, используя следующий синтаксис:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nБудет обучаться со скоростью 0.005 первые 100 шагов, затем 1e-3 до 1000 шагов, после 1e-5 для всех оставшихся шагов.", + "Path to directory with input images": "Путь к папке со входными изображениями", + "Path to directory where to write outputs": "Путь к папке, в которую записывать результаты", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Используйте следующие теги, чтобы определить, как подбираются названия файлов для изображений: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; если пусто, используется значение по-умолчанию", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "Когда эта опция включена, на созданные изображения не будет добавляться водяной знак. Предупреждение: не добавляя водяной знак, вы, вероятно, ведёте себя аморально.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Используйте следующие теги, чтобы определить, как подбираются названия подпапок для рисунков и табоиц: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; если пусто, используется значение по-умолчанию", + "Restore low quality faces using GFPGAN neural network": "Восстановить низкокачественные лица, используя нейросеть GFPGAN", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "Это регулярное выражение будет использовано, чтобы извлечь слова из имени файла, и они будут соединены с текстом в метке ниже как вход во время обучения. Оставьте пустым, чтобы сохранить имя файла как есть", + "This string will be used to join split words into a single line if the option above is enabled.": "Эта строка будет использована, чтобы объединить разделённые слова в одну строку, если включена опция выше.", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "Список имён настроек, разделённый запятыми, предназначенных для быстрого доступа через панель наверху, а не через привычную вкладку настроек. Для применения требует перезапуска.", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "Если это значение не нулевое, оно будет добавлено к семени и использовано для инициалицации ГСЧ шума семплеров с параметром Eta. Вы можете использовать это, чтобы произвести ещё больше вариаций рисунков, либо же для того, чтобы подойти близко к результатам других программ, если знаете, что делаете.", + "Enable Autocomplete": "Включить автодополнение", + "Allowed categories for random artists selection when using the Roll button": "Разрешённые категории художников для случайного выбора при использовании кнопки + три", + "Roll three": "+ три", + "Generate forever": "Непрерывная генерация", + "Cancel generate forever": "Отключить непрерывную генерацию" +} From 696cb33e50faf3f37859ebfba70fff902f46b8fb Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Sun, 23 Oct 2022 16:46:54 +0900 Subject: [PATCH 078/321] after initial launch, disable --autolaunch for subsequent restarts --- webui.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/webui.py b/webui.py index b1deca1b..a742c17d 100644 --- a/webui.py +++ b/webui.py @@ -135,6 +135,8 @@ def webui(): inbrowser=cmd_opts.autolaunch, prevent_thread_lock=True ) + # after initial launch, disable --autolaunch for subsequent restarts + cmd_opts.autolaunch = False app.add_middleware(GZipMiddleware, minimum_size=1000) From 1be5933ba21a3badec42b7b2753d626f849b609d Mon Sep 17 00:00:00 2001 From: captin411 Date: Sun, 23 Oct 2022 04:11:07 -0700 Subject: [PATCH 079/321] auto cropping now works with non square crops --- modules/textual_inversion/autocrop.py | 509 ++++++++++++++------------ 1 file changed, 269 insertions(+), 240 deletions(-) diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index 5a551c25..b2f9241c 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -1,241 +1,270 @@ -import cv2 -from collections import defaultdict -from math import log, sqrt -import numpy as np -from PIL import Image, ImageDraw - -GREEN = "#0F0" -BLUE = "#00F" -RED = "#F00" - - -def crop_image(im, settings): - """ Intelligently crop an image to the subject matter """ - if im.height > im.width: - im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width)) - elif im.width > im.height: - im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height)) - else: - im = im.resize((settings.crop_width, settings.crop_height)) - - if im.height == im.width: - return im - - focus = focal_point(im, settings) - - # take the focal point and turn it into crop coordinates that try to center over the focal - # point but then get adjusted back into the frame - y_half = int(settings.crop_height / 2) - x_half = int(settings.crop_width / 2) - - x1 = focus.x - x_half - if x1 < 0: - x1 = 0 - elif x1 + settings.crop_width > im.width: - x1 = im.width - settings.crop_width - - y1 = focus.y - y_half - if y1 < 0: - y1 = 0 - elif y1 + settings.crop_height > im.height: - y1 = im.height - settings.crop_height - - x2 = x1 + settings.crop_width - y2 = y1 + settings.crop_height - - crop = [x1, y1, x2, y2] - - if settings.annotate_image: - d = ImageDraw.Draw(im) - rect = list(crop) - rect[2] -= 1 - rect[3] -= 1 - d.rectangle(rect, outline=GREEN) - if settings.destop_view_image: - im.show() - - return im.crop(tuple(crop)) - -def focal_point(im, settings): - corner_points = image_corner_points(im, settings) - entropy_points = image_entropy_points(im, settings) - face_points = image_face_points(im, settings) - - total_points = len(corner_points) + len(entropy_points) + len(face_points) - - corner_weight = settings.corner_points_weight - entropy_weight = settings.entropy_points_weight - face_weight = settings.face_points_weight - - weight_pref_total = corner_weight + entropy_weight + face_weight - - # weight things - pois = [] - if weight_pref_total == 0 or total_points == 0: - return pois - - pois.extend( - [ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ] - ) - pois.extend( - [ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ] - ) - pois.extend( - [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ] - ) - - average_point = poi_average(pois, settings) - - if settings.annotate_image: - d = ImageDraw.Draw(im) - for f in face_points: - d.rectangle(f.bounding(f.size), outline=RED) - for f in entropy_points: - d.rectangle(f.bounding(30), outline=BLUE) - for poi in pois: - w = max(4, 4 * 0.5 * sqrt(poi.weight)) - d.ellipse(poi.bounding(w), fill=BLUE) - d.ellipse(average_point.bounding(25), outline=GREEN) - - return average_point - - -def image_face_points(im, settings): - np_im = np.array(im) - gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) - - tries = [ - [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], - [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] - ] - - for t in tries: - # print(t[0]) - classifier = cv2.CascadeClassifier(t[0]) - minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side - try: - faces = classifier.detectMultiScale(gray, scaleFactor=1.1, - minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) - except: - continue - - if len(faces) > 0: - rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] - return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects] - return [] - - -def image_corner_points(im, settings): - grayscale = im.convert("L") - - # naive attempt at preventing focal points from collecting at watermarks near the bottom - gd = ImageDraw.Draw(grayscale) - gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") - - np_im = np.array(grayscale) - - points = cv2.goodFeaturesToTrack( - np_im, - maxCorners=100, - qualityLevel=0.04, - minDistance=min(grayscale.width, grayscale.height)*0.07, - useHarrisDetector=False, - ) - - if points is None: - return [] - - focal_points = [] - for point in points: - x, y = point.ravel() - focal_points.append(PointOfInterest(x, y, size=4)) - - return focal_points - - -def image_entropy_points(im, settings): - landscape = im.height < im.width - portrait = im.height > im.width - if landscape: - move_idx = [0, 2] - move_max = im.size[0] - elif portrait: - move_idx = [1, 3] - move_max = im.size[1] - else: - return [] - - e_max = 0 - crop_current = [0, 0, settings.crop_width, settings.crop_height] - crop_best = crop_current - while crop_current[move_idx[1]] < move_max: - crop = im.crop(tuple(crop_current)) - e = image_entropy(crop) - - if (e > e_max): - e_max = e - crop_best = list(crop_current) - - crop_current[move_idx[0]] += 4 - crop_current[move_idx[1]] += 4 - - x_mid = int(crop_best[0] + settings.crop_width/2) - y_mid = int(crop_best[1] + settings.crop_height/2) - - return [PointOfInterest(x_mid, y_mid, size=25)] - - -def image_entropy(im): - # greyscale image entropy - # band = np.asarray(im.convert("L")) - band = np.asarray(im.convert("1"), dtype=np.uint8) - hist, _ = np.histogram(band, bins=range(0, 256)) - hist = hist[hist > 0] - return -np.log2(hist / hist.sum()).sum() - - -def poi_average(pois, settings): - weight = 0.0 - x = 0.0 - y = 0.0 - for poi in pois: - weight += poi.weight - x += poi.x * poi.weight - y += poi.y * poi.weight - avg_x = round(x / weight) - avg_y = round(y / weight) - - return PointOfInterest(avg_x, avg_y) - - -class PointOfInterest: - def __init__(self, x, y, weight=1.0, size=10): - self.x = x - self.y = y - self.weight = weight - self.size = size - - def bounding(self, size): - return [ - self.x - size//2, - self.y - size//2, - self.x + size//2, - self.y + size//2 - ] - - -class Settings: - def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False): - self.crop_width = crop_width - self.crop_height = crop_height - self.corner_points_weight = corner_points_weight - self.entropy_points_weight = entropy_points_weight - self.face_points_weight = entropy_points_weight - self.annotate_image = annotate_image +import cv2 +from collections import defaultdict +from math import log, sqrt +import numpy as np +from PIL import Image, ImageDraw + +GREEN = "#0F0" +BLUE = "#00F" +RED = "#F00" + + +def crop_image(im, settings): + """ Intelligently crop an image to the subject matter """ + + scale_by = 1 + if is_landscape(im.width, im.height): + scale_by = settings.crop_height / im.height + elif is_portrait(im.width, im.height): + scale_by = settings.crop_width / im.width + elif is_square(im.width, im.height): + if is_square(settings.crop_width, settings.crop_height): + scale_by = settings.crop_width / im.width + elif is_landscape(settings.crop_width, settings.crop_height): + scale_by = settings.crop_width / im.width + elif is_portrait(settings.crop_width, settings.crop_height): + scale_by = settings.crop_height / im.height + + im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) + + if im.width == settings.crop_width and im.height == settings.crop_height: + if settings.annotate_image: + d = ImageDraw.Draw(im) + rect = [0, 0, im.width, im.height] + rect[2] -= 1 + rect[3] -= 1 + d.rectangle(rect, outline=GREEN) + if settings.destop_view_image: + im.show() + return im + + focus = focal_point(im, settings) + + # take the focal point and turn it into crop coordinates that try to center over the focal + # point but then get adjusted back into the frame + y_half = int(settings.crop_height / 2) + x_half = int(settings.crop_width / 2) + + x1 = focus.x - x_half + if x1 < 0: + x1 = 0 + elif x1 + settings.crop_width > im.width: + x1 = im.width - settings.crop_width + + y1 = focus.y - y_half + if y1 < 0: + y1 = 0 + elif y1 + settings.crop_height > im.height: + y1 = im.height - settings.crop_height + + x2 = x1 + settings.crop_width + y2 = y1 + settings.crop_height + + crop = [x1, y1, x2, y2] + + if settings.annotate_image: + d = ImageDraw.Draw(im) + rect = list(crop) + rect[2] -= 1 + rect[3] -= 1 + d.rectangle(rect, outline=GREEN) + if settings.destop_view_image: + im.show() + + return im.crop(tuple(crop)) + +def focal_point(im, settings): + corner_points = image_corner_points(im, settings) + entropy_points = image_entropy_points(im, settings) + face_points = image_face_points(im, settings) + + total_points = len(corner_points) + len(entropy_points) + len(face_points) + + corner_weight = settings.corner_points_weight + entropy_weight = settings.entropy_points_weight + face_weight = settings.face_points_weight + + weight_pref_total = corner_weight + entropy_weight + face_weight + + # weight things + pois = [] + if weight_pref_total == 0 or total_points == 0: + return pois + + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (corner_weight/weight_pref_total) / (len(corner_points)/total_points) )) for p in corner_points ] + ) + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (entropy_weight/weight_pref_total) / (len(entropy_points)/total_points) )) for p in entropy_points ] + ) + pois.extend( + [ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ] + ) + + average_point = poi_average(pois, settings) + + if settings.annotate_image: + d = ImageDraw.Draw(im) + for f in face_points: + d.rectangle(f.bounding(f.size), outline=RED) + for f in entropy_points: + d.rectangle(f.bounding(30), outline=BLUE) + for poi in pois: + w = max(4, 4 * 0.5 * sqrt(poi.weight)) + d.ellipse(poi.bounding(w), fill=BLUE) + d.ellipse(average_point.bounding(25), outline=GREEN) + + return average_point + + +def image_face_points(im, settings): + np_im = np.array(im) + gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) + + tries = [ + [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], + [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] + ] + + for t in tries: + # print(t[0]) + classifier = cv2.CascadeClassifier(t[0]) + minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side + try: + faces = classifier.detectMultiScale(gray, scaleFactor=1.1, + minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) + except: + continue + + if len(faces) > 0: + rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] + return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects] + return [] + + +def image_corner_points(im, settings): + grayscale = im.convert("L") + + # naive attempt at preventing focal points from collecting at watermarks near the bottom + gd = ImageDraw.Draw(grayscale) + gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") + + np_im = np.array(grayscale) + + points = cv2.goodFeaturesToTrack( + np_im, + maxCorners=100, + qualityLevel=0.04, + minDistance=min(grayscale.width, grayscale.height)*0.07, + useHarrisDetector=False, + ) + + if points is None: + return [] + + focal_points = [] + for point in points: + x, y = point.ravel() + focal_points.append(PointOfInterest(x, y, size=4)) + + return focal_points + + +def image_entropy_points(im, settings): + landscape = im.height < im.width + portrait = im.height > im.width + if landscape: + move_idx = [0, 2] + move_max = im.size[0] + elif portrait: + move_idx = [1, 3] + move_max = im.size[1] + else: + return [] + + e_max = 0 + crop_current = [0, 0, settings.crop_width, settings.crop_height] + crop_best = crop_current + while crop_current[move_idx[1]] < move_max: + crop = im.crop(tuple(crop_current)) + e = image_entropy(crop) + + if (e > e_max): + e_max = e + crop_best = list(crop_current) + + crop_current[move_idx[0]] += 4 + crop_current[move_idx[1]] += 4 + + x_mid = int(crop_best[0] + settings.crop_width/2) + y_mid = int(crop_best[1] + settings.crop_height/2) + + return [PointOfInterest(x_mid, y_mid, size=25)] + + +def image_entropy(im): + # greyscale image entropy + # band = np.asarray(im.convert("L")) + band = np.asarray(im.convert("1"), dtype=np.uint8) + hist, _ = np.histogram(band, bins=range(0, 256)) + hist = hist[hist > 0] + return -np.log2(hist / hist.sum()).sum() + + +def poi_average(pois, settings): + weight = 0.0 + x = 0.0 + y = 0.0 + for poi in pois: + weight += poi.weight + x += poi.x * poi.weight + y += poi.y * poi.weight + avg_x = round(x / weight) + avg_y = round(y / weight) + + return PointOfInterest(avg_x, avg_y) + + +def is_landscape(w, h): + return w > h + + +def is_portrait(w, h): + return h > w + + +def is_square(w, h): + return w == h + + +class PointOfInterest: + def __init__(self, x, y, weight=1.0, size=10): + self.x = x + self.y = y + self.weight = weight + self.size = size + + def bounding(self, size): + return [ + self.x - size//2, + self.y - size//2, + self.x + size//2, + self.y + size//2 + ] + + +class Settings: + def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False): + self.crop_width = crop_width + self.crop_height = crop_height + self.corner_points_weight = corner_points_weight + self.entropy_points_weight = entropy_points_weight + self.face_points_weight = entropy_points_weight + self.annotate_image = annotate_image self.destop_view_image = False \ No newline at end of file From 705bbf327f54e26facc833ddf620425453358dbc Mon Sep 17 00:00:00 2001 From: Dynamic Date: Sun, 23 Oct 2022 22:37:40 +0900 Subject: [PATCH 080/321] Rename ko-KR.json to ko_KR.json --- localizations/{ko-KR.json => ko_KR.json} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename localizations/{ko-KR.json => ko_KR.json} (98%) diff --git a/localizations/ko-KR.json b/localizations/ko_KR.json similarity index 98% rename from localizations/ko-KR.json rename to localizations/ko_KR.json index 7cc431c6..f665042e 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko_KR.json @@ -419,4 +419,4 @@ "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", "view": "api 보이기", "wiki": "wiki" -} \ No newline at end of file +} From c729cd41303ee258e1fbca9d0dcf9e54c7f6993f Mon Sep 17 00:00:00 2001 From: Dynamic Date: Sun, 23 Oct 2022 22:38:49 +0900 Subject: [PATCH 081/321] Update ko_KR.json Updated translation for everything except the Settings tab --- localizations/ko_KR.json | 381 ++++++++++++++++++++++----------------- 1 file changed, 219 insertions(+), 162 deletions(-) diff --git a/localizations/ko_KR.json b/localizations/ko_KR.json index f665042e..a48ece87 100644 --- a/localizations/ko_KR.json +++ b/localizations/ko_KR.json @@ -5,118 +5,158 @@ "❮": "❮", "❯": "❯", "⤡": "⤡", + " images in this directory. Loaded ": "개의 이미지가 이 경로에 존재합니다. ", + " images during ": "개의 이미지를 불러왔고, 생성 기간은 ", + ", divided into ": "입니다. ", + " pages": "페이지로 나뉘어 표시합니다.", "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", - "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", - "A merger of the two checkpoints will be generated in your": "A merger of the two checkpoints will be generated in your", + "[wiki]": " [위키] 참조", + "A directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리를 선택해 주세요.", + "A merger of the two checkpoints will be generated in your": "체크포인트들이 병합된 결과물이 당신의", "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", - "Add difference": "Add difference", + "Add difference": "차이점 추가", "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", - "Add layer normalization": "Add layer normalization", + "Add layer normalization": "레이어 정규화(normalization) 추가", "Add model hash to generation information": "Add model hash to generation information", "Add model name to generation information": "Add model name to generation information", + "Aesthetic imgs embedding": "스타일 이미지 임베딩", + "Aesthetic learning rate": "스타일 학습 수", + "Aesthetic steps": "스타일 스텝 수", + "Aesthetic text for imgs": "스타일 텍스트", + "Aesthetic weight": "스타일 가중치", "Always print all generation info to standard output": "Always print all generation info to standard output", "Always save all generated image grids": "Always save all generated image grids", "Always save all generated images": "생성된 이미지 항상 저장하기", + "api": "", + "append": "뒤에 삽입", "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", "Apply settings": "설정 적용하기", - "BSRGAN 4x": "BSRGAN 4x", - "Batch Process": "Batch Process", "Batch count": "배치 수", - "Batch from Directory": "Batch from Directory", + "Batch from Directory": "저장 경로로부터 여러장 처리", "Batch img2img": "이미지→이미지 배치", + "Batch Process": "이미지 여러장 처리", "Batch size": "배치 크기", - "CFG Scale": "CFG 스케일", - "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "BSRGAN 4x": "BSRGAN 4x", + "built with gradio": "gradio로 제작되었습니다", "Cancel generate forever": "반복 생성 취소", - "Check progress (first)": "Check progress (first)", + "CFG Scale": "CFG 스케일", "Check progress": "Check progress", + "Check progress (first)": "Check progress (first)", + "checkpoint": " 체크포인트 ", "Checkpoint Merger": "체크포인트 병합", "Checkpoint name": "체크포인트 이름", "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Click to Upload": "Click to Upload", "Clip skip": "클립 건너뛰기", - "CodeFormer visibility": "CodeFormer visibility", - "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "CodeFormer visibility": "CodeFormer 가시성", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer 가중치 (0 = 최대 효과, 1 = 최소 효과)", "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", "Color variation": "색깔 다양성", + "Collect": "즐겨찾기", + "copy": "복사", "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", - "Create embedding": "Create embedding", - "Create flipped copies": "Create flipped copies", - "Create hypernetwork": "Create hypernetwork", + "Create aesthetic images embedding": "Create aesthetic images embedding", + "Create embedding": "임베딩 생성", + "Create flipped copies": "좌우로 뒤집은 복사본 생성", + "Create hypernetwork": "하이퍼네트워크 생성", + "Create images embedding": "Create images embedding", "Crop and resize": "잘라낸 후 리사이징", - "Crop to fit": "Crop to fit", - "Custom Name (Optional)": "Custom Name (Optional)", + "Crop to fit": "잘라내서 맞추기", + "Custom Name (Optional)": "병합 모델 이름 (선택사항)", + "Dataset directory": "데이터셋 경로", "DDIM": "DDIM", - "DPM adaptive": "DPM adaptive", - "DPM fast": "DPM fast", - "DPM2 Karras": "DPM2 Karras", - "DPM2 a Karras": "DPM2 a Karras", - "DPM2 a": "DPM2 a", - "DPM2": "DPM2", - "Dataset directory": "Dataset directory", "Decode CFG scale": "디코딩 CFG 스케일", "Decode steps": "디코딩 스텝 수", - "Delete": "Delete", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", - "Denoising strength change factor": "디노이즈 강도 변경 배수", - "Denoising strength": "디노이즈 강도", + "Delete": "삭제", "Denoising": "디노이징", - "Destination directory": "Destination directory", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Denoising strength": "디노이즈 강도", + "Denoising strength change factor": "디노이즈 강도 변경 배수", + "Destination directory": "결과물 저장 경로", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", "Directory for saving images using the Save button": "Directory for saving images using the Save button", "Directory name pattern": "Directory name pattern", + "directory.": "저장 경로에 저장됩니다.", "Do not add watermark to images": "Do not add watermark to images", "Do not do anything special": "아무것도 하지 않기", "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", "Do not show any images in results for web": "Do not show any images in results for web", + "down": "아래쪽", "Download localization template": "Download localization template", + "Download": "다운로드", + "DPM adaptive": "DPM adaptive", + "DPM fast": "DPM fast", + "DPM2": "DPM2", + "DPM2 a": "DPM2 a", + "DPM2 a Karras": "DPM2 a Karras", + "DPM2 Karras": "DPM2 Karras", "Draw legend": "범례 그리기", "Draw mask": "마스크 직접 그리기", "Drop File Here": "Drop File Here", "Drop Image Here": "Drop Image Here", - "ESRGAN_4x": "ESRGAN_4x", - "Embedding": "Embedding", + "Embedding": "임베딩", + "Embedding Learning rate": "임베딩 학습률", "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", "Enable full page image viewer": "Enable full page image viewer", "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", - "End Page": "End Page", - "Enter hypernetwork layer structure": "Enter hypernetwork layer structure", - "Eta noise seed delta": "Eta noise seed delta", + "End Page": "마지막 페이지", + "Enter hypernetwork layer structure": "하이퍼네트워크 레이어 구조 입력", + "Error": "오류", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "ESRGAN_4x": "ESRGAN_4x", "Eta": "Eta", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", - "Euler a": "Euler a", + "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", + "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", + "Eta noise seed delta": "Eta noise seed delta", "Euler": "Euler", + "Euler a": "Euler a", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Existing Caption txt Action": "이미 존재하는 캡션 텍스트 처리", "Extra": "고급", "Extras": "부가기능", + "extras history": "extras history", "Face restoration": "Face restoration", "Fall-off exponent (lower=higher detail)": "감쇠 지수 (낮을수록 디테일이 올라감)", - "File Name": "File Name", + "favorites": "즐겨찾기", + "File": "File", "File format for grids": "File format for grids", "File format for images": "File format for images", + "File Name": "파일 이름", "File with inputs": "설정값 파일", - "File": "File", "Filename join string": "Filename join string", "Filename word regex": "Filename word regex", + "fill": "채우기", + "fill it with colors of the image": "이미지의 색상으로 채우기", + "fill it with latent space noise": "잠재 공간 노이즈로 채우기", + "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", "Filter NSFW content": "Filter NSFW content", - "First Page": "First Page", + "First Page": "처음 페이지", "Firstpass height": "초기 세로길이", "Firstpass width": "초기 가로길이", "Font for image grids that have text": "Font for image grids that have text", + "for detailed explanation.": "를 참조하십시오.", "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SD 업스케일링에서 타일 간 몇 픽셀을 겹치게 할지 결정하는 설정값입니다. 타일들이 다시 한 이미지로 합쳐질 때, 눈에 띄는 이음매가 없도록 서로 겹치게 됩니다.", - "GFPGAN visibility": "GFPGAN visibility", - "Generate Info": "Generate Info", - "Generate forever": "반복 생성", "Generate": "생성", + "Generate forever": "반복 생성", + "Generate Info": "생성 정보", + "GFPGAN visibility": "GFPGAN 가시성", "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", "Height": "세로", "Heun": "Heun", + "hide": "api 숨기기", "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", "Highres. fix": "고해상도 보정", "History": "기록", + "Image Browser": "이미지 브라우저", + "Images directory": "이미지 경로", + "extras": "부가기능", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", @@ -124,26 +164,32 @@ "How much to blur the mask before processing, in pixels.": "이미지 생성 전 마스크를 얼마나 블러처리할지 결정하는 값. 픽셀 단위", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", "Hypernet str.": "하이퍼네트워크 강도", - "Hypernetwork strength": "Hypernetwork strength", "Hypernetwork": "하이퍼네트워크", + "Hypernetwork Learning rate": "하이퍼네트워크 학습률", + "Hypernetwork strength": "Hypernetwork strength", "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "ignore": "무시", + "Image": "Image", "Image for img2img": "Image for img2img", "Image for inpainting with mask": "Image for inpainting with mask", - "Image": "Image", "Images filename pattern": "Images filename pattern", + "img2img": "이미지→이미지", + "img2img alternative test": "이미지→이미지 대체버전 테스트", + "img2img DDIM discretize": "img2img DDIM discretize", + "img2img history": "img2img history", "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "루프백 모드에서는 매 루프마다 디노이즈 강도에 이 값이 곱해집니다. 1보다 작을 경우 다양성이 낮아져 결과 이미지들이 고정된 형태로 모일 겁니다. 1보다 클 경우 다양성이 높아져 결과 이미지들이 갈수록 혼란스러워지겠죠.", "Include Separate Images": "분리된 이미지 포함하기", "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", - "Initialization text": "Initialization text", - "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", + "Initialization text": "초기화 텍스트", + "Inpaint": "인페인트", "Inpaint at full resolution": "전체 해상도로 인페인트하기", + "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", "Inpaint masked": "마스크만 처리", "Inpaint not masked": "마스크 이외만 처리", - "Inpaint": "인페인트", "Input directory": "인풋 이미지 경로", - "Interpolation Method": "Interpolation Method", + "Interpolation Method": "보간 방법", "Interrogate\nCLIP": "CLIP\n분석", "Interrogate\nDeepBooru": "DeepBooru\n분석", "Interrogate Options": "Interrogate Options", @@ -156,49 +202,68 @@ "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", "Interrupt": "중단", + "Is negative text": "네거티브 텍스트일시 체크", "Just resize": "리사이징", "Keep -1 for seeds": "시드값 -1로 유지", - "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", - "LDSR": "LDSR", - "LMS Karras": "LMS Karras", - "LMS": "LMS", + "keep whatever was there originally": "이미지 원본 유지", "Label": "Label", "Lanczos": "Lanczos", - "Learning rate": "Learning rate", - "Leave blank to save images to the default path.": "Leave blank to save images to the default path.", + "Last prompt:": "Last prompt:", + "Last saved hypernetwork:": "Last saved hypernetwork:", + "Last saved image:": "Last saved image:", + "latent noise": "잠재 노이즈", + "latent nothing": "잠재 공백", + "LDSR": "LDSR", + "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "leakyrelu": "leakyrelu", + "Leave blank to save images to the default path.": "기존 저장 경로에 이미지들을 저장하려면 비워두세요.", + "left": "왼쪽", + "linear": "linear", "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "LMS": "LMS", + "LMS Karras": "LMS Karras", + "Load": "불러오기", "Loading...": "로딩 중...", "Localization (requires restart)": "Localization (requires restart)", - "Log directory": "Log directory", + "Log directory": "로그 경로", "Loopback": "루프백", "Loops": "루프 수", + "Loss:": "Loss:", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", "Make Zip when Save?": "저장 시 Zip 생성하기", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Mask": "마스크", "Mask blur": "마스크 블러", "Mask mode": "Mask mode", - "Mask": "마스크", "Masked content": "마스크된 부분", "Masking mode": "Masking mode", "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", - "Max steps": "Max steps", - "Modules": "Modules", + "Max steps": "최대 스텝 수", + "Modules": "모듈", "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", - "Multiplier (M) - set to 0 to get model A": "Multiplier (M) - set to 0 to get model A", - "Name": "Name", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.", + "Multiplier (M) - set to 0 to get model A": "배율 (M) - 0으로 적용하면 모델 A를 얻게 됩니다", + "Name": "이름", "Negative prompt": "네거티브 프롬프트", - "Next Page": "Next Page", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Next batch": "다음 묶음", + "Next Page": "다음 페이지", "None": "None", "Nothing": "없음", + "Nothing found in the image.": "Nothing found in the image.", + "number of images to delete consecutively next": "연속적으로 삭제할 이미지 수", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", - "Number of vectors per token": "Number of vectors per token", + "Number of vectors per token": "토큰별 벡터 수", + "Open for Clip Aesthetic!": "클립 스타일 기능을 활성화하려면 클릭!", "Open images output directory": "이미지 저장 경로 열기", - "Open output directory": "Open output directory", + "Open output directory": "저장 경로 열기", + "or": "or", + "original": "원본 유지", "Original negative prompt": "기존 네거티브 프롬프트", "Original prompt": "기존 프롬프트", "Outpainting direction": "아웃페인팅 방향", "Outpainting mk2": "아웃페인팅 마크 2", + "Output directory": "이미지 저장 경로", "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", "Output directory for images from extras tab": "Output directory for images from extras tab", "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", @@ -206,46 +271,54 @@ "Output directory for img2img images": "Output directory for img2img images", "Output directory for txt2img grids": "Output directory for txt2img grids", "Output directory for txt2img images": "Output directory for txt2img images", - "Output directory": "이미지 저장 경로", "Override `Denoising strength` to 1?": "디노이즈 강도를 1로 적용할까요?", - "Override `Sampling Steps` to the same value as `Decode steps`?": "샘플링 스텝 수를 디코딩 스텝 수와 동일하게 적용할까요?", - "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "프롬프트 값을 기존 프롬프트와 동일하게 적용할까요?(네거티브 프롬프트 포함)", - "PLMS": "PLMS", - "PNG Info": "PNG 정보", - "Page Index": "Page Index", + "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", + "Override `Sampling Steps` to the same value as `Decode steps`?": "샘플링 스텝 수를 디코딩 스텝 수와 동일하게 적용할까요?", + "Overwrite Old Embedding": "기존 임베딩 덮어쓰기", + "Overwrite Old Hypernetwork": "기존 하이퍼네트워크 덮어쓰기", + "Page Index": "페이지 인덱스", + "parameters": "설정값", "Path to directory where to write outputs": "Path to directory where to write outputs", - "Path to directory with input images": "Path to directory with input images", + "Path to directory with input images": "인풋 이미지가 있는 경로", "Paths for saving": "Paths for saving", "Pixels to expand": "확장할 픽셀 수", + "PLMS": "PLMS", + "PNG Info": "PNG 정보", "Poor man's outpainting": "가난뱅이의 아웃페인팅", - "Preprocess images": "Preprocess images", - "Preprocess": "Preprocess", - "Prev Page": "Prev Page", + "Preparing dataset from": "Preparing dataset from", + "prepend": "앞에 삽입", + "Preprocess": "전처리", + "Preprocess images": "이미지 전처리", + "Prev batch": "이전 묶음", + "Prev Page": "이전 페이지", "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", - "Primary model (A)": "Primary model (A)", + "Primary model (A)": "주 모델 (A)", "Process an image, use it as an input, repeat.": "이미지를 생성하고, 생성한 이미지를 다시 원본으로 사용하는 과정을 반복합니다.", "Process images in a directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리의 이미지들을 처리합니다.", "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Prompt": "프롬프트", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Prompt S/R": "프롬프트 스타일 변경", "Prompt matrix": "프롬프트 매트릭스", "Prompt order": "프롬프트 순서", - "Prompt template file": "Prompt template file", - "Prompt": "프롬프트", - "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", + "Prompt S/R": "프롬프트 스타일 변경", + "Prompt template file": "프롬프트 템플릿 파일 경로", "Prompts": "프롬프트", + "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", + "quad": "quad", "Quality for saved jpeg images": "Quality for saved jpeg images", "Quicksettings list": "Quicksettings list", "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", "Randomness": "랜덤성", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", - "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "프리뷰 이미지 생성 시 텍스트→이미지 탭에서 설정값(프롬프트 등) 읽어오기", "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "추천 설정값 - 샘플링 스텝 수 : 80-100 , 샘플러 : Euler a, 디노이즈 강도 : 0.8", "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "relu": "relu", "Renew Page": "Renew Page", "Request browser notifications": "Request browser notifications", + "Resize": "리사이징 배수", "Resize and fill": "리사이징 후 채우기", "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "설정된 해상도로 이미지 리사이징을 진행합니다. 원본과 가로/세로 길이가 일치하지 않을 경우, 부정확한 화면비의 이미지를 얻게 됩니다.", "Resize mode": "Resize mode", @@ -253,42 +326,43 @@ "Resize seed from width": "시드 리사이징 세로길이", "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "이미지 전체가 설정된 해상도 내부에 들어가게 리사이징을 진행합니다. 빈 공간은 이미지의 색상으로 채웁니다.", "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "설정된 해상도 전체가 이미지로 가득차게 리사이징을 진행합니다. 튀어나오는 부분은 잘라냅니다.", - "Resize": "Resize", "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", "Restore faces": "얼굴 보정", "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", - "Result = A * (1 - M) + B * M": "Result = A * (1 - M) + B * M", - "Result = A + (B - C) * M": "Result = A + (B - C) * M", + "Result = A * (1 - M) + B * M": "결과물 = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "결과물 = A + (B - C) * M", "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", - "Run": "Run", - "SD upscale": "SD 업스케일링", - "Sampler parameters": "Sampler parameters", + "right": "오른쪽", + "Run": "가동", "Sampler": "샘플러", - "Sampling Steps": "샘플링 스텝 수", + "Sampler parameters": "Sampler parameters", "Sampling method": "샘플링 방법", - "Save a copy of embedding to log directory every N steps, 0 to disable": "Save a copy of embedding to log directory every N steps, 0 to disable", + "Sampling Steps": "샘플링 스텝 수", + "Save": "저장", + "Save a copy of embedding to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 임베딩을 저장합니다, 비활성화하려면 0으로 설정하십시오.", "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", - "Save an image to log directory every N steps, 0 to disable": "Save an image to log directory every N steps, 0 to disable", - "Save as float16": "Save as float16", + "Save an image to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 이미지를 저장합니다, 비활성화하려면 0으로 설정하십시오.", + "Save as float16": "float16으로 저장", "Save grids to a subdirectory": "Save grids to a subdirectory", "Save images to a subdirectory": "Save images to a subdirectory", - "Save images with embedding in PNG chunks": "Save images with embedding in PNG chunks", + "Save images with embedding in PNG chunks": "PNG 청크로 이미지에 임베딩을 포함시켜 저장", "Save style": "스타일 저장", "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", - "Save": "저장", "Saving images/grids": "Saving images/grids", "Saving to a directory": "Saving to a directory", - "Scale by": "Scale by", - "Scale to": "Scale to", + "Scale by": "스케일링 배수 지정", + "Scale to": "스케일링 사이즈 지정", "Script": "스크립트", "ScuNET GAN": "ScuNET GAN", "ScuNET PSNR": "ScuNET PSNR", - "Secondary model (B)": "Secondary model (B)", - "See": "See", - "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "SD upscale": "SD 업스케일링", + "Secondary model (B)": "2차 모델 (B)", + "See": "자세한 설명은", "Seed": "시드", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "Select activation function of hypernetwork": "하이퍼네트워크 활성화 함수 선택", "Send to extras": "부가기능으로 전송", "Send to img2img": "이미지→이미지로 전송", "Send to inpaint": "인페인트로 전송", @@ -297,26 +371,36 @@ "Separate values for X axis using commas.": "쉼표로 X축에 적용할 값 분리", "Separate values for Y axis using commas.": "쉼표로 Y축에 적용할 값 분리", "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "set_index": "set_index", "Settings": "설정", - "Show Textbox": "텍스트박스 보이기", + "should be 2 or lower.": "이 2 이하여야 합니다.", "Show generation progress in window title.": "Show generation progress in window title.", "Show grid in results for web": "Show grid in results for web", "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", "Show progressbar": "Show progressbar", - "Show result images": "Show result images", - "Sigma Churn": "시그마 섞기", + "Show result images": "이미지 결과 보이기", + "Show Textbox": "텍스트박스 보이기", "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", + "Sigma Churn": "시그마 섞기", + "sigma churn": "sigma churn", "Sigma max": "시그마 최댓값", "Sigma min": "시그마 최솟값", "Sigma noise": "시그마 노이즈", - "Single Image": "Single Image", + "sigma noise": "sigma noise", + "sigma tmin": "sigma tmin", + "Single Image": "단일 이미지", "Skip": "건너뛰기", - "Source directory": "Source directory", - "Source": "Source", - "Split oversized images into two": "Split oversized images into two", - "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Slerp angle": "구면 선형 보간 각도", + "Slerp interpolation": "구면 선형 보간", + "Source": "원본", + "Source directory": "원본 경로", + "Split image threshold": "Split image threshold", + "Split image overlap ratio": "Split image overlap ratio", + "Split oversized images": "사이즈가 큰 이미지 분할하기", "Stable Diffusion": "Stable Diffusion", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Step:": "Step:", "Steps": "스텝 수", "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", @@ -325,51 +409,65 @@ "Style 2": "스타일 2", "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", "SwinIR 4x": "SwinIR 4x", + "Sys VRAM:": "시스템 VRAM : ", "System": "System", - "Tertiary model (C)": "Tertiary model (C)", + "Tertiary model (C)": "3차 모델 (C)", "Textbox": "Textbox", "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "This text is used to rotate the feature space of the imgs embs": "이 텍스트는 이미지 임베딩의 특징 공간을 회전하는 데 사용됩니다.", + "Tile overlap": "타일 겹침", "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", - "Tile overlap": "타일 겹침", - "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", "Tile size for all SwinIR.": "Tile size for all SwinIR.", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", "Tiling": "타일링", - "Train Embedding": "Train Embedding", - "Train Hypernetwork": "Train Hypernetwork", - "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Train an embedding; must specify a directory with a set of 1:1 ratio images", + "Time taken:": "소요 시간 : ", + "Torch active/reserved:": "활성화/예약된 Torch 양 : ", + "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).": "활성화된 Torch : 생성 도중 캐시된 데이터를 포함해 사용된 VRAM의 최대량\n예약된 Torch : 활성화되고 캐시된 모든 데이터를 포함해 Torch에게 할당된 VRAM의 최대량\n시스템 VRAM : 모든 어플리케이션에 할당된 VRAM 최대량 / 총 GPU VRAM (최고 이용도%)", "Train": "훈련", + "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "임베딩이나 하이퍼네트워크를 훈련시킵니다. 1:1 비율의 이미지가 있는 경로를 지정해야 합니다.", + "Train Embedding": "임베딩 훈련", + "Train Hypernetwork": "하이퍼네트워크 훈련", "Training": "Training", - "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", + "txt2img": "텍스트→이미지", + "txt2img history": "txt2img history", + "uniform": "uniform", + "up": "위쪽", "Upload mask": "마스크 업로드하기", "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "마스크된 부분을 설정된 해상도로 업스케일하고, 인페인팅을 진행한 뒤, 다시 다운스케일 후 원본 이미지에 붙여넣습니다.", - "Upscaler 2 visibility": "Upscaler 2 visibility", - "Upscaler for img2img": "Upscaler for img2img", "Upscaler": "업스케일러", + "Upscaler 1": "업스케일러 1", + "Upscaler 2": "업스케일러 2", + "Upscaler 2 visibility": "업스케일러 2 가시성", + "Upscaler for img2img": "Upscaler for img2img", "Upscaling": "Upscaling", - "Use BLIP for caption": "Use BLIP for caption", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", "Use an empty output directory to save pictures normally instead of writing to the output directory.": "저장 경로를 비워두면 기본 저장 폴더에 이미지들이 저장됩니다.", - "Use deepbooru for caption": "Use deepbooru for caption", + "Use BLIP for caption": "캡션에 BLIP 사용", + "Use deepbooru for caption": "캡션에 deepbooru 사용", + "Use dropout": "드롭아웃 사용", "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", + "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", "User interface": "User interface", - "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", "Var. seed": "바리에이션 시드", "Var. strength": "바리에이션 강도", "Variation seed": "바리에이션 시드", "Variation strength": "바리에이션 강도", - "Weighted sum": "Weighted sum", + "view": "api 보이기", + "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", + "Weighted sum": "가중 합", "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusion으로 이미지를 생성하기 전 마스크된 부분에 무엇을 채울지 결정하는 설정값", "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", "Width": "가로", + "wiki": " 위키", "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "이미지를 설정된 사이즈의 2배로 업스케일합니다. 상단의 가로와 세로 슬라이더를 이용해 타일 사이즈를 지정하세요.", "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", @@ -377,46 +475,5 @@ "X values": "X 설정값", "X/Y plot": "X/Y 플롯", "Y type": "Y축", - "Y values": "Y 설정값", - "api": "", - "built with gradio": "gradio로 제작되었습니다", - "checkpoint": "checkpoint", - "directory.": "directory.", - "down": "아래쪽", - "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", - "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", - "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", - "extras history": "extras history", - "fill it with colors of the image": "이미지의 색상으로 채우기", - "fill it with latent space noise": "잠재 공간 노이즈로 채우기", - "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", - "fill": "채우기", - "for detailed explanation.": "for detailed explanation.", - "hide": "api 숨기기", - "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", - "img2img DDIM discretize": "img2img DDIM discretize", - "img2img alternative test": "이미지→이미지 대체버전 테스트", - "img2img history": "img2img history", - "img2img": "이미지→이미지", - "keep whatever was there originally": "이미지 원본 유지", - "latent noise": "잠재 노이즈", - "latent nothing": "잠재 공백", - "left": "왼쪽", - "number of images to delete consecutively next": "number of images to delete consecutively next", - "or": "or", - "original": "원본 유지", - "quad": "quad", - "right": "오른쪽", - "set_index": "set_index", - "should be 2 or lower.": "이 2 이하여야 합니다.", - "sigma churn": "sigma churn", - "sigma noise": "sigma noise", - "sigma tmin": "sigma tmin", - "txt2img history": "txt2img history", - "txt2img": "텍스트→이미지", - "uniform": "uniform", - "up": "위쪽", - "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", - "view": "api 보이기", - "wiki": "wiki" -} + "Y values": "Y 설정값" +} \ No newline at end of file From 0523704dade0508bf3ae0c8cb799b1ae332d449b Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sun, 23 Oct 2022 12:27:50 -0300 Subject: [PATCH 082/321] Update run_extras to use the temp filename In batch mode run_extras tries to preserve the original file name of the images. The problem is that this makes no sense since the user only gets a list of images in the UI, trying to manually save them shows that this images have random temp names. Also, trying to keep "orig_name" in the API is a hassle that adds complexity to the consuming UI since the client has to use (or emulate) an input (type=file) element in a form. Using the normal file name not only doesn't change the output and functionality in the original UI but also helps keep the API simple. --- modules/extras.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/extras.py b/modules/extras.py index 22c5a1c1..29ac312e 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -33,7 +33,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ for img in image_folder: image = Image.open(img) imageArr.append(image) - imageNameArr.append(os.path.splitext(img.orig_name)[0]) + imageNameArr.append(os.path.splitext(img.name)[0]) elif extras_mode == 2: assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled' From 4ff852ffb50859f2eae75375cab94dd790a46886 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sun, 23 Oct 2022 13:07:59 -0300 Subject: [PATCH 083/321] Add batch processing "extras" endpoint --- modules/api/api.py | 25 +++++++++++++++++++++++-- modules/api/models.py | 15 ++++++++++++++- 2 files changed, 37 insertions(+), 3 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 3b804373..528134a8 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -10,6 +10,7 @@ import base64 from modules.api.models import * from PIL import Image from modules.extras import run_extras +from gradio import processing_utils def upscaler_to_index(name: str): try: @@ -44,6 +45,7 @@ class Api: self.queue_lock = queue_lock self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) + self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -78,12 +80,31 @@ class Api: reqDict.pop('upscaler_1') reqDict.pop('upscaler_2') - reqDict['image'] = base64_to_images([reqDict['image']])[0] + reqDict['image'] = processing_utils.decode_base64_to_file(reqDict['image']) with self.queue_lock: result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="") - return ExtrasSingleImageResponse(image="data:image/png;base64,"+img_to_base64(result[0]), html_info_x=result[1], html_info=result[2]) + return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0]), html_info_x=result[1], html_info=result[2]) + + def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + upscaler1Index = upscaler_to_index(req.upscaler_1) + upscaler2Index = upscaler_to_index(req.upscaler_2) + + reqDict = vars(req) + reqDict.pop('upscaler_1') + reqDict.pop('upscaler_2') + + reqDict['image_folder'] = list(map(processing_utils.decode_base64_to_file, reqDict['imageList'])) + reqDict.pop('imageList') + + with self.queue_lock: + result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=1, image="", input_dir="", output_dir="") + + return ExtrasBatchImagesResponse(images=list(map(processing_utils.encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2]) + + def extras_folder_processing_api(self): + raise NotImplementedError def pnginfoapi(self): raise NotImplementedError diff --git a/modules/api/models.py b/modules/api/models.py index dcf1ab54..bbd0ef53 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -29,4 +29,17 @@ class ExtrasSingleImageRequest(ExtrasBaseRequest): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") class ExtrasSingleImageResponse(ExtraBaseResponse): - image: str = Field(default=None, title="Image", description="The generated image in base64 format.") \ No newline at end of file + image: str = Field(default=None, title="Image", description="The generated image in base64 format.") + +class SerializableImage(BaseModel): + path: str = Field(title="Path", description="The image's path ()") + +class ImageItem(BaseModel): + data: str = Field(title="image data") + name: str = Field(title="filename") + +class ExtrasBatchImagesRequest(ExtrasBaseRequest): + imageList: list[str] = Field(title="Images", description="List of images to work on. Must be Base64 strings") + +class ExtrasBatchImagesResponse(ExtraBaseResponse): + images: list[str] = Field(title="Images", description="The generated images in base64 format.") \ No newline at end of file From e0ca4dfbc10e0af8dfc4185e5e758f33fd2f0d81 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sun, 23 Oct 2022 15:13:37 -0300 Subject: [PATCH 084/321] Update endpoints to use gradio's own utils functions --- modules/api/api.py | 71 +++++++++++++++++++++---------------------- modules/api/models.py | 4 +-- 2 files changed, 36 insertions(+), 39 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 3f490ce2..3acb1f36 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -20,27 +20,27 @@ def upscaler_to_index(name: str): sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -def img_to_base64(img: str): - buffer = io.BytesIO() - img.save(buffer, format="png") - return base64.b64encode(buffer.getvalue()) +# def img_to_base64(img: str): +# buffer = io.BytesIO() +# img.save(buffer, format="png") +# return base64.b64encode(buffer.getvalue()) -def base64_to_bytes(base64Img: str): - if "," in base64Img: - base64Img = base64Img.split(",")[1] - return io.BytesIO(base64.b64decode(base64Img)) +# def base64_to_bytes(base64Img: str): +# if "," in base64Img: +# base64Img = base64Img.split(",")[1] +# return io.BytesIO(base64.b64decode(base64Img)) -def base64_to_images(base64Imgs: list[str]): - imgs = [] - for img in base64Imgs: - img = Image.open(base64_to_bytes(img)) - imgs.append(img) - return imgs +# def base64_to_images(base64Imgs: list[str]): +# imgs = [] +# for img in base64Imgs: +# img = Image.open(base64_to_bytes(img)) +# imgs.append(img) +# return imgs class ImageToImageResponse(BaseModel): images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: Json - info: Json + parameters: dict + info: str class Api: @@ -49,17 +49,17 @@ class Api: self.app = app self.queue_lock = queue_lock self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) - self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - def __base64_to_image(self, base64_string): - # if has a comma, deal with prefix - if "," in base64_string: - base64_string = base64_string.split(",")[1] - imgdata = base64.b64decode(base64_string) - # convert base64 to PIL image - return Image.open(io.BytesIO(imgdata)) + # def __base64_to_image(self, base64_string): + # # if has a comma, deal with prefix + # if "," in base64_string: + # base64_string = base64_string.split(",")[1] + # imgdata = base64.b64decode(base64_string) + # # convert base64 to PIL image + # return Image.open(io.BytesIO(imgdata)) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -79,11 +79,9 @@ class Api: with self.queue_lock: processed = process_images(p) - b64images = list(map(img_to_base64, processed.images)) - - return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info)) - + b64images = list(map(processing_utils.encode_pil_to_base64, processed.images)) + return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.info) def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): sampler_index = sampler_to_index(img2imgreq.sampler_index) @@ -98,7 +96,7 @@ class Api: mask = img2imgreq.mask if mask: - mask = self.__base64_to_image(mask) + mask = processing_utils.decode_base64_to_image(mask) populate = img2imgreq.copy(update={ # Override __init__ params @@ -113,7 +111,7 @@ class Api: imgs = [] for img in init_images: - img = self.__base64_to_image(img) + img = processing_utils.decode_base64_to_image(img) imgs = [img] * p.batch_size p.init_images = imgs @@ -121,13 +119,12 @@ class Api: with self.queue_lock: processed = process_images(p) - b64images = [] - for i in processed.images: - buffer = io.BytesIO() - i.save(buffer, format="png") - b64images.append(base64.b64encode(buffer.getvalue())) - - return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=json.dumps(processed.info)) + b64images = list(map(processing_utils.encode_pil_to_base64, processed.images)) + # for i in processed.images: + # buffer = io.BytesIO() + # i.save(buffer, format="png") + # b64images.append(base64.b64encode(buffer.getvalue())) + return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info) def extras_single_image_api(self, req: ExtrasSingleImageRequest): upscaler1Index = upscaler_to_index(req.upscaler_1) diff --git a/modules/api/models.py b/modules/api/models.py index bbd0ef53..209f8af5 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -4,8 +4,8 @@ from modules.shared import sd_upscalers class TextToImageResponse(BaseModel): images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: Json - info: Json + parameters: str + info: str class ExtrasBaseRequest(BaseModel): resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") From 866b36d705a338d299aba385788729d60f7d48c8 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sun, 23 Oct 2022 15:35:49 -0300 Subject: [PATCH 085/321] Move processing's models into models.py It didn't make sense to have two differente files for the same and "models" is a more descriptive name. --- modules/api/api.py | 59 ++++---------------- modules/api/models.py | 112 +++++++++++++++++++++++++++++++++++++- modules/api/processing.py | 106 ------------------------------------ 3 files changed, 120 insertions(+), 157 deletions(-) delete mode 100644 modules/api/processing.py diff --git a/modules/api/api.py b/modules/api/api.py index 3acb1f36..20e85e82 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,16 +1,11 @@ -from modules.api.processing import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI +import uvicorn +from gradio import processing_utils +from fastapi import APIRouter, HTTPException +import modules.shared as shared +from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.sd_samplers import all_samplers -import modules.shared as shared -import uvicorn -from fastapi import APIRouter, HTTPException -import json -import io -import base64 -from modules.api.models import * -from PIL import Image from modules.extras import run_extras -from gradio import processing_utils def upscaler_to_index(name: str): try: @@ -20,29 +15,6 @@ def upscaler_to_index(name: str): sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -# def img_to_base64(img: str): -# buffer = io.BytesIO() -# img.save(buffer, format="png") -# return base64.b64encode(buffer.getvalue()) - -# def base64_to_bytes(base64Img: str): -# if "," in base64Img: -# base64Img = base64Img.split(",")[1] -# return io.BytesIO(base64.b64decode(base64Img)) - -# def base64_to_images(base64Imgs: list[str]): -# imgs = [] -# for img in base64Imgs: -# img = Image.open(base64_to_bytes(img)) -# imgs.append(img) -# return imgs - -class ImageToImageResponse(BaseModel): - images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: dict - info: str - - class Api: def __init__(self, app, queue_lock): self.router = APIRouter() @@ -51,15 +23,7 @@ class Api: self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) - self.app.add_api_route("/sdapi/v1/extra-batch-image", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - - # def __base64_to_image(self, base64_string): - # # if has a comma, deal with prefix - # if "," in base64_string: - # base64_string = base64_string.split(",")[1] - # imgdata = base64.b64decode(base64_string) - # # convert base64 to PIL image - # return Image.open(io.BytesIO(imgdata)) + self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -81,7 +45,7 @@ class Api: b64images = list(map(processing_utils.encode_pil_to_base64, processed.images)) - return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.info) + return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.info) def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): sampler_index = sampler_to_index(img2imgreq.sampler_index) @@ -120,10 +84,7 @@ class Api: processed = process_images(p) b64images = list(map(processing_utils.encode_pil_to_base64, processed.images)) - # for i in processed.images: - # buffer = io.BytesIO() - # i.save(buffer, format="png") - # b64images.append(base64.b64encode(buffer.getvalue())) + return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info) def extras_single_image_api(self, req: ExtrasSingleImageRequest): @@ -134,12 +95,12 @@ class Api: reqDict.pop('upscaler_1') reqDict.pop('upscaler_2') - reqDict['image'] = processing_utils.decode_base64_to_file(reqDict['image']) + reqDict['image'] = processing_utils.decode_base64_to_image(reqDict['image']) with self.queue_lock: result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="") - return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0]), html_info_x=result[1], html_info=result[2]) + return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2]) def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): upscaler1Index = upscaler_to_index(req.upscaler_1) diff --git a/modules/api/models.py b/modules/api/models.py index 209f8af5..362e6277 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -1,10 +1,118 @@ -from pydantic import BaseModel, Field, Json +import inspect +from pydantic import BaseModel, Field, Json, create_model +from typing import Any, Optional from typing_extensions import Literal +from inflection import underscore +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img from modules.shared import sd_upscalers +API_NOT_ALLOWED = [ + "self", + "kwargs", + "sd_model", + "outpath_samples", + "outpath_grids", + "sampler_index", + "do_not_save_samples", + "do_not_save_grid", + "extra_generation_params", + "overlay_images", + "do_not_reload_embeddings", + "seed_enable_extras", + "prompt_for_display", + "sampler_noise_scheduler_override", + "ddim_discretize" +] + +class ModelDef(BaseModel): + """Assistance Class for Pydantic Dynamic Model Generation""" + + field: str + field_alias: str + field_type: Any + field_value: Any + + +class PydanticModelGenerator: + """ + Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: + source_data is a snapshot of the default values produced by the class + params are the names of the actual keys required by __init__ + """ + + def __init__( + self, + model_name: str = None, + class_instance = None, + additional_fields = None, + ): + def field_type_generator(k, v): + # field_type = str if not overrides.get(k) else overrides[k]["type"] + # print(k, v.annotation, v.default) + field_type = v.annotation + + return Optional[field_type] + + def merge_class_params(class_): + all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) + parameters = {} + for classes in all_classes: + parameters = {**parameters, **inspect.signature(classes.__init__).parameters} + return parameters + + + self._model_name = model_name + self._class_data = merge_class_params(class_instance) + self._model_def = [ + ModelDef( + field=underscore(k), + field_alias=k, + field_type=field_type_generator(k, v), + field_value=v.default + ) + for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED + ] + + for fields in additional_fields: + self._model_def.append(ModelDef( + field=underscore(fields["key"]), + field_alias=fields["key"], + field_type=fields["type"], + field_value=fields["default"])) + + def generate_model(self): + """ + Creates a pydantic BaseModel + from the json and overrides provided at initialization + """ + fields = { + d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def + } + DynamicModel = create_model(self._model_name, **fields) + DynamicModel.__config__.allow_population_by_field_name = True + DynamicModel.__config__.allow_mutation = True + return DynamicModel + +StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingTxt2Img", + StableDiffusionProcessingTxt2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}] +).generate_model() + +StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingImg2Img", + StableDiffusionProcessingImg2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}] +).generate_model() + class TextToImageResponse(BaseModel): images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") - parameters: str + parameters: dict + info: str + +class ImageToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict info: str class ExtrasBaseRequest(BaseModel): diff --git a/modules/api/processing.py b/modules/api/processing.py deleted file mode 100644 index f551fa35..00000000 --- a/modules/api/processing.py +++ /dev/null @@ -1,106 +0,0 @@ -from array import array -from inflection import underscore -from typing import Any, Dict, Optional -from pydantic import BaseModel, Field, create_model -from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img -import inspect - - -API_NOT_ALLOWED = [ - "self", - "kwargs", - "sd_model", - "outpath_samples", - "outpath_grids", - "sampler_index", - "do_not_save_samples", - "do_not_save_grid", - "extra_generation_params", - "overlay_images", - "do_not_reload_embeddings", - "seed_enable_extras", - "prompt_for_display", - "sampler_noise_scheduler_override", - "ddim_discretize" -] - -class ModelDef(BaseModel): - """Assistance Class for Pydantic Dynamic Model Generation""" - - field: str - field_alias: str - field_type: Any - field_value: Any - - -class PydanticModelGenerator: - """ - Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: - source_data is a snapshot of the default values produced by the class - params are the names of the actual keys required by __init__ - """ - - def __init__( - self, - model_name: str = None, - class_instance = None, - additional_fields = None, - ): - def field_type_generator(k, v): - # field_type = str if not overrides.get(k) else overrides[k]["type"] - # print(k, v.annotation, v.default) - field_type = v.annotation - - return Optional[field_type] - - def merge_class_params(class_): - all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) - parameters = {} - for classes in all_classes: - parameters = {**parameters, **inspect.signature(classes.__init__).parameters} - return parameters - - - self._model_name = model_name - self._class_data = merge_class_params(class_instance) - self._model_def = [ - ModelDef( - field=underscore(k), - field_alias=k, - field_type=field_type_generator(k, v), - field_value=v.default - ) - for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED - ] - - for fields in additional_fields: - self._model_def.append(ModelDef( - field=underscore(fields["key"]), - field_alias=fields["key"], - field_type=fields["type"], - field_value=fields["default"])) - - def generate_model(self): - """ - Creates a pydantic BaseModel - from the json and overrides provided at initialization - """ - fields = { - d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def - } - DynamicModel = create_model(self._model_name, **fields) - DynamicModel.__config__.allow_population_by_field_name = True - DynamicModel.__config__.allow_mutation = True - return DynamicModel - -StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( - "StableDiffusionProcessingTxt2Img", - StableDiffusionProcessingTxt2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}] -).generate_model() - -StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( - "StableDiffusionProcessingImg2Img", - StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}] -).generate_model() \ No newline at end of file From 1e625624ba6ab3dfc167f0a5226780bb9b50fb58 Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sun, 23 Oct 2022 16:01:16 -0300 Subject: [PATCH 086/321] Add folder processing endpoint Also minor refactor --- modules/api/api.py | 56 +++++++++++++++++++++++-------------------- modules/api/models.py | 6 ++++- 2 files changed, 35 insertions(+), 27 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 20e85e82..7b4fbe29 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -1,5 +1,5 @@ import uvicorn -from gradio import processing_utils +from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image from fastapi import APIRouter, HTTPException import modules.shared as shared from modules.api.models import * @@ -11,10 +11,18 @@ def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) except: - raise HTTPException(status_code=400, detail="Upscaler not found") + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) +def setUpscalers(req: dict): + reqDict = vars(req) + reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1) + reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2) + reqDict.pop('upscaler_1') + reqDict.pop('upscaler_2') + return reqDict + class Api: def __init__(self, app, queue_lock): self.router = APIRouter() @@ -24,6 +32,7 @@ class Api: self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) + self.app.add_api_route("/sdapi/v1/extra-folder-images", self.extras_folder_processing_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -43,7 +52,7 @@ class Api: with self.queue_lock: processed = process_images(p) - b64images = list(map(processing_utils.encode_pil_to_base64, processed.images)) + b64images = list(map(encode_pil_to_base64, processed.images)) return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.info) @@ -60,7 +69,7 @@ class Api: mask = img2imgreq.mask if mask: - mask = processing_utils.decode_base64_to_image(mask) + mask = decode_base64_to_image(mask) populate = img2imgreq.copy(update={ # Override __init__ params @@ -75,7 +84,7 @@ class Api: imgs = [] for img in init_images: - img = processing_utils.decode_base64_to_image(img) + img = decode_base64_to_image(img) imgs = [img] * p.batch_size p.init_images = imgs @@ -83,43 +92,38 @@ class Api: with self.queue_lock: processed = process_images(p) - b64images = list(map(processing_utils.encode_pil_to_base64, processed.images)) + b64images = list(map(encode_pil_to_base64, processed.images)) return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.info) def extras_single_image_api(self, req: ExtrasSingleImageRequest): - upscaler1Index = upscaler_to_index(req.upscaler_1) - upscaler2Index = upscaler_to_index(req.upscaler_2) + reqDict = setUpscalers(req) - reqDict = vars(req) - reqDict.pop('upscaler_1') - reqDict.pop('upscaler_2') - - reqDict['image'] = processing_utils.decode_base64_to_image(reqDict['image']) + reqDict['image'] = decode_base64_to_image(reqDict['image']) with self.queue_lock: - result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="") + result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict) - return ExtrasSingleImageResponse(image=processing_utils.encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2]) + return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2]) def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): - upscaler1Index = upscaler_to_index(req.upscaler_1) - upscaler2Index = upscaler_to_index(req.upscaler_2) + reqDict = setUpscalers(req) - reqDict = vars(req) - reqDict.pop('upscaler_1') - reqDict.pop('upscaler_2') - - reqDict['image_folder'] = list(map(processing_utils.decode_base64_to_file, reqDict['imageList'])) + reqDict['image_folder'] = list(map(decode_base64_to_file, reqDict['imageList'])) reqDict.pop('imageList') with self.queue_lock: - result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=1, image="", input_dir="", output_dir="") + result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict) - return ExtrasBatchImagesResponse(images=list(map(processing_utils.encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2]) + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2]) - def extras_folder_processing_api(self): - raise NotImplementedError + def extras_folder_processing_api(self, req:ExtrasFoldersRequest): + reqDict = setUpscalers(req) + + with self.queue_lock: + result = run_extras(extras_mode=2, image=None, image_folder=None, **reqDict) + + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2]) def pnginfoapi(self): raise NotImplementedError diff --git a/modules/api/models.py b/modules/api/models.py index 362e6277..6f096807 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -150,4 +150,8 @@ class ExtrasBatchImagesRequest(ExtrasBaseRequest): imageList: list[str] = Field(title="Images", description="List of images to work on. Must be Base64 strings") class ExtrasBatchImagesResponse(ExtraBaseResponse): - images: list[str] = Field(title="Images", description="The generated images in base64 format.") \ No newline at end of file + images: list[str] = Field(title="Images", description="The generated images in base64 format.") + +class ExtrasFoldersRequest(ExtrasBaseRequest): + input_dir: str = Field(title="Input directory", description="Directory path from where to take the images") + output_dir: str = Field(title="Output directory", description="Directory path to put the processsed images into") From 90f02c75220d187e075203a4e3b450bfba392c4d Mon Sep 17 00:00:00 2001 From: Bruno Seoane Date: Sun, 23 Oct 2022 16:03:30 -0300 Subject: [PATCH 087/321] Remove unused field and class --- modules/api/api.py | 6 +++--- modules/api/models.py | 6 +----- 2 files changed, 4 insertions(+), 8 deletions(-) diff --git a/modules/api/api.py b/modules/api/api.py index 7b4fbe29..799e3701 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -104,7 +104,7 @@ class Api: with self.queue_lock: result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict) - return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info_x=result[1], html_info=result[2]) + return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): reqDict = setUpscalers(req) @@ -115,7 +115,7 @@ class Api: with self.queue_lock: result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict) - return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2]) + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) def extras_folder_processing_api(self, req:ExtrasFoldersRequest): reqDict = setUpscalers(req) @@ -123,7 +123,7 @@ class Api: with self.queue_lock: result = run_extras(extras_mode=2, image=None, image_folder=None, **reqDict) - return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info_x=result[1], html_info=result[2]) + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) def pnginfoapi(self): raise NotImplementedError diff --git a/modules/api/models.py b/modules/api/models.py index 6f096807..e461d397 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -130,8 +130,7 @@ class ExtrasBaseRequest(BaseModel): extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") class ExtraBaseResponse(BaseModel): - html_info_x: str - html_info: str + html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.") class ExtrasSingleImageRequest(ExtrasBaseRequest): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") @@ -139,9 +138,6 @@ class ExtrasSingleImageRequest(ExtrasBaseRequest): class ExtrasSingleImageResponse(ExtraBaseResponse): image: str = Field(default=None, title="Image", description="The generated image in base64 format.") -class SerializableImage(BaseModel): - path: str = Field(title="Path", description="The image's path ()") - class ImageItem(BaseModel): data: str = Field(title="image data") name: str = Field(title="filename") From 6124575e1892259bf706db186de303acc9de47bf Mon Sep 17 00:00:00 2001 From: Dynamic Date: Mon, 24 Oct 2022 04:29:19 +0900 Subject: [PATCH 088/321] Translation complete --- localizations/ko_KR.json | 302 +++++++++++++++++++++------------------ 1 file changed, 160 insertions(+), 142 deletions(-) diff --git a/localizations/ko_KR.json b/localizations/ko_KR.json index a48ece87..6889de46 100644 --- a/localizations/ko_KR.json +++ b/localizations/ko_KR.json @@ -15,23 +15,24 @@ "A merger of the two checkpoints will be generated in your": "체크포인트들이 병합된 결과물이 당신의", "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", - "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", + "Add a second progress bar to the console that shows progress for an entire job.": "콘솔에 전체 작업의 진행도를 보여주는 2번째 프로그레스 바 추가하기", "Add difference": "차이점 추가", - "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", + "Add extended info (seed, prompt) to filename when saving grid": "그리드 저장 시 파일명에 추가 정보(시드, 프롬프트) 기입", "Add layer normalization": "레이어 정규화(normalization) 추가", - "Add model hash to generation information": "Add model hash to generation information", - "Add model name to generation information": "Add model name to generation information", + "Add model hash to generation information": "생성 정보에 모델 해시 추가", + "Add model name to generation information": "생성 정보에 모델 이름 추가", "Aesthetic imgs embedding": "스타일 이미지 임베딩", "Aesthetic learning rate": "스타일 학습 수", "Aesthetic steps": "스타일 스텝 수", "Aesthetic text for imgs": "스타일 텍스트", "Aesthetic weight": "스타일 가중치", - "Always print all generation info to standard output": "Always print all generation info to standard output", - "Always save all generated image grids": "Always save all generated image grids", + "Allowed categories for random artists selection when using the Roll button": "랜덤 버튼을 눌러 무작위 작가를 선택할 때 허용된 카테고리", + "Always print all generation info to standard output": "기본 아웃풋에 모든 생성 정보 항상 출력하기", + "Always save all generated image grids": "생성된 이미지 그리드 항상 저장하기", "Always save all generated images": "생성된 이미지 항상 저장하기", "api": "", "append": "뒤에 삽입", - "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", + "Apply color correction to img2img results to match original colors.": "이미지→이미지 결과물이 기존 색상과 일치하도록 색상 보정 적용하기", "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", "Apply settings": "설정 적용하기", "Batch count": "배치 수", @@ -43,29 +44,29 @@ "built with gradio": "gradio로 제작되었습니다", "Cancel generate forever": "반복 생성 취소", "CFG Scale": "CFG 스케일", - "Check progress": "Check progress", - "Check progress (first)": "Check progress (first)", + "Check progress": "진행도 체크", + "Check progress (first)": "진행도 체크 (처음)", "checkpoint": " 체크포인트 ", "Checkpoint Merger": "체크포인트 병합", "Checkpoint name": "체크포인트 이름", - "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", + "Checkpoints to cache in RAM": "RAM에 캐싱할 체크포인트 수", "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", - "Click to Upload": "Click to Upload", + "Click to Upload": "클릭해서 업로드하기", "Clip skip": "클립 건너뛰기", - "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP : 텍스트 파일 최대 라인 수 (0 = 제한 없음)", "CodeFormer visibility": "CodeFormer 가시성", "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer 가중치 (0 = 최대 효과, 1 = 최소 효과)", - "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer 가중치 설정값 (0 = 최대 효과, 1 = 최소 효과)", "Color variation": "색깔 다양성", "Collect": "즐겨찾기", "copy": "복사", "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", - "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", - "Create aesthetic images embedding": "Create aesthetic images embedding", + "Create a text file next to every image with generation parameters.": "생성된 이미지마다 생성 설정값을 담은 텍스트 파일 생성하기", + "Create aesthetic images embedding": "스타일 이미지 임베딩 생성하기", "Create embedding": "임베딩 생성", "Create flipped copies": "좌우로 뒤집은 복사본 생성", "Create hypernetwork": "하이퍼네트워크 생성", - "Create images embedding": "Create images embedding", + "Create images embedding": "이미지 임베딩 생성하기", "Crop and resize": "잘라낸 후 리사이징", "Crop to fit": "잘라내서 맞추기", "Custom Name (Optional)": "병합 모델 이름 (선택사항)", @@ -80,15 +81,15 @@ "Denoising strength change factor": "디노이즈 강도 변경 배수", "Destination directory": "결과물 저장 경로", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", - "Directory for saving images using the Save button": "Directory for saving images using the Save button", - "Directory name pattern": "Directory name pattern", + "Directory for saving images using the Save button": "저장 버튼을 이용해 저장하는 이미지들의 저장 경로", + "Directory name pattern": "디렉토리명 패턴", "directory.": "저장 경로에 저장됩니다.", - "Do not add watermark to images": "Do not add watermark to images", + "Do not add watermark to images": "이미지에 워터마크 추가하지 않기", "Do not do anything special": "아무것도 하지 않기", - "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", - "Do not show any images in results for web": "Do not show any images in results for web", + "Do not save grids consisting of one picture": "이미지가 1개뿐인 그리드는 저장하지 않기", + "Do not show any images in results for web": "웹에서 결과창에 아무 이미지도 보여주지 않기", "down": "아래쪽", - "Download localization template": "Download localization template", + "Download localization template": "현지화 템플릿 다운로드", "Download": "다운로드", "DPM adaptive": "DPM adaptive", "DPM fast": "DPM fast", @@ -98,65 +99,67 @@ "DPM2 Karras": "DPM2 Karras", "Draw legend": "범례 그리기", "Draw mask": "마스크 직접 그리기", - "Drop File Here": "Drop File Here", - "Drop Image Here": "Drop Image Here", + "Drop File Here": "파일을 끌어 놓으세요", + "Drop Image Here": "이미지를 끌어 놓으세요", "Embedding": "임베딩", "Embedding Learning rate": "임베딩 학습률", - "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", - "Enable full page image viewer": "Enable full page image viewer", - "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "강조 : (텍스트)를 이용해 모델의 텍스트에 대한 가중치를 더 강하게 주고 [텍스트]를 이용해 더 약하게 줍니다.", + "Enable full page image viewer": "전체 페이지 이미지 뷰어 활성화", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "더 예리하고 깔끔한 결과물을 위해 K 샘플러들에 양자화를 적용합니다. 존재하는 시드가 변경될 수 있습니다. 재시작이 필요합니다.", "End Page": "마지막 페이지", "Enter hypernetwork layer structure": "하이퍼네트워크 레이어 구조 입력", "Error": "오류", - "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "deepbooru에서 괄호를 역슬래시(\\)로 이스케이프 처리하기(가중치 강조가 아니라 실제 괄호로 사용되게 하기 위해)", "ESRGAN_4x": "ESRGAN_4x", "Eta": "Eta", - "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", - "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", - "Eta noise seed delta": "Eta noise seed delta", + "eta (noise multiplier) for ancestral samplers": "ancestral 샘플러를 위한 eta(노이즈 배수)값", + "eta (noise multiplier) for DDIM": "DDIM을 위한 eta(노이즈 배수)값", + "Eta noise seed delta": "Eta 노이즈 시드 변화", "Euler": "Euler", "Euler a": "Euler a", "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", "Existing Caption txt Action": "이미 존재하는 캡션 텍스트 처리", "Extra": "고급", "Extras": "부가기능", - "extras history": "extras history", - "Face restoration": "Face restoration", + "extras history": "부가기능 기록", + "Face restoration": "얼굴 보정", + "Face restoration model": "얼굴 보정 모델", "Fall-off exponent (lower=higher detail)": "감쇠 지수 (낮을수록 디테일이 올라감)", "favorites": "즐겨찾기", - "File": "File", - "File format for grids": "File format for grids", - "File format for images": "File format for images", + "File": "파일", + "File format for grids": "그리드 이미지 파일 형식", + "File format for images": "이미지 파일 형식", "File Name": "파일 이름", "File with inputs": "설정값 파일", - "Filename join string": "Filename join string", - "Filename word regex": "Filename word regex", + "Filename join string": "파일명 병합 문자열", + "Filename word regex": "파일명 정규표현식", "fill": "채우기", "fill it with colors of the image": "이미지의 색상으로 채우기", "fill it with latent space noise": "잠재 공간 노이즈로 채우기", "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", - "Filter NSFW content": "Filter NSFW content", + "Filter NSFW content": "성인 컨텐츠 필터링하기", "First Page": "처음 페이지", "Firstpass height": "초기 세로길이", "Firstpass width": "초기 가로길이", - "Font for image grids that have text": "Font for image grids that have text", + "Font for image grids that have text": "텍스트가 존재하는 그리드 이미지의 폰트", "for detailed explanation.": "를 참조하십시오.", "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SD 업스케일링에서 타일 간 몇 픽셀을 겹치게 할지 결정하는 설정값입니다. 타일들이 다시 한 이미지로 합쳐질 때, 눈에 띄는 이음매가 없도록 서로 겹치게 됩니다.", "Generate": "생성", "Generate forever": "반복 생성", "Generate Info": "생성 정보", "GFPGAN visibility": "GFPGAN 가시성", - "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "그리드 세로줄 수 : -1로 설정 시 자동 감지/0으로 설정 시 배치 크기와 동일", "Height": "세로", "Heun": "Heun", "hide": "api 숨기기", - "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", + "Hide samplers in user interface (requires restart)": "사용자 인터페이스에서 숨길 샘플러 선택(재시작 필요)", "Highres. fix": "고해상도 보정", "History": "기록", "Image Browser": "이미지 브라우저", + "Images Browser": "이미지 브라우저", "Images directory": "이미지 경로", "extras": "부가기능", - "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "훈련이 얼마나 빨리 이루어질지 정하는 값입니다. 값이 낮을수록 훈련 시간이 길어지고, 높은 값일수록 정확한 결과를 내는 데 실패하고 임베딩을 망가뜨릴 수 있습니다(임베딩이 망가진 경우에는 훈련 정보 텍스트박스에 손실(Loss) : nan 이라고 출력되게 됩니다. 이 경우에는 망가지지 않은 이전 백업본을 불러와야 합니다).\n\n학습률은 하나의 값으로 설정할 수도 있고, 다음 문법을 사용해 여러 값을 사용할 수도 있습니다 :\n\n학습률_1:최대 스텝수_1, 학습률_2:최대 스텝수_2, ...\n\n예 : 0.005:100, 1e-3:1000, 1e-5\n\n예의 설정값은 첫 100스텝동안 0.005의 학습률로, 그 이후 1000스텝까지는 1e-3으로, 남은 스텝은 1e-5로 훈련하게 됩니다.", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", @@ -166,111 +169,114 @@ "Hypernet str.": "하이퍼네트워크 강도", "Hypernetwork": "하이퍼네트워크", "Hypernetwork Learning rate": "하이퍼네트워크 학습률", - "Hypernetwork strength": "Hypernetwork strength", - "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", - "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", - "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "Hypernetwork strength": "하이퍼네트워크 강도", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "PNG 이미지가 4MB보다 크거나 가로 또는 세로길이가 4000보다 클 경우, 다운스케일 후 JPG로 복사본 저장하기", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "이 옵션이 활성화되면 생성된 이미지에 워터마크가 추가되지 않습니다. 경고 : 워터마크를 추가하지 않는다면, 비윤리적인 행동을 하는 중일지도 모릅니다.", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "이 값이 0이 아니라면, 시드에 해당 값이 더해지고, Eta가 있는 샘플러를 사용할 때 노이즈의 RNG 조정을 위해 해당 값이 사용됩니다. 이 설정으로 더 다양한 이미지를 생성하거나, 잘 알고 계시다면 특정 소프트웨어의 결과값을 재현할 수도 있습니다.", "ignore": "무시", - "Image": "Image", + "Image": "이미지", "Image for img2img": "Image for img2img", - "Image for inpainting with mask": "Image for inpainting with mask", - "Images filename pattern": "Images filename pattern", + "Image for inpainting with mask": "마스크로 인페인팅할 이미지", + "Images filename pattern": "이미지 파일명 패턴", "img2img": "이미지→이미지", "img2img alternative test": "이미지→이미지 대체버전 테스트", - "img2img DDIM discretize": "img2img DDIM discretize", - "img2img history": "img2img history", + "img2img DDIM discretize": "이미지→이미지 DDIM 이산화", + "img2img history": "이미지→이미지 기록", "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "루프백 모드에서는 매 루프마다 디노이즈 강도에 이 값이 곱해집니다. 1보다 작을 경우 다양성이 낮아져 결과 이미지들이 고정된 형태로 모일 겁니다. 1보다 클 경우 다양성이 높아져 결과 이미지들이 갈수록 혼란스러워지겠죠.", "Include Separate Images": "분리된 이미지 포함하기", - "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "75개보다 많은 토큰을 사용시 마지막 쉼표로부터 N개의 토큰 이내에 패딩을 추가해 통일성 증가시키기", "Initialization text": "초기화 텍스트", "Inpaint": "인페인트", "Inpaint at full resolution": "전체 해상도로 인페인트하기", - "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", + "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트시 패딩값(픽셀 단위)", "Inpaint masked": "마스크만 처리", "Inpaint not masked": "마스크 이외만 처리", "Input directory": "인풋 이미지 경로", "Interpolation Method": "보간 방법", "Interrogate\nCLIP": "CLIP\n분석", "Interrogate\nDeepBooru": "DeepBooru\n분석", - "Interrogate Options": "Interrogate Options", - "Interrogate: deepbooru score threshold": "Interrogate: deepbooru score threshold", - "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", - "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).", - "Interrogate: keep models in VRAM": "Interrogate: keep models in VRAM", - "Interrogate: maximum description length": "Interrogate: maximum description length", - "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", - "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", - "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", + "Interrogate Options": "분석 설정", + "Interrogate: deepbooru score threshold": "분석 : deepbooru 점수 임계값", + "Interrogate: deepbooru sort alphabetically": "분석 : deepbooru 알파벳 순서로 정렬하기", + "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "분석 : 결과물에 모델 태그의 랭크 포함하기 (캡션 바탕의 분석기에는 효과 없음)", + "Interrogate: keep models in VRAM": "분석 : VRAM에 모델 유지하기", + "Interrogate: maximum description length": "분석 : 설명 최대 길이", + "Interrogate: minimum description length (excluding artists, etc..)": "분석 : 설명 최소 길이(작가 등등..제외)", + "Interrogate: num_beams for BLIP": "분석 : BLIP의 num_beams값", + "Interrogate: use artists from artists.csv": "분석 : artists.csv의 작가들 사용하기", "Interrupt": "중단", "Is negative text": "네거티브 텍스트일시 체크", "Just resize": "리사이징", "Keep -1 for seeds": "시드값 -1로 유지", "keep whatever was there originally": "이미지 원본 유지", - "Label": "Label", + "Label": "라벨", "Lanczos": "Lanczos", - "Last prompt:": "Last prompt:", - "Last saved hypernetwork:": "Last saved hypernetwork:", - "Last saved image:": "Last saved image:", + "Last prompt:": "마지막 프롬프트 : ", + "Last saved hypernetwork:": "마지막으로 저장된 하이퍼네트워크 : ", + "Last saved image:": "마지막으로 저장된 이미지 : ", "latent noise": "잠재 노이즈", "latent nothing": "잠재 공백", "LDSR": "LDSR", - "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "LDSR processing steps. Lower = faster": "LDSR 스텝 수. 낮은 값 = 빠른 속도", "leakyrelu": "leakyrelu", "Leave blank to save images to the default path.": "기존 저장 경로에 이미지들을 저장하려면 비워두세요.", "left": "왼쪽", "linear": "linear", - "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "설정 탭이 아니라 상단의 빠른 설정 바에 위치시킬 설정 이름을 쉼표로 분리해서 입력하십시오. 설정 이름은 modules/shared.py에서 찾을 수 있습니다. 재시작이 필요합니다.", "LMS": "LMS", "LMS Karras": "LMS Karras", "Load": "불러오기", "Loading...": "로딩 중...", - "Localization (requires restart)": "Localization (requires restart)", + "Localization (requires restart)": "현지화 (재시작 필요)", "Log directory": "로그 경로", "Loopback": "루프백", "Loops": "루프 수", - "Loss:": "Loss:", + "Loss:": "손실(Loss) : ", "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", - "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "K-diffusion 샘플러들이 단일 이미지를 생성하는 것처럼 배치에서도 동일한 이미지를 생성하게 하기", "Make Zip when Save?": "저장 시 Zip 생성하기", "Mask": "마스크", "Mask blur": "마스크 블러", - "Mask mode": "Mask mode", + "Mask mode": "마스크 모드", "Masked content": "마스크된 부분", - "Masking mode": "Masking mode", - "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", + "Masking mode": "마스킹 모드", + "Max prompt words for [prompt_words] pattern": "[prompt_words] 패턴의 최대 프롬프트 단어 수", "Max steps": "최대 스텝 수", "Modules": "모듈", - "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", - "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.", + "Move face restoration model from VRAM into RAM after processing": "처리가 완료되면 얼굴 보정 모델을 VRAM에서 RAM으로 옮기기", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "하이퍼네트워크 훈련 진행 시 VAE와 CLIP을 RAM으로 옮기기. VRAM이 절약됩니다.", "Multiplier (M) - set to 0 to get model A": "배율 (M) - 0으로 적용하면 모델 A를 얻게 됩니다", "Name": "이름", "Negative prompt": "네거티브 프롬프트", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", "Next batch": "다음 묶음", "Next Page": "다음 페이지", - "None": "None", + "None": "없음", "Nothing": "없음", "Nothing found in the image.": "Nothing found in the image.", "number of images to delete consecutively next": "연속적으로 삭제할 이미지 수", - "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", + "Number of pictures displayed on each page": "각 페이지에 표시될 이미지 수", + "Minimum number of pages per load": "한번 불러올 때마다 불러올 최소 페이지 수", + "Number of grids in each row": "각 세로줄마다 표시될 그리드 수", + "Number of repeats for a single input image per epoch; used only for displaying epoch number": "세대(Epoch)당 단일 인풋 이미지의 반복 횟수 - 세대(Epoch) 숫자를 표시하는 데에만 사용됩니다. ", "Number of vectors per token": "토큰별 벡터 수", "Open for Clip Aesthetic!": "클립 스타일 기능을 활성화하려면 클릭!", "Open images output directory": "이미지 저장 경로 열기", "Open output directory": "저장 경로 열기", - "or": "or", + "or": "또는", "original": "원본 유지", "Original negative prompt": "기존 네거티브 프롬프트", "Original prompt": "기존 프롬프트", "Outpainting direction": "아웃페인팅 방향", "Outpainting mk2": "아웃페인팅 마크 2", "Output directory": "이미지 저장 경로", - "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", - "Output directory for images from extras tab": "Output directory for images from extras tab", - "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", - "Output directory for img2img grids": "Output directory for img2img grids", - "Output directory for img2img images": "Output directory for img2img images", - "Output directory for txt2img grids": "Output directory for txt2img grids", - "Output directory for txt2img images": "Output directory for txt2img images", + "Output directory for grids; if empty, defaults to two directories below": "그리드 이미지 저장 경로 - 비워둘 시 하단의 2가지 기본 경로로 설정됨", + "Output directory for images from extras tab": "부가기능 탭 저장 경로", + "Output directory for images; if empty, defaults to three directories below": "이미지 저장 경로 - 비워둘 시 하단의 3가지 기본 경로로 설정됨", + "Output directory for img2img grids": "이미지→이미지 그리드 저장 경로", + "Output directory for img2img images": "이미지→이미지 저장 경로", + "Output directory for txt2img grids": "텍스트→이미지 그리드 저장 경로", + "Output directory for txt2img images": "텍스트→이미지 저장 경로", "Override `Denoising strength` to 1?": "디노이즈 강도를 1로 적용할까요?", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "프롬프트 값을 기존 프롬프트와 동일하게 적용할까요?(네거티브 프롬프트 포함)", "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", @@ -279,20 +285,21 @@ "Overwrite Old Hypernetwork": "기존 하이퍼네트워크 덮어쓰기", "Page Index": "페이지 인덱스", "parameters": "설정값", - "Path to directory where to write outputs": "Path to directory where to write outputs", + "Path to directory where to write outputs": "결과물을 출력할 경로", "Path to directory with input images": "인풋 이미지가 있는 경로", - "Paths for saving": "Paths for saving", + "Paths for saving": "저장 경로", "Pixels to expand": "확장할 픽셀 수", "PLMS": "PLMS", "PNG Info": "PNG 정보", "Poor man's outpainting": "가난뱅이의 아웃페인팅", - "Preparing dataset from": "Preparing dataset from", + "Preload images at startup": "WebUI 가동 시 이미지 프리로드하기", + "Preparing dataset from": "준비된 데이터셋 경로 : ", "prepend": "앞에 삽입", "Preprocess": "전처리", "Preprocess images": "이미지 전처리", "Prev batch": "이전 묶음", "Prev Page": "이전 페이지", - "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", + "Prevent empty spots in grid (when set to autodetect)": "(자동 감지 사용시)그리드에 빈칸이 생기는 것 방지하기", "Primary model (A)": "주 모델 (A)", "Process an image, use it as an input, repeat.": "이미지를 생성하고, 생성한 이미지를 다시 원본으로 사용하는 과정을 반복합니다.", "Process images in a directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리의 이미지들을 처리합니다.", @@ -307,26 +314,26 @@ "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", "quad": "quad", - "Quality for saved jpeg images": "Quality for saved jpeg images", - "Quicksettings list": "Quicksettings list", + "Quality for saved jpeg images": "저장된 jpeg 이미지들의 품질", + "Quicksettings list": "빠른 설정 리스트", "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", "Randomness": "랜덤성", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", "Read parameters (prompt, etc...) from txt2img tab when making previews": "프리뷰 이미지 생성 시 텍스트→이미지 탭에서 설정값(프롬프트 등) 읽어오기", "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "추천 설정값 - 샘플링 스텝 수 : 80-100 , 샘플러 : Euler a, 디노이즈 강도 : 0.8", - "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "Reload custom script bodies (No ui updates, No restart)": "커스텀 스크립트 리로드하기(UI 업데이트 없음, 재시작 없음)", "relu": "relu", "Renew Page": "Renew Page", - "Request browser notifications": "Request browser notifications", + "Request browser notifications": "브라우저 알림 권한 요청", "Resize": "리사이징 배수", "Resize and fill": "리사이징 후 채우기", "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "설정된 해상도로 이미지 리사이징을 진행합니다. 원본과 가로/세로 길이가 일치하지 않을 경우, 부정확한 화면비의 이미지를 얻게 됩니다.", - "Resize mode": "Resize mode", + "Resize mode": "리사이징 모드", "Resize seed from height": "시드 리사이징 가로길이", "Resize seed from width": "시드 리사이징 세로길이", "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "이미지 전체가 설정된 해상도 내부에 들어가게 리사이징을 진행합니다. 빈 공간은 이미지의 색상으로 채웁니다.", "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "설정된 해상도 전체가 이미지로 가득차게 리사이징을 진행합니다. 튀어나오는 부분은 잘라냅니다.", - "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradio를 재시작하고 컴포넌트 새로고침하기 (커스텀 스크립트, ui.py, js, css만 해당됨)", "Restore faces": "얼굴 보정", "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", "Result = A * (1 - M) + B * M": "결과물 = A * (1 - M) + B * M", @@ -335,23 +342,23 @@ "right": "오른쪽", "Run": "가동", "Sampler": "샘플러", - "Sampler parameters": "Sampler parameters", + "Sampler parameters": "샘플러 설정값", "Sampling method": "샘플링 방법", "Sampling Steps": "샘플링 스텝 수", "Save": "저장", "Save a copy of embedding to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 임베딩을 저장합니다, 비활성화하려면 0으로 설정하십시오.", - "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", - "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", - "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", + "Save a copy of image before applying color correction to img2img results": "이미지→이미지 결과물에 색상 보정을 진행하기 전 이미지의 복사본을 저장하기", + "Save a copy of image before doing face restoration.": "얼굴 보정을 진행하기 전 이미지의 복사본을 저장하기", + "Save an csv containing the loss to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 손실(Loss)을 포함하는 csv 파일을 저장합니다, 비활성화하려면 0으로 설정하십시오.", "Save an image to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 이미지를 저장합니다, 비활성화하려면 0으로 설정하십시오.", "Save as float16": "float16으로 저장", - "Save grids to a subdirectory": "Save grids to a subdirectory", - "Save images to a subdirectory": "Save images to a subdirectory", + "Save grids to a subdirectory": "그리드 이미지를 하위 디렉토리에 저장하기", + "Save images to a subdirectory": "이미지를 하위 디렉토리에 저장하기", "Save images with embedding in PNG chunks": "PNG 청크로 이미지에 임베딩을 포함시켜 저장", "Save style": "스타일 저장", - "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", - "Saving images/grids": "Saving images/grids", - "Saving to a directory": "Saving to a directory", + "Save text information about generation parameters as chunks to png files": "이미지 생성 설정값을 PNG 청크에 텍스트로 저장", + "Saving images/grids": "이미지/그리드 저장", + "Saving to a directory": "디렉토리에 저장", "Scale by": "스케일링 배수 지정", "Scale to": "스케일링 사이즈 지정", "Script": "스크립트", @@ -363,6 +370,7 @@ "Seed": "시드", "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", "Select activation function of hypernetwork": "하이퍼네트워크 활성화 함수 선택", + "Select which Real-ESRGAN models to show in the web UI. (Requires restart)": "WebUI에 표시할 Real-ESRGAN 모델을 선택하십시오. (재시작 필요)", "Send to extras": "부가기능으로 전송", "Send to img2img": "이미지→이미지로 전송", "Send to inpaint": "인페인트로 전송", @@ -374,29 +382,30 @@ "set_index": "set_index", "Settings": "설정", "should be 2 or lower.": "이 2 이하여야 합니다.", - "Show generation progress in window title.": "Show generation progress in window title.", - "Show grid in results for web": "Show grid in results for web", - "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", - "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", - "Show progressbar": "Show progressbar", + "Show generation progress in window title.": "창 타이틀에 생성 진행도 보여주기", + "Show grid in results for web": "웹에서 결과창에 그리드 보여주기", + "Show image creation progress every N sampling steps. Set 0 to disable.": "N번째 샘플링 스텝마다 이미지 생성 과정 보이기 - 비활성화하려면 0으로 설정", + "Show images zoomed in by default in full page image viewer": "전체 페이지 이미지 뷰어에서 기본값으로 이미지 확대해서 보여주기", + "Show progressbar": "프로그레스 바 보이기", "Show result images": "이미지 결과 보이기", "Show Textbox": "텍스트박스 보이기", + "Show previews of all images generated in a batch as a grid": "배치에서 생성된 모든 이미지의 미리보기를 그리드 형식으로 보여주기", "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", "Sigma Churn": "시그마 섞기", - "sigma churn": "sigma churn", + "sigma churn": "시그마 섞기", "Sigma max": "시그마 최댓값", "Sigma min": "시그마 최솟값", "Sigma noise": "시그마 노이즈", - "sigma noise": "sigma noise", - "sigma tmin": "sigma tmin", + "sigma noise": "시그마 노이즈", + "sigma tmin": "시그마 tmin", "Single Image": "단일 이미지", "Skip": "건너뛰기", "Slerp angle": "구면 선형 보간 각도", "Slerp interpolation": "구면 선형 보간", "Source": "원본", "Source directory": "원본 경로", - "Split image threshold": "Split image threshold", - "Split image overlap ratio": "Split image overlap ratio", + "Split image threshold": "이미지 분할 임계값", + "Split image overlap ratio": "이미지 분할 겹침 비율", "Split oversized images": "사이즈가 큰 이미지 분할하기", "Stable Diffusion": "Stable Diffusion", "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", @@ -407,20 +416,20 @@ "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", "Style 1": "스타일 1", "Style 2": "스타일 2", - "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "적용할 스타일 - 스타일은 긍정/부정 프롬프트 모두에 대한 설정값을 가지고 있고 양쪽 모두에 적용 가능합니다.", "SwinIR 4x": "SwinIR 4x", "Sys VRAM:": "시스템 VRAM : ", - "System": "System", + "System": "시스템", "Tertiary model (C)": "3차 모델 (C)", - "Textbox": "Textbox", - "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", - "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "Textbox": "텍스트박스", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "이 정규표현식은 파일명으로부터 단어를 추출하는 데 사용됩니다. 추출된 단어들은 하단의 설정을 이용해 라벨 텍스트로 변환되어 훈련에 사용됩니다. 파일명 텍스트를 유지하려면 비워두십시오.", + "This string will be used to join split words into a single line if the option above is enabled.": "이 문자열은 상단 설정이 활성화되어있을 때 분리된 단어들을 한 줄로 합치는 데 사용됩니다.", "This text is used to rotate the feature space of the imgs embs": "이 텍스트는 이미지 임베딩의 특징 공간을 회전하는 데 사용됩니다.", "Tile overlap": "타일 겹침", - "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", - "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", - "Tile size for all SwinIR.": "Tile size for all SwinIR.", - "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "ESRGAN 업스케일러들의 타일 중첩 수치, 픽셀 단위. 낮은 값 = 눈에 띄는 이음매.", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "SwinIR의 타일 중첩 수치, 픽셀 단위. 낮은 값 = 눈에 띄는 이음매.", + "Tile size for all SwinIR.": "SwinIR의 타일 사이즈.", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "ESRGAN 업스케일러들의 타일 사이즈. 0 = 타일링 없음.", "Tiling": "타일링", "Time taken:": "소요 시간 : ", "Torch active/reserved:": "활성화/예약된 Torch 양 : ", @@ -429,51 +438,60 @@ "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "임베딩이나 하이퍼네트워크를 훈련시킵니다. 1:1 비율의 이미지가 있는 경로를 지정해야 합니다.", "Train Embedding": "임베딩 훈련", "Train Hypernetwork": "하이퍼네트워크 훈련", - "Training": "Training", + "Training": "훈련", "txt2img": "텍스트→이미지", - "txt2img history": "txt2img history", + "txt2img history": "텍스트→이미지 기록", "uniform": "uniform", "up": "위쪽", "Upload mask": "마스크 업로드하기", - "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", + "Upscale latent space image when doing hires. fix": "고해상도 보정 사용시 잠재 공간 이미지 업스케일하기", "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "마스크된 부분을 설정된 해상도로 업스케일하고, 인페인팅을 진행한 뒤, 다시 다운스케일 후 원본 이미지에 붙여넣습니다.", "Upscaler": "업스케일러", "Upscaler 1": "업스케일러 1", "Upscaler 2": "업스케일러 2", "Upscaler 2 visibility": "업스케일러 2 가시성", - "Upscaler for img2img": "Upscaler for img2img", - "Upscaling": "Upscaling", + "Upscaler for img2img": "이미지→이미지 업스케일러", + "Upscaling": "업스케일링", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", "Use an empty output directory to save pictures normally instead of writing to the output directory.": "저장 경로를 비워두면 기본 저장 폴더에 이미지들이 저장됩니다.", "Use BLIP for caption": "캡션에 BLIP 사용", "Use deepbooru for caption": "캡션에 deepbooru 사용", "Use dropout": "드롭아웃 사용", - "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", - "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", - "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", - "User interface": "User interface", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "다음 태그들을 사용해 이미지 파일명 형식을 결정하세요 : [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]. 비워두면 기본값으로 설정됩니다.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "다음 태그들을 사용해 이미지와 그리드의 하위 디렉토리명의 형식을 결정하세요 : [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]. 비워두면 기본값으로 설정됩니다.", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "옛 방식의 강조 구현을 사용합니다. 옛 시드를 재현하는 데 효과적일 수 있습니다.", + "Use original name for output filename during batch process in extras tab": "부가기능 탭에서 이미지를 여러장 처리 시 결과물 파일명에 기존 파일명 사용하기", + "use spaces for tags in deepbooru": "deepbooru에서 태그에 공백 사용", + "User interface": "사용자 인터페이스", "Var. seed": "바리에이션 시드", "Var. strength": "바리에이션 강도", "Variation seed": "바리에이션 시드", "Variation strength": "바리에이션 강도", "view": "api 보이기", - "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", + "VRAM usage polls per second during generation. Set to 0 to disable.": "생성 도중 초당 VRAM 사용량 폴링 수. 비활성화하려면 0으로 설정하십시오.", "Weighted sum": "가중 합", "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusion으로 이미지를 생성하기 전 마스크된 부분에 무엇을 채울지 결정하는 설정값", - "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", - "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", - "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "PNG 정보나 붙여넣은 텍스트로부터 생성 설정값을 읽어올 때, 선택된 모델/체크포인트는 변경하지 않기.", + "When using \"Save\" button, save images to a subdirectory": "저장 버튼 사용시, 이미지를 하위 디렉토리에 저장하기", + "When using 'Save' button, only save a single selected image": "저장 버튼 사용시, 선택된 이미지 1개만 저장하기", "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", "Width": "가로", "wiki": " 위키", "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "이미지를 설정된 사이즈의 2배로 업스케일합니다. 상단의 가로와 세로 슬라이더를 이용해 타일 사이즈를 지정하세요.", - "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "이미지→이미지 진행 시, 슬라이더로 설정한 스텝 수를 정확히 실행하기 (일반적으로 디노이즈 강도가 낮을수록 실제 설정된 스텝 수보다 적게 진행됨)", "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", "X type": "X축", "X values": "X 설정값", "X/Y plot": "X/Y 플롯", "Y type": "Y축", - "Y values": "Y 설정값" + "Y values": "Y 설정값", + "step1 min/max": "스텝1 최소/최대", + "step2 min/max": "스텝2 최소/최대", + "step count": "스텝 변화 횟수", + "cfg1 min/max": "CFG1 최소/최대", + "cfg2 min/max": "CFG2 최소/최대", + "cfg count": "CFG 변화 횟수", + "x/y change": "X/Y축 변경", + "Random": "랜덤", + "Random grid": "랜덤 그리드" } \ No newline at end of file From 2ce44fc48e3ee6c73042ea83748772fe3eb45b1e Mon Sep 17 00:00:00 2001 From: Dynamic Date: Mon, 24 Oct 2022 04:38:16 +0900 Subject: [PATCH 089/321] Finalize ko_KR.json --- localizations/ko_KR.json | 44 ++++++++++++++++++++-------------------- 1 file changed, 22 insertions(+), 22 deletions(-) diff --git a/localizations/ko_KR.json b/localizations/ko_KR.json index 6889de46..ab12c37e 100644 --- a/localizations/ko_KR.json +++ b/localizations/ko_KR.json @@ -5,10 +5,10 @@ "❮": "❮", "❯": "❯", "⤡": "⤡", - " images in this directory. Loaded ": "개의 이미지가 이 경로에 존재합니다. ", " images during ": "개의 이미지를 불러왔고, 생성 기간은 ", - ", divided into ": "입니다. ", + " images in this directory. Loaded ": "개의 이미지가 이 경로에 존재합니다. ", " pages": "페이지로 나뉘어 표시합니다.", + ", divided into ": "입니다. ", "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", "[wiki]": " [위키] 참조", "A directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리를 선택해 주세요.", @@ -43,7 +43,10 @@ "BSRGAN 4x": "BSRGAN 4x", "built with gradio": "gradio로 제작되었습니다", "Cancel generate forever": "반복 생성 취소", + "cfg count": "CFG 변화 횟수", "CFG Scale": "CFG 스케일", + "cfg1 min/max": "CFG1 최소/최대", + "cfg2 min/max": "CFG2 최소/최대", "Check progress": "진행도 체크", "Check progress (first)": "진행도 체크 (처음)", "checkpoint": " 체크포인트 ", @@ -57,8 +60,8 @@ "CodeFormer visibility": "CodeFormer 가시성", "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer 가중치 (0 = 최대 효과, 1 = 최소 효과)", "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer 가중치 설정값 (0 = 최대 효과, 1 = 최소 효과)", - "Color variation": "색깔 다양성", "Collect": "즐겨찾기", + "Color variation": "색깔 다양성", "copy": "복사", "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", "Create a text file next to every image with generation parameters.": "생성된 이미지마다 생성 설정값을 담은 텍스트 파일 생성하기", @@ -89,8 +92,8 @@ "Do not save grids consisting of one picture": "이미지가 1개뿐인 그리드는 저장하지 않기", "Do not show any images in results for web": "웹에서 결과창에 아무 이미지도 보여주지 않기", "down": "아래쪽", - "Download localization template": "현지화 템플릿 다운로드", "Download": "다운로드", + "Download localization template": "현지화 템플릿 다운로드", "DPM adaptive": "DPM adaptive", "DPM fast": "DPM fast", "DPM2": "DPM2", @@ -121,6 +124,7 @@ "Existing Caption txt Action": "이미 존재하는 캡션 텍스트 처리", "Extra": "고급", "Extras": "부가기능", + "extras": "부가기능", "extras history": "부가기능 기록", "Face restoration": "얼굴 보정", "Face restoration model": "얼굴 보정 모델", @@ -155,10 +159,6 @@ "Hide samplers in user interface (requires restart)": "사용자 인터페이스에서 숨길 샘플러 선택(재시작 필요)", "Highres. fix": "고해상도 보정", "History": "기록", - "Image Browser": "이미지 브라우저", - "Images Browser": "이미지 브라우저", - "Images directory": "이미지 경로", - "extras": "부가기능", "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "훈련이 얼마나 빨리 이루어질지 정하는 값입니다. 값이 낮을수록 훈련 시간이 길어지고, 높은 값일수록 정확한 결과를 내는 데 실패하고 임베딩을 망가뜨릴 수 있습니다(임베딩이 망가진 경우에는 훈련 정보 텍스트박스에 손실(Loss) : nan 이라고 출력되게 됩니다. 이 경우에는 망가지지 않은 이전 백업본을 불러와야 합니다).\n\n학습률은 하나의 값으로 설정할 수도 있고, 다음 문법을 사용해 여러 값을 사용할 수도 있습니다 :\n\n학습률_1:최대 스텝수_1, 학습률_2:최대 스텝수_2, ...\n\n예 : 0.005:100, 1e-3:1000, 1e-5\n\n예의 설정값은 첫 100스텝동안 0.005의 학습률로, 그 이후 1000스텝까지는 1e-3으로, 남은 스텝은 1e-5로 훈련하게 됩니다.", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", @@ -175,8 +175,11 @@ "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "이 값이 0이 아니라면, 시드에 해당 값이 더해지고, Eta가 있는 샘플러를 사용할 때 노이즈의 RNG 조정을 위해 해당 값이 사용됩니다. 이 설정으로 더 다양한 이미지를 생성하거나, 잘 알고 계시다면 특정 소프트웨어의 결과값을 재현할 수도 있습니다.", "ignore": "무시", "Image": "이미지", + "Image Browser": "이미지 브라우저", "Image for img2img": "Image for img2img", "Image for inpainting with mask": "마스크로 인페인팅할 이미지", + "Images Browser": "이미지 브라우저", + "Images directory": "이미지 경로", "Images filename pattern": "이미지 파일명 패턴", "img2img": "이미지→이미지", "img2img alternative test": "이미지→이미지 대체버전 테스트", @@ -242,6 +245,7 @@ "Masking mode": "마스킹 모드", "Max prompt words for [prompt_words] pattern": "[prompt_words] 패턴의 최대 프롬프트 단어 수", "Max steps": "최대 스텝 수", + "Minimum number of pages per load": "한번 불러올 때마다 불러올 최소 페이지 수", "Modules": "모듈", "Move face restoration model from VRAM into RAM after processing": "처리가 완료되면 얼굴 보정 모델을 VRAM에서 RAM으로 옮기기", "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "하이퍼네트워크 훈련 진행 시 VAE와 CLIP을 RAM으로 옮기기. VRAM이 절약됩니다.", @@ -254,10 +258,9 @@ "None": "없음", "Nothing": "없음", "Nothing found in the image.": "Nothing found in the image.", + "Number of grids in each row": "각 세로줄마다 표시될 그리드 수", "number of images to delete consecutively next": "연속적으로 삭제할 이미지 수", "Number of pictures displayed on each page": "각 페이지에 표시될 이미지 수", - "Minimum number of pages per load": "한번 불러올 때마다 불러올 최소 페이지 수", - "Number of grids in each row": "각 세로줄마다 표시될 그리드 수", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "세대(Epoch)당 단일 인풋 이미지의 반복 횟수 - 세대(Epoch) 숫자를 표시하는 데에만 사용됩니다. ", "Number of vectors per token": "토큰별 벡터 수", "Open for Clip Aesthetic!": "클립 스타일 기능을 활성화하려면 클릭!", @@ -317,6 +320,8 @@ "Quality for saved jpeg images": "저장된 jpeg 이미지들의 품질", "Quicksettings list": "빠른 설정 리스트", "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", + "Random": "랜덤", + "Random grid": "랜덤 그리드", "Randomness": "랜덤성", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", "Read parameters (prompt, etc...) from txt2img tab when making previews": "프리뷰 이미지 생성 시 텍스트→이미지 탭에서 설정값(프롬프트 등) 읽어오기", @@ -386,10 +391,10 @@ "Show grid in results for web": "웹에서 결과창에 그리드 보여주기", "Show image creation progress every N sampling steps. Set 0 to disable.": "N번째 샘플링 스텝마다 이미지 생성 과정 보이기 - 비활성화하려면 0으로 설정", "Show images zoomed in by default in full page image viewer": "전체 페이지 이미지 뷰어에서 기본값으로 이미지 확대해서 보여주기", + "Show previews of all images generated in a batch as a grid": "배치에서 생성된 모든 이미지의 미리보기를 그리드 형식으로 보여주기", "Show progressbar": "프로그레스 바 보이기", "Show result images": "이미지 결과 보이기", "Show Textbox": "텍스트박스 보이기", - "Show previews of all images generated in a batch as a grid": "배치에서 생성된 모든 이미지의 미리보기를 그리드 형식으로 보여주기", "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", "Sigma Churn": "시그마 섞기", "sigma churn": "시그마 섞기", @@ -404,11 +409,14 @@ "Slerp interpolation": "구면 선형 보간", "Source": "원본", "Source directory": "원본 경로", - "Split image threshold": "이미지 분할 임계값", "Split image overlap ratio": "이미지 분할 겹침 비율", + "Split image threshold": "이미지 분할 임계값", "Split oversized images": "사이즈가 큰 이미지 분할하기", "Stable Diffusion": "Stable Diffusion", "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "step count": "스텝 변화 횟수", + "step1 min/max": "스텝1 최소/최대", + "step2 min/max": "스텝2 최소/최대", "Step:": "Step:", "Steps": "스텝 수", "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", @@ -482,16 +490,8 @@ "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", "X type": "X축", "X values": "X 설정값", + "x/y change": "X/Y축 변경", "X/Y plot": "X/Y 플롯", "Y type": "Y축", - "Y values": "Y 설정값", - "step1 min/max": "스텝1 최소/최대", - "step2 min/max": "스텝2 최소/최대", - "step count": "스텝 변화 횟수", - "cfg1 min/max": "CFG1 최소/최대", - "cfg2 min/max": "CFG2 최소/최대", - "cfg count": "CFG 변화 횟수", - "x/y change": "X/Y축 변경", - "Random": "랜덤", - "Random grid": "랜덤 그리드" + "Y values": "Y 설정값" } \ No newline at end of file From 124e44cf1eed1edc68954f63a2a9bc428aabbcec Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 24 Oct 2022 09:51:56 +0800 Subject: [PATCH 090/321] remove browser to extension --- .gitignore | 1 - javascript/images_history.js | 200 ----------------- javascript/inspiration.js | 48 ---- modules/images_history.py | 424 ----------------------------------- modules/inspiration.py | 193 ---------------- modules/script_callbacks.py | 2 - modules/shared.py | 15 -- modules/ui.py | 20 +- 8 files changed, 4 insertions(+), 899 deletions(-) delete mode 100644 javascript/images_history.js delete mode 100644 javascript/inspiration.js delete mode 100644 modules/images_history.py delete mode 100644 modules/inspiration.py diff --git a/.gitignore b/.gitignore index 8d01bc6a..70660c51 100644 --- a/.gitignore +++ b/.gitignore @@ -29,5 +29,4 @@ notification.mp3 /textual_inversion .vscode /extensions - /inspiration diff --git a/javascript/images_history.js b/javascript/images_history.js deleted file mode 100644 index c9aa76f8..00000000 --- a/javascript/images_history.js +++ /dev/null @@ -1,200 +0,0 @@ -var images_history_click_image = function(){ - if (!this.classList.contains("transform")){ - var gallery = images_history_get_parent_by_class(this, "images_history_cantainor"); - var buttons = gallery.querySelectorAll(".gallery-item"); - var i = 0; - var hidden_list = []; - buttons.forEach(function(e){ - if (e.style.display == "none"){ - hidden_list.push(i); - } - i += 1; - }) - if (hidden_list.length > 0){ - setTimeout(images_history_hide_buttons, 10, hidden_list, gallery); - } - } - images_history_set_image_info(this); -} - -function images_history_disabled_del(){ - gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){ - btn.setAttribute('disabled','disabled'); - }); -} - -function images_history_get_parent_by_class(item, class_name){ - var parent = item.parentElement; - while(!parent.classList.contains(class_name)){ - parent = parent.parentElement; - } - return parent; -} - -function images_history_get_parent_by_tagname(item, tagname){ - var parent = item.parentElement; - tagname = tagname.toUpperCase() - while(parent.tagName != tagname){ - parent = parent.parentElement; - } - return parent; -} - -function images_history_hide_buttons(hidden_list, gallery){ - var buttons = gallery.querySelectorAll(".gallery-item"); - var num = 0; - buttons.forEach(function(e){ - if (e.style.display == "none"){ - num += 1; - } - }); - if (num == hidden_list.length){ - setTimeout(images_history_hide_buttons, 10, hidden_list, gallery); - } - for( i in hidden_list){ - buttons[hidden_list[i]].style.display = "none"; - } -} - -function images_history_set_image_info(button){ - var buttons = images_history_get_parent_by_tagname(button, "DIV").querySelectorAll(".gallery-item"); - var index = -1; - var i = 0; - buttons.forEach(function(e){ - if(e == button){ - index = i; - } - if(e.style.display != "none"){ - i += 1; - } - }); - var gallery = images_history_get_parent_by_class(button, "images_history_cantainor"); - var set_btn = gallery.querySelector(".images_history_set_index"); - var curr_idx = set_btn.getAttribute("img_index", index); - if (curr_idx != index) { - set_btn.setAttribute("img_index", index); - images_history_disabled_del(); - } - set_btn.click(); - -} - -function images_history_get_current_img(tabname, img_index, files){ - return [ - tabname, - gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"), - files - ]; -} - -function images_history_delete(del_num, tabname, image_index){ - image_index = parseInt(image_index); - var tab = gradioApp().getElementById(tabname + '_images_history'); - var set_btn = tab.querySelector(".images_history_set_index"); - var buttons = []; - tab.querySelectorAll(".gallery-item").forEach(function(e){ - if (e.style.display != 'none'){ - buttons.push(e); - } - }); - var img_num = buttons.length / 2; - del_num = Math.min(img_num - image_index, del_num) - if (img_num <= del_num){ - setTimeout(function(tabname){ - gradioApp().getElementById(tabname + '_images_history_renew_page').click(); - }, 30, tabname); - } else { - var next_img - for (var i = 0; i < del_num; i++){ - buttons[image_index + i].style.display = 'none'; - buttons[image_index + i + img_num].style.display = 'none'; - next_img = image_index + i + 1 - } - var bnt; - if (next_img >= img_num){ - btn = buttons[image_index - 1]; - } else { - btn = buttons[next_img]; - } - setTimeout(function(btn){btn.click()}, 30, btn); - } - images_history_disabled_del(); - -} - -function images_history_turnpage(tabname){ - gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled'); - var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item"); - buttons.forEach(function(elem) { - elem.style.display = 'block'; - }) -} - -function images_history_enable_del_buttons(){ - gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){ - btn.removeAttribute('disabled'); - }) -} - -function images_history_init(){ - var tabnames = gradioApp().getElementById("images_history_tabnames_list") - if (tabnames){ - images_history_tab_list = tabnames.querySelector("textarea").value.split(",") - for (var i in images_history_tab_list ){ - var tab = images_history_tab_list[i]; - gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor"); - gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index"); - gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button"); - gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery"); - gradioApp().getElementById(tab + "_images_history_start").setAttribute("style","padding:20px;font-size:25px"); - } - - //preload - if (gradioApp().getElementById("images_history_preload").querySelector("input").checked ){ - var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div"); - tabs_box.setAttribute("id", "images_history_tab"); - var tab_btns = tabs_box.querySelectorAll("button"); - for (var i in images_history_tab_list){ - var tabname = images_history_tab_list[i] - tab_btns[i].setAttribute("tabname", tabname); - tab_btns[i].addEventListener('click', function(){ - var tabs_box = gradioApp().getElementById("images_history_tab"); - if (!tabs_box.classList.contains(this.getAttribute("tabname"))) { - gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click(); - tabs_box.classList.add(this.getAttribute("tabname")) - } - }); - } - tab_btns[0].click() - } - } else { - setTimeout(images_history_init, 500); - } -} - -var images_history_tab_list = ""; -setTimeout(images_history_init, 500); -document.addEventListener("DOMContentLoaded", function() { - var mutationObserver = new MutationObserver(function(m){ - if (images_history_tab_list != ""){ - for (var i in images_history_tab_list ){ - let tabname = images_history_tab_list[i] - var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item'); - buttons.forEach(function(bnt){ - bnt.addEventListener('click', images_history_click_image, true); - }); - - var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg"); - if (cls_btn){ - cls_btn.addEventListener('click', function(){ - gradioApp().getElementById(tabname + '_images_history_renew_page').click(); - }, false); - } - - } - } - }); - mutationObserver.observe(gradioApp(), { childList:true, subtree:true }); -}); - - diff --git a/javascript/inspiration.js b/javascript/inspiration.js deleted file mode 100644 index 39844544..00000000 --- a/javascript/inspiration.js +++ /dev/null @@ -1,48 +0,0 @@ -function public_image_index_in_gallery(item, gallery){ - var imgs = gallery.querySelectorAll("img.h-full") - var index; - var i = 0; - imgs.forEach(function(e){ - if (e == item) - index = i; - i += 1; - }); - var all_imgs = gallery.querySelectorAll("img") - if (all_imgs.length > imgs.length){ - var num = imgs.length / 2 - index = (index < num) ? index : (index - num) - } - return index; -} - -function inspiration_selected(name, name_list){ - var btn = gradioApp().getElementById("inspiration_select_button") - return [gradioApp().getElementById("inspiration_select_button").getAttribute("img-index")]; -} - -function inspiration_click_get_button(){ - gradioApp().getElementById("inspiration_get_button").click(); -} - -var inspiration_image_click = function(){ - var index = public_image_index_in_gallery(this, gradioApp().getElementById("inspiration_gallery")); - var btn = gradioApp().getElementById("inspiration_select_button"); - btn.setAttribute("img-index", index); - setTimeout(function(btn){btn.click();}, 10, btn); -} - -document.addEventListener("DOMContentLoaded", function() { - var mutationObserver = new MutationObserver(function(m){ - var gallery = gradioApp().getElementById("inspiration_gallery") - if (gallery) { - var node = gallery.querySelector(".absolute.backdrop-blur.h-full") - if (node) { - node.style.display = "None"; - } - gallery.querySelectorAll('img').forEach(function(e){ - e.onclick = inspiration_image_click - }); - } - }); - mutationObserver.observe( gradioApp(), { childList:true, subtree:true }); -}); diff --git a/modules/images_history.py b/modules/images_history.py deleted file mode 100644 index bc5cf11f..00000000 --- a/modules/images_history.py +++ /dev/null @@ -1,424 +0,0 @@ -import os -import shutil -import time -import hashlib -import gradio -system_bak_path = "webui_log_and_bak" -custom_tab_name = "custom fold" -faverate_tab_name = "favorites" -tabs_list = ["txt2img", "img2img", "extras", faverate_tab_name] -def is_valid_date(date): - try: - time.strptime(date, "%Y%m%d") - return True - except: - return False - -def reduplicative_file_move(src, dst): - def same_name_file(basename, path): - name, ext = os.path.splitext(basename) - f_list = os.listdir(path) - max_num = 0 - for f in f_list: - if len(f) <= len(basename): - continue - f_ext = f[-len(ext):] if len(ext) > 0 else "" - if f[:len(name)] == name and f_ext == ext: - if f[len(name)] == "(" and f[-len(ext)-1] == ")": - number = f[len(name)+1:-len(ext)-1] - if number.isdigit(): - if int(number) > max_num: - max_num = int(number) - return f"{name}({max_num + 1}){ext}" - name = os.path.basename(src) - save_name = os.path.join(dst, name) - if not os.path.exists(save_name): - shutil.move(src, dst) - else: - name = same_name_file(name, dst) - shutil.move(src, os.path.join(dst, name)) - -def traverse_all_files(curr_path, image_list, all_type=False): - try: - f_list = os.listdir(curr_path) - except: - if all_type or (curr_path[-10:].rfind(".") > 0 and curr_path[-4:] != ".txt" and curr_path[-4:] != ".csv"): - image_list.append(curr_path) - return image_list - for file in f_list: - file = os.path.join(curr_path, file) - if (not all_type) and (file[-4:] == ".txt" or file[-4:] == ".csv"): - pass - elif os.path.isfile(file) and file[-10:].rfind(".") > 0: - image_list.append(file) - else: - image_list = traverse_all_files(file, image_list) - return image_list - -def auto_sorting(dir_name): - bak_path = os.path.join(dir_name, system_bak_path) - if not os.path.exists(bak_path): - os.mkdir(bak_path) - log_file = None - files_list = [] - f_list = os.listdir(dir_name) - for file in f_list: - if file == system_bak_path: - continue - file_path = os.path.join(dir_name, file) - if not is_valid_date(file): - if file[-10:].rfind(".") > 0: - files_list.append(file_path) - else: - files_list = traverse_all_files(file_path, files_list, all_type=True) - - for file in files_list: - date_str = time.strftime("%Y%m%d",time.localtime(os.path.getmtime(file))) - file_path = os.path.dirname(file) - hash_path = hashlib.md5(file_path.encode()).hexdigest() - path = os.path.join(dir_name, date_str, hash_path) - if not os.path.exists(path): - os.makedirs(path) - if log_file is None: - log_file = open(os.path.join(bak_path,"path_mapping.csv"),"a") - log_file.write(f"{hash_path},{file_path}\n") - reduplicative_file_move(file, path) - - date_list = [] - f_list = os.listdir(dir_name) - for f in f_list: - if is_valid_date(f): - date_list.append(f) - elif f == system_bak_path: - continue - else: - try: - reduplicative_file_move(os.path.join(dir_name, f), bak_path) - except: - pass - - today = time.strftime("%Y%m%d",time.localtime(time.time())) - if today not in date_list: - date_list.append(today) - return sorted(date_list, reverse=True) - -def archive_images(dir_name, date_to): - filenames = [] - batch_size =int(opts.images_history_num_per_page * opts.images_history_pages_num) - if batch_size <= 0: - batch_size = opts.images_history_num_per_page * 6 - today = time.strftime("%Y%m%d",time.localtime(time.time())) - date_to = today if date_to is None or date_to == "" else date_to - date_to_bak = date_to - if False: #opts.images_history_reconstruct_directory: - date_list = auto_sorting(dir_name) - for date in date_list: - if date <= date_to: - path = os.path.join(dir_name, date) - if date == today and not os.path.exists(path): - continue - filenames = traverse_all_files(path, filenames) - if len(filenames) > batch_size: - break - filenames = sorted(filenames, key=lambda file: -os.path.getmtime(file)) - else: - filenames = traverse_all_files(dir_name, filenames) - total_num = len(filenames) - tmparray = [(os.path.getmtime(file), file) for file in filenames ] - date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400 - filenames = [] - date_list = {date_to:None} - date = time.strftime("%Y%m%d",time.localtime(time.time())) - for t, f in tmparray: - date = time.strftime("%Y%m%d",time.localtime(t)) - date_list[date] = None - if t <= date_stamp: - filenames.append((t, f ,date)) - date_list = sorted(list(date_list.keys()), reverse=True) - sort_array = sorted(filenames, key=lambda x:-x[0]) - if len(sort_array) > batch_size: - date = sort_array[batch_size][2] - filenames = [x[1] for x in sort_array] - else: - date = date_to if len(sort_array) == 0 else sort_array[-1][2] - filenames = [x[1] for x in sort_array] - filenames = [x[1] for x in sort_array if x[2]>= date] - num = len(filenames) - last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000)) - date = date[:4] + "/" + date[4:6] + "/" + date[6:8] - date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8] - load_info = "
" - load_info += f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages" - load_info += "
" - _, image_list, _, _, visible_num = get_recent_images(1, 0, filenames) - return ( - date_to, - load_info, - filenames, - 1, - image_list, - "", - "", - visible_num, - last_date_from, - gradio.update(visible=total_num > num) - ) - -def delete_image(delete_num, name, filenames, image_index, visible_num): - if name == "": - return filenames, delete_num - else: - delete_num = int(delete_num) - visible_num = int(visible_num) - image_index = int(image_index) - index = list(filenames).index(name) - i = 0 - new_file_list = [] - for name in filenames: - if i >= index and i < index + delete_num: - if os.path.exists(name): - if visible_num == image_index: - new_file_list.append(name) - i += 1 - continue - print(f"Delete file {name}") - os.remove(name) - visible_num -= 1 - txt_file = os.path.splitext(name)[0] + ".txt" - if os.path.exists(txt_file): - os.remove(txt_file) - else: - print(f"Not exists file {name}") - else: - new_file_list.append(name) - i += 1 - return new_file_list, 1, visible_num - -def save_image(file_name): - if file_name is not None and os.path.exists(file_name): - shutil.copy(file_name, opts.outdir_save) - -def get_recent_images(page_index, step, filenames): - page_index = int(page_index) - num_of_imgs_per_page = int(opts.images_history_num_per_page) - max_page_index = len(filenames) // num_of_imgs_per_page + 1 - page_index = max_page_index if page_index == -1 else page_index + step - page_index = 1 if page_index < 1 else page_index - page_index = max_page_index if page_index > max_page_index else page_index - idx_frm = (page_index - 1) * num_of_imgs_per_page - image_list = filenames[idx_frm:idx_frm + num_of_imgs_per_page] - length = len(filenames) - visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page - visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num - return page_index, image_list, "", "", visible_num - -def loac_batch_click(date_to): - if date_to is None: - return time.strftime("%Y%m%d",time.localtime(time.time())), [] - else: - return None, [] -def forward_click(last_date_from, date_to_recorder): - if len(date_to_recorder) == 0: - return None, [] - if last_date_from == date_to_recorder[-1]: - date_to_recorder = date_to_recorder[:-1] - if len(date_to_recorder) == 0: - return None, [] - return date_to_recorder[-1], date_to_recorder[:-1] - -def backward_click(last_date_from, date_to_recorder): - if last_date_from is None or last_date_from == "": - return time.strftime("%Y%m%d",time.localtime(time.time())), [] - if len(date_to_recorder) == 0 or last_date_from != date_to_recorder[-1]: - date_to_recorder.append(last_date_from) - return last_date_from, date_to_recorder - - -def first_page_click(page_index, filenames): - return get_recent_images(1, 0, filenames) - -def end_page_click(page_index, filenames): - return get_recent_images(-1, 0, filenames) - -def prev_page_click(page_index, filenames): - return get_recent_images(page_index, -1, filenames) - -def next_page_click(page_index, filenames): - return get_recent_images(page_index, 1, filenames) - -def page_index_change(page_index, filenames): - return get_recent_images(page_index, 0, filenames) - -def show_image_info(tabname_box, num, page_index, filenames): - file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))] - tm = "
" + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + "
" - return file, tm, num, file - -def enable_page_buttons(): - return gradio.update(visible=True) - -def change_dir(img_dir, date_to): - warning = None - try: - if os.path.exists(img_dir): - try: - f = os.listdir(img_dir) - except: - warning = f"'{img_dir} is not a directory" - else: - warning = "The directory is not exist" - except: - warning = "The format of the directory is incorrect" - if warning is None: - today = time.strftime("%Y%m%d",time.localtime(time.time())) - return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today, gradio.update(visible=True), gradio.update(visible=True) - else: - return gradio.update(visible=True), gradio.update(visible=False), warning, date_to, gradio.update(visible=False), gradio.update(visible=False) - -def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): - custom_dir = False - if tabname == "txt2img": - dir_name = opts.outdir_txt2img_samples - elif tabname == "img2img": - dir_name = opts.outdir_img2img_samples - elif tabname == "extras": - dir_name = opts.outdir_extras_samples - elif tabname == faverate_tab_name: - dir_name = opts.outdir_save - else: - custom_dir = True - dir_name = None - - if not custom_dir: - d = dir_name.split("/") - dir_name = d[0] - for p in d[1:]: - dir_name = os.path.join(dir_name, p) - if not os.path.exists(dir_name): - os.makedirs(dir_name) - - with gr.Column() as page_panel: - with gr.Row(): - with gr.Column(scale=1, visible=not custom_dir) as load_batch_box: - load_batch = gr.Button('Load', elem_id=tabname + "_images_history_start", full_width=True) - with gr.Column(scale=4): - with gr.Row(): - img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir) - with gr.Row(): - with gr.Column(visible=False, scale=1) as batch_panel: - with gr.Row(): - forward = gr.Button('Prev batch') - backward = gr.Button('Next batch') - with gr.Column(scale=3): - load_info = gr.HTML(visible=not custom_dir) - with gr.Row(visible=False) as warning: - warning_box = gr.Textbox("Message", interactive=False) - - with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel: - with gr.Column(scale=2): - with gr.Row(visible=True) as turn_page_buttons: - #date_to = gr.Dropdown(label="Date to") - first_page = gr.Button('First Page') - prev_page = gr.Button('Prev Page') - page_index = gr.Number(value=1, label="Page Index") - next_page = gr.Button('Next Page') - end_page = gr.Button('End Page') - - history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=opts.images_history_grid_num) - with gr.Row(): - delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next") - delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button") - - with gr.Column(): - with gr.Row(): - with gr.Column(): - img_file_info = gr.Textbox(label="Generate Info", interactive=False, lines=6) - gr.HTML("
") - img_file_name = gr.Textbox(value="", label="File Name", interactive=False) - img_file_time= gr.HTML() - with gr.Row(): - if tabname != faverate_tab_name: - save_btn = gr.Button('Collect') - pnginfo_send_to_txt2img = gr.Button('Send to txt2img') - pnginfo_send_to_img2img = gr.Button('Send to img2img') - - - # hiden items - with gr.Row(visible=False): - renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page") - batch_date_to = gr.Textbox(label="Date to") - visible_img_num = gr.Number() - date_to_recorder = gr.State([]) - last_date_from = gr.Textbox() - tabname_box = gr.Textbox(tabname) - image_index = gr.Textbox(value=-1) - set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index") - filenames = gr.State() - all_images_list = gr.State() - hidden = gr.Image(type="pil") - info1 = gr.Textbox() - info2 = gr.Textbox() - - img_path.submit(change_dir, inputs=[img_path, batch_date_to], outputs=[warning, main_panel, warning_box, batch_date_to, load_batch_box, load_info]) - - #change batch - change_date_output = [batch_date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from, batch_panel] - - batch_date_to.change(archive_images, inputs=[img_path, batch_date_to], outputs=change_date_output) - batch_date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons]) - batch_date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - - load_batch.click(loac_batch_click, inputs=[batch_date_to], outputs=[batch_date_to, date_to_recorder]) - forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder]) - backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder]) - - - #delete - delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num]) - delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None) - if tabname != faverate_tab_name: - save_btn.click(save_image, inputs=[img_file_name], outputs=None) - - #turn page - gallery_inputs = [page_index, filenames] - gallery_outputs = [page_index, history_gallery, img_file_name, img_file_time, visible_img_num] - first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs) - next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs) - prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs) - end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs) - page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs) - renew_page.click(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs) - - first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage") - - # other funcitons - set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, img_file_time, image_index, hidden]) - img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None) - hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2]) - switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img') - switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img') - - - -def create_history_tabs(gr, sys_opts, cmp_ops, run_pnginfo, switch_dict): - global opts; - opts = sys_opts - loads_files_num = int(opts.images_history_num_per_page) - num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num) - if cmp_ops.browse_all_images: - tabs_list.append(custom_tab_name) - with gr.Blocks(analytics_enabled=False) as images_history: - with gr.Tabs() as tabs: - for tab in tabs_list: - with gr.Tab(tab): - with gr.Blocks(analytics_enabled=False) : - show_images_history(gr, opts, tab, run_pnginfo, switch_dict) - gradio.Checkbox(opts.images_history_preload, elem_id="images_history_preload", visible=False) - gradio.Textbox(",".join(tabs_list), elem_id="images_history_tabnames_list", visible=False) - - return images_history diff --git a/modules/inspiration.py b/modules/inspiration.py deleted file mode 100644 index 29cf8297..00000000 --- a/modules/inspiration.py +++ /dev/null @@ -1,193 +0,0 @@ -import os -import random -import gradio -from modules.shared import opts -inspiration_system_path = os.path.join(opts.inspiration_dir, "system") -def read_name_list(file, types=None, keyword=None): - if not os.path.exists(file): - return [] - ret = [] - f = open(file, "r") - line = f.readline() - while len(line) > 0: - line = line.rstrip("\n") - if types is not None: - dirname = os.path.split(line) - if dirname[0] in types and keyword in dirname[1].lower(): - ret.append(line) - else: - ret.append(line) - line = f.readline() - return ret - -def save_name_list(file, name): - name_list = read_name_list(file) - if name not in name_list: - with open(file, "a") as f: - f.write(name + "\n") - -def get_types_list(): - files = os.listdir(opts.inspiration_dir) - types = [] - for x in files: - path = os.path.join(opts.inspiration_dir, x) - if x[0] == ".": - continue - if not os.path.isdir(path): - continue - if path == inspiration_system_path: - continue - types.append(x) - return types - -def get_inspiration_images(source, types, keyword): - keyword = keyword.strip(" ").lower() - get_num = int(opts.inspiration_rows_num * opts.inspiration_cols_num) - if source == "Favorites": - names = read_name_list(os.path.join(inspiration_system_path, "faverites.txt"), types, keyword) - names = random.sample(names, get_num) if len(names) > get_num else names - elif source == "Abandoned": - names = read_name_list(os.path.join(inspiration_system_path, "abandoned.txt"), types, keyword) - names = random.sample(names, get_num) if len(names) > get_num else names - elif source == "Exclude abandoned": - abandoned = read_name_list(os.path.join(inspiration_system_path, "abandoned.txt"), types, keyword) - all_names = [] - for tp in types: - name_list = os.listdir(os.path.join(opts.inspiration_dir, tp)) - all_names += [os.path.join(tp, x) for x in name_list if keyword in x.lower()] - - if len(all_names) > get_num: - names = [] - while len(names) < get_num: - name = random.choice(all_names) - if name not in abandoned: - names.append(name) - else: - names = all_names - else: - all_names = [] - for tp in types: - name_list = os.listdir(os.path.join(opts.inspiration_dir, tp)) - all_names += [os.path.join(tp, x) for x in name_list if keyword in x.lower()] - names = random.sample(all_names, get_num) if len(all_names) > get_num else all_names - image_list = [] - for a in names: - image_path = os.path.join(opts.inspiration_dir, a) - images = os.listdir(image_path) - if len(images) > 0: - image_list.append((os.path.join(image_path, random.choice(images)), a)) - else: - print(image_path) - return image_list, names - -def select_click(index, name_list): - name = name_list[int(index)] - path = os.path.join(opts.inspiration_dir, name) - images = os.listdir(path) - return name, [os.path.join(path, x) for x in images], "" - -def give_up_click(name): - file = os.path.join(inspiration_system_path, "abandoned.txt") - save_name_list(file, name) - return "Added to abandoned list" - -def collect_click(name): - file = os.path.join(inspiration_system_path, "faverites.txt") - save_name_list(file, name) - return "Added to faverite list" - -def moveout_click(name, source): - if source == "Abandoned": - file = os.path.join(inspiration_system_path, "abandoned.txt") - elif source == "Favorites": - file = os.path.join(inspiration_system_path, "faverites.txt") - else: - return None - name_list = read_name_list(file) - os.remove(file) - with open(file, "a") as f: - for a in name_list: - if a != name: - f.write(a + "\n") - return f"Moved out {name} from {source} list" - -def source_change(source): - if source in ["Abandoned", "Favorites"]: - return gradio.update(visible=True), [] - else: - return gradio.update(visible=False), [] -def add_to_prompt(name, prompt): - name = os.path.basename(name) - return prompt + "," + name - -def clear_keyword(): - return "" - -def ui(gr, opts, txt2img_prompt, img2img_prompt): - with gr.Blocks(analytics_enabled=False) as inspiration: - flag = os.path.exists(opts.inspiration_dir) - if flag: - types = get_types_list() - flag = len(types) > 0 - else: - os.makedirs(opts.inspiration_dir) - if not flag: - gr.HTML(""" -

To activate inspiration function, you need get "inspiration" images first.


- You can create these images by run "Create inspiration images" script in txt2img page,
you can get the artists or art styles list from here
- https://github.com/pharmapsychotic/clip-interrogator/tree/main/data
- download these files, and select these files in the "Create inspiration images" script UI
- There about 6000 artists and art styles in these files.
This takes server hours depending on your GPU type and how many pictures you generate for each artist/style -
I suggest at least four images for each


-

You can also download generated pictures from here:


- https://huggingface.co/datasets/yfszzx/inspiration
- unzip the file to the project directory of webui
- and restart webui, and enjoy the joy of creation!
- """) - return inspiration - if not os.path.exists(inspiration_system_path): - os.mkdir(inspiration_system_path) - with gr.Row(): - with gr.Column(scale=2): - inspiration_gallery = gr.Gallery(show_label=False, elem_id="inspiration_gallery").style(grid=opts.inspiration_cols_num, height='auto') - with gr.Column(scale=1): - types = gr.CheckboxGroup(choices=types, value=types) - with gr.Row(): - source = gr.Dropdown(choices=["All", "Favorites", "Exclude abandoned", "Abandoned"], value="Exclude abandoned", label="Source") - keyword = gr.Textbox("", label="Key word") - get_inspiration = gr.Button("Get inspiration", elem_id="inspiration_get_button") - name = gr.Textbox(show_label=False, interactive=False) - with gr.Row(): - send_to_txt2img = gr.Button('to txt2img') - send_to_img2img = gr.Button('to img2img') - collect = gr.Button('Collect') - give_up = gr.Button("Don't show again") - moveout = gr.Button("Move out", visible=False) - warning = gr.HTML() - style_gallery = gr.Gallery(show_label=False).style(grid=2, height='auto') - - - - with gr.Row(visible=False): - select_button = gr.Button('set button', elem_id="inspiration_select_button") - name_list = gr.State() - - get_inspiration.click(get_inspiration_images, inputs=[source, types, keyword], outputs=[inspiration_gallery, name_list]) - keyword.submit(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) - source.change(source_change, inputs=[source], outputs=[moveout, style_gallery]) - source.change(fn=clear_keyword, _js="inspiration_click_get_button", inputs=None, outputs=[keyword]) - types.change(fn=clear_keyword, _js="inspiration_click_get_button", inputs=None, outputs=[keyword]) - - select_button.click(select_click, _js="inspiration_selected", inputs=[name, name_list], outputs=[name, style_gallery, warning]) - give_up.click(give_up_click, inputs=[name], outputs=[warning]) - collect.click(collect_click, inputs=[name], outputs=[warning]) - moveout.click(moveout_click, inputs=[name, source], outputs=[warning]) - moveout.click(fn=None, _js="inspiration_click_get_button", inputs=None, outputs=None) - - send_to_txt2img.click(add_to_prompt, inputs=[name, txt2img_prompt], outputs=[txt2img_prompt]) - send_to_img2img.click(add_to_prompt, inputs=[name, img2img_prompt], outputs=[img2img_prompt]) - send_to_txt2img.click(collect_click, inputs=[name], outputs=[warning]) - send_to_img2img.click(collect_click, inputs=[name], outputs=[warning]) - send_to_txt2img.click(None, _js='switch_to_txt2img', inputs=None, outputs=None) - send_to_img2img.click(None, _js="switch_to_img2img_img2img", inputs=None, outputs=None) - return inspiration diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 5bcccd67..66666a56 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -1,4 +1,3 @@ - callbacks_model_loaded = [] callbacks_ui_tabs = [] callbacks_ui_settings = [] @@ -16,7 +15,6 @@ def model_loaded_callback(sd_model): def ui_tabs_callback(): res = [] - for callback in callbacks_ui_tabs: res += callback() or [] diff --git a/modules/shared.py b/modules/shared.py index 0aaaadac..5dfd7927 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -321,21 +321,6 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), })) -options_templates.update(options_section(('inspiration', "Inspiration"), { - "inspiration_dir": OptionInfo("inspiration", "Directory of inspiration", component_args=hide_dirs), - "inspiration_max_samples": OptionInfo(4, "Maximum number of samples, used to determine which folders to skip when continue running the create script", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1}), - "inspiration_rows_num": OptionInfo(4, "Rows of inspiration interface frame", gr.Slider, {"minimum": 4, "maximum": 16, "step": 1}), - "inspiration_cols_num": OptionInfo(8, "Columns of inspiration interface frame", gr.Slider, {"minimum": 4, "maximum": 16, "step": 1}), -})) - -options_templates.update(options_section(('images-history', "Images Browser"), { - #"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"), - "images_history_preload": OptionInfo(False, "Preload images at startup"), - "images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"), - "images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "), - "images_history_grid_num": OptionInfo(6, "Number of grids in each row"), - -})) class Options: data = None diff --git a/modules/ui.py b/modules/ui.py index a73175f5..fa42712e 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -49,14 +49,12 @@ from modules.sd_hijack import model_hijack from modules.sd_samplers import samplers, samplers_for_img2img import modules.textual_inversion.ui import modules.hypernetworks.ui -import modules.images_history as images_history -import modules.inspiration as inspiration - - # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') +txt2img_paste_fields = [] +img2img_paste_fields = [] if not cmd_opts.share and not cmd_opts.listen: @@ -1193,16 +1191,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[image], outputs=[html, generation_info, html2], ) - #images history - images_history_switch_dict = { - "fn": modules.generation_parameters_copypaste.connect_paste, - "t2i": txt2img_paste_fields, - "i2i": img2img_paste_fields - } - - browser_interface = images_history.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict) - inspiration_interface = inspiration.ui(gr, opts, txt2img_prompt, img2img_prompt) - + with gr.Blocks() as modelmerger_interface: with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): @@ -1651,8 +1640,6 @@ Requested path was: {f} (img2img_interface, "img2img", "img2img"), (extras_interface, "Extras", "extras"), (pnginfo_interface, "PNG Info", "pnginfo"), - (inspiration_interface, "Inspiration", "inspiration"), - (browser_interface , "Image Browser", "images_history"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"), (train_interface, "Train", "ti"), ] @@ -1896,6 +1883,7 @@ def load_javascript(raw_response): javascript = f'' scripts_list = modules.scripts.list_scripts("javascript", ".js") + scripts_list += modules.scripts.list_scripts("scripts", ".js") for basedir, filename, path in scripts_list: with open(path, "r", encoding="utf8") as jsfile: javascript += f"\n" From cef1b89aa2e6c7647db7e93a4cd4ec020da3f2da Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 24 Oct 2022 10:10:33 +0800 Subject: [PATCH 091/321] remove browser to extension --- modules/script_callbacks.py | 2 + modules/shared.py | 1 - modules/ui.py | 2 +- scripts/create_inspiration_images.py | 57 ---------------------------- 4 files changed, 3 insertions(+), 59 deletions(-) delete mode 100644 scripts/create_inspiration_images.py diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 66666a56..f46d3d9a 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -1,3 +1,4 @@ + callbacks_model_loaded = [] callbacks_ui_tabs = [] callbacks_ui_settings = [] @@ -15,6 +16,7 @@ def model_loaded_callback(sd_model): def ui_tabs_callback(): res = [] + for callback in callbacks_ui_tabs: res += callback() or [] diff --git a/modules/shared.py b/modules/shared.py index 5dfd7927..6541e679 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -82,7 +82,6 @@ parser.add_argument("--api", action='store_true', help="use api=True to launch t parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui") parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI") parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None) -parser.add_argument("--browse-all-images", action='store_true', help="Allow browsing all images by Image Browser", default=False) cmd_opts = parser.parse_args() restricted_opts = [ diff --git a/modules/ui.py b/modules/ui.py index fa42712e..a32f7259 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1104,7 +1104,7 @@ def create_ui(wrap_gradio_gpu_call): upscaling_crop = gr.Checkbox(label='Crop to fit', value=True) with gr.Group(): - extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers] , value=shared.sd_upscalers[0].name, type="index") + extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") with gr.Group(): extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") diff --git a/scripts/create_inspiration_images.py b/scripts/create_inspiration_images.py deleted file mode 100644 index 2fd30578..00000000 --- a/scripts/create_inspiration_images.py +++ /dev/null @@ -1,57 +0,0 @@ -import csv, os, shutil -import modules.scripts as scripts -from modules import processing, shared, sd_samplers, images -from modules.processing import Processed -from modules.shared import opts -import gradio -class Script(scripts.Script): - def title(self): - return "Create inspiration images" - - def show(self, is_img2img): - return True - - def ui(self, is_img2img): - file = gradio.Files(label="Artist or styles name list. '.txt' files with one name per line",) - with gradio.Row(): - prefix = gradio.Textbox("a painting in", label="Prompt words before artist or style name", file_count="multiple") - suffix= gradio.Textbox("style", label="Prompt words after artist or style name") - negative_prompt = gradio.Textbox("picture frame, portrait photo", label="Negative Prompt") - with gradio.Row(): - batch_size = gradio.Number(1, label="Batch size") - batch_count = gradio.Number(2, label="Batch count") - return [batch_size, batch_count, prefix, suffix, negative_prompt, file] - - def run(self, p, batch_size, batch_count, prefix, suffix, negative_prompt, files): - p.batch_size = int(batch_size) - p.n_iterint = int(batch_count) - p.negative_prompt = negative_prompt - p.do_not_save_samples = True - p.do_not_save_grid = True - for file in files: - tp = file.orig_name.split(".")[0] - print(tp) - path = os.path.join(opts.inspiration_dir, tp) - if not os.path.exists(path): - os.makedirs(path) - f = open(file.name, "r") - line = f.readline() - while len(line) > 0: - name = line.rstrip("\n").split(",")[0] - line = f.readline() - artist_path = os.path.join(path, name) - if not os.path.exists(artist_path): - os.mkdir(artist_path) - if len(os.listdir(artist_path)) >= opts.inspiration_max_samples: - continue - p.prompt = f"{prefix} {name} {suffix}" - print(p.prompt) - processed = processing.process_images(p) - for img in processed.images: - i = 0 - filename = os.path.join(artist_path, format(0, "03d") + ".jpg") - while os.path.exists(filename): - i += 1 - filename = os.path.join(artist_path, format(i, "03d") + ".jpg") - img.save(filename, quality=80) - return processed From d7987ef9da2d89f146e091f0c727444a522245d9 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 24 Oct 2022 11:06:58 +0800 Subject: [PATCH 092/321] add paste_fields to global --- extensions/inspiration | 1 + extensions/put extension here.txt | 0 extensions/stable-diffusion-webui-aesthetic-gradients | 1 + extensions/stable-diffusion-webui-images-browse | 1 + extensions/stable-diffusion-webui-inspiration | 1 + extensions/stable-diffusion-webui-wildcards | 1 + 6 files changed, 5 insertions(+) create mode 160000 extensions/inspiration create mode 100644 extensions/put extension here.txt create mode 160000 extensions/stable-diffusion-webui-aesthetic-gradients create mode 160000 extensions/stable-diffusion-webui-images-browse create mode 160000 extensions/stable-diffusion-webui-inspiration create mode 160000 extensions/stable-diffusion-webui-wildcards diff --git a/extensions/inspiration b/extensions/inspiration new file mode 160000 index 00000000..4cff5855 --- /dev/null +++ b/extensions/inspiration @@ -0,0 +1 @@ +Subproject commit 4cff5855f3ca658fb5c9dd9745e5f2ae7bcc7074 diff --git a/extensions/put extension here.txt b/extensions/put extension here.txt new file mode 100644 index 00000000..e69de29b diff --git a/extensions/stable-diffusion-webui-aesthetic-gradients b/extensions/stable-diffusion-webui-aesthetic-gradients new file mode 160000 index 00000000..411889ca --- /dev/null +++ b/extensions/stable-diffusion-webui-aesthetic-gradients @@ -0,0 +1 @@ +Subproject commit 411889ca602f20b8bb5e4d1af2b9686eab1913b1 diff --git a/extensions/stable-diffusion-webui-images-browse b/extensions/stable-diffusion-webui-images-browse new file mode 160000 index 00000000..6b8e158d --- /dev/null +++ b/extensions/stable-diffusion-webui-images-browse @@ -0,0 +1 @@ +Subproject commit 6b8e158dc174f31f0bb73d74547917f5a6fba507 diff --git a/extensions/stable-diffusion-webui-inspiration b/extensions/stable-diffusion-webui-inspiration new file mode 160000 index 00000000..4cff5855 --- /dev/null +++ b/extensions/stable-diffusion-webui-inspiration @@ -0,0 +1 @@ +Subproject commit 4cff5855f3ca658fb5c9dd9745e5f2ae7bcc7074 diff --git a/extensions/stable-diffusion-webui-wildcards b/extensions/stable-diffusion-webui-wildcards new file mode 160000 index 00000000..2c0e7d7e --- /dev/null +++ b/extensions/stable-diffusion-webui-wildcards @@ -0,0 +1 @@ +Subproject commit 2c0e7d7e19e6c2b76b83189013aadb822776301f From a889c93f23f1e80d0dac4e5ddbc3a26207e8cdf1 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 24 Oct 2022 11:13:16 +0800 Subject: [PATCH 093/321] paste_fields add to public --- modules/ui.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/modules/ui.py b/modules/ui.py index a32f7259..a73b9ff0 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -784,6 +784,7 @@ def create_ui(wrap_gradio_gpu_call): ] ) + global txt2img_paste_fields txt2img_paste_fields = [ (txt2img_prompt, "Prompt"), (txt2img_negative_prompt, "Negative prompt"), @@ -1054,6 +1055,7 @@ def create_ui(wrap_gradio_gpu_call): outputs=[prompt, negative_prompt, style1, style2], ) + global img2img_paste_fields img2img_paste_fields = [ (img2img_prompt, "Prompt"), (img2img_negative_prompt, "Negative prompt"), From 9dd17b86017e26ccf58897142bdcaa0297f8db8d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E4=B8=8D=E4=BC=9A=E7=94=BB=E7=94=BB=E7=9A=84=E4=B8=AD?= =?UTF-8?q?=E5=8C=BB=E4=B8=8D=E6=98=AF=E5=A5=BD=E7=A8=8B=E5=BA=8F=E5=91=98?= Date: Mon, 24 Oct 2022 11:19:49 +0800 Subject: [PATCH 094/321] fix add git add mistake --- extensions/inspiration | 1 - extensions/put extension here.txt | 0 extensions/stable-diffusion-webui-aesthetic-gradients | 1 - extensions/stable-diffusion-webui-images-browse | 1 - extensions/stable-diffusion-webui-inspiration | 1 - extensions/stable-diffusion-webui-wildcards | 1 - 6 files changed, 5 deletions(-) delete mode 160000 extensions/inspiration delete mode 100644 extensions/put extension here.txt delete mode 160000 extensions/stable-diffusion-webui-aesthetic-gradients delete mode 160000 extensions/stable-diffusion-webui-images-browse delete mode 160000 extensions/stable-diffusion-webui-inspiration delete mode 160000 extensions/stable-diffusion-webui-wildcards diff --git a/extensions/inspiration b/extensions/inspiration deleted file mode 160000 index 4cff5855..00000000 --- a/extensions/inspiration +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 4cff5855f3ca658fb5c9dd9745e5f2ae7bcc7074 diff --git a/extensions/put extension here.txt b/extensions/put extension here.txt deleted file mode 100644 index e69de29b..00000000 diff --git a/extensions/stable-diffusion-webui-aesthetic-gradients b/extensions/stable-diffusion-webui-aesthetic-gradients deleted file mode 160000 index 411889ca..00000000 --- a/extensions/stable-diffusion-webui-aesthetic-gradients +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 411889ca602f20b8bb5e4d1af2b9686eab1913b1 diff --git a/extensions/stable-diffusion-webui-images-browse b/extensions/stable-diffusion-webui-images-browse deleted file mode 160000 index 6b8e158d..00000000 --- a/extensions/stable-diffusion-webui-images-browse +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 6b8e158dc174f31f0bb73d74547917f5a6fba507 diff --git a/extensions/stable-diffusion-webui-inspiration b/extensions/stable-diffusion-webui-inspiration deleted file mode 160000 index 4cff5855..00000000 --- a/extensions/stable-diffusion-webui-inspiration +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 4cff5855f3ca658fb5c9dd9745e5f2ae7bcc7074 diff --git a/extensions/stable-diffusion-webui-wildcards b/extensions/stable-diffusion-webui-wildcards deleted file mode 160000 index 2c0e7d7e..00000000 --- a/extensions/stable-diffusion-webui-wildcards +++ /dev/null @@ -1 +0,0 @@ -Subproject commit 2c0e7d7e19e6c2b76b83189013aadb822776301f From 394c4986211df4f7d9d8c9c26180edf8b9946d51 Mon Sep 17 00:00:00 2001 From: yfszzx Date: Mon, 24 Oct 2022 11:29:45 +0800 Subject: [PATCH 095/321] test --- extensions/stable-diffusion-webui-inspiration | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/extensions/stable-diffusion-webui-inspiration b/extensions/stable-diffusion-webui-inspiration index 4cff5855..a0b96664 160000 --- a/extensions/stable-diffusion-webui-inspiration +++ b/extensions/stable-diffusion-webui-inspiration @@ -1 +1 @@ -Subproject commit 4cff5855f3ca658fb5c9dd9745e5f2ae7bcc7074 +Subproject commit a0b96664d2524b87916ae463fbb65411b13a569b From fe9740d2f5fa057e02529f8a81de21333adf4234 Mon Sep 17 00:00:00 2001 From: judgeou Date: Sun, 23 Oct 2022 20:40:23 +0800 Subject: [PATCH 096/321] update deepdanbooru version --- launch.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/launch.py b/launch.py index 333f308a..8affd410 100644 --- a/launch.py +++ b/launch.py @@ -111,7 +111,7 @@ def prepare_enviroment(): gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1") - deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26") + deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@d91a2963bf87c6a770d74894667e9ffa9f6de7ff") xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl') From 68e9e978996c24772016ba9e4937367e91540681 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 19:07:17 +0900 Subject: [PATCH 097/321] Initial KR support - WIP Localization WIP --- ko-KR.json | 76 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 76 insertions(+) create mode 100644 ko-KR.json diff --git a/ko-KR.json b/ko-KR.json new file mode 100644 index 00000000..f93b3e16 --- /dev/null +++ b/ko-KR.json @@ -0,0 +1,76 @@ +{ + "txt2img": "텍스트→이미지", + "img2img": "이미지→이미지", + "Extras": "부가기능", + "PNG Info": "PNG 정보", + "History": "기록", + "Checkpoint Merger": "체크포인트 병합", + "Train": "훈련", + "Settings": "설정", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Hypernetwork": "하이퍼네트워크", + "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", + "Generate": "생성", + "Style 1": "스타일 1", + "Style 2": "스타일 2", + "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", + "Save style": "스타일 저장", + "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", + "Do not do anything special": "아무것도 하지 않기", + "Generate forever": "반복 생성", + "Cancel generate forever": "반복 생성 취소", + "Interrupt": "중단", + "Skip": "건너뛰기", + "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", + "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", + "Prompt": "프롬프트", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Negative prompt": "네거티브 프롬프트", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Sampling Steps": "샘플링 스텝 수", + "Sampling method": "샘플링 방법", + "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Width": "가로", + "Height": "세로", + "Restore faces": "얼굴 보정", + "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", + "Tiling": "타일링", + "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Highres. fix": "고해상도 보정", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Firstpass width": "초기 가로길이", + "Firstpass height": "초기 세로길이", + "Denoising strength": "디노이즈 강도", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Batch count": "배치 수", + "Batch size": "배치 크기", + "How many batches of images to create": "생성할 이미지 배치 수", + "How many image to create in a single batch": "한 배치당 이미지 수", + "CFG Scale": "CFG 스케일", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Seed": "시드", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", + "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", + "Extra": "고급", + "Variation seed": "바리에이션 시드", + "Variation strength": "바리에이션 강도", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", + "Resize seed from height": "시드 리사이징 가로길이", + "Resize seed from width": "시드 리사이징 세로길이", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Script": "스크립트", + "Save": "저장", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "Send to img2img": "이미지→이미지로 전송", + "Send to inpaint": "인페인트로 전송", + "Send to extras": "부가기능으로 전송", + "Open images output directory": "이미지 저장 경로 열기", + "Make Zip when Save?": "저장 시 Zip 생성하기", + "Always save all generated images": "생성된 이미지 항상 저장하기" +} \ No newline at end of file From e7eea555715320a7b1977bf0e12c5ca1e2774a09 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 20:11:17 +0900 Subject: [PATCH 098/321] Update ko-KR.json --- localizations/ko-KR.json | 85 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 85 insertions(+) create mode 100644 localizations/ko-KR.json diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json new file mode 100644 index 00000000..a4367dc5 --- /dev/null +++ b/localizations/ko-KR.json @@ -0,0 +1,85 @@ +{ + "⤡": "⤡", + "⊞": "⊞", + "×": "×", + "❮": "❮", + "❯": "❯", + "Loading...": "로딩중...", + "view": "", + "api": "api", + "•": "•", + "txt2img": "텍스트→이미지", + "img2img": "이미지→이미지", + "Extras": "부가기능", + "PNG Info": "PNG 정보", + "History": "기록", + "Checkpoint Merger": "체크포인트 병합", + "Train": "훈련", + "Settings": "설정", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Hypernetwork": "하이퍼네트워크", + "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", + "Generate": "생성", + "Style 1": "스타일 1", + "Style 2": "스타일 2", + "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", + "Save style": "스타일 저장", + "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", + "Do not do anything special": "아무것도 하지 않기", + "Generate forever": "반복 생성", + "Cancel generate forever": "반복 생성 취소", + "Interrupt": "중단", + "Skip": "건너뛰기", + "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", + "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", + "Prompt": "프롬프트", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Negative prompt": "네거티브 프롬프트", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Sampling Steps": "샘플링 스텝 수", + "Sampling method": "샘플링 방법", + "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Width": "가로", + "Height": "세로", + "Restore faces": "얼굴 보정", + "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", + "Tiling": "타일링", + "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Highres. fix": "고해상도 보정", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Firstpass width": "초기 가로길이", + "Firstpass height": "초기 세로길이", + "Denoising strength": "디노이즈 강도", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Batch count": "배치 수", + "Batch size": "배치 크기", + "How many batches of images to create": "생성할 이미지 배치 수", + "How many image to create in a single batch": "한 배치당 이미지 수", + "CFG Scale": "CFG 스케일", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Seed": "시드", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", + "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", + "Extra": "고급", + "Variation seed": "바리에이션 시드", + "Variation strength": "바리에이션 강도", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", + "Resize seed from height": "시드 리사이징 가로길이", + "Resize seed from width": "시드 리사이징 세로길이", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Script": "스크립트", + "Save": "저장", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "Send to img2img": "이미지→이미지로 전송", + "Send to inpaint": "인페인트로 전송", + "Send to extras": "부가기능으로 전송", + "Open images output directory": "이미지 저장 경로 열기", + "Make Zip when Save?": "저장 시 Zip 생성하기", + "Always save all generated images": "생성된 이미지 항상 저장하기" +} \ No newline at end of file From 021b02751ef08f8f5fc7cc2a3d7e40c599657dc4 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 20:12:54 +0900 Subject: [PATCH 099/321] Move ko-KR.json --- ko-KR.json | 76 ------------------------------------------------------ 1 file changed, 76 deletions(-) delete mode 100644 ko-KR.json diff --git a/ko-KR.json b/ko-KR.json deleted file mode 100644 index f93b3e16..00000000 --- a/ko-KR.json +++ /dev/null @@ -1,76 +0,0 @@ -{ - "txt2img": "텍스트→이미지", - "img2img": "이미지→이미지", - "Extras": "부가기능", - "PNG Info": "PNG 정보", - "History": "기록", - "Checkpoint Merger": "체크포인트 병합", - "Train": "훈련", - "Settings": "설정", - "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", - "Hypernetwork": "하이퍼네트워크", - "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", - "Generate": "생성", - "Style 1": "스타일 1", - "Style 2": "스타일 2", - "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", - "Save style": "스타일 저장", - "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", - "Do not do anything special": "아무것도 하지 않기", - "Generate forever": "반복 생성", - "Cancel generate forever": "반복 생성 취소", - "Interrupt": "중단", - "Skip": "건너뛰기", - "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", - "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", - "Prompt": "프롬프트", - "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Negative prompt": "네거티브 프롬프트", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Sampling Steps": "샘플링 스텝 수", - "Sampling method": "샘플링 방법", - "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", - "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", - "Width": "가로", - "Height": "세로", - "Restore faces": "얼굴 보정", - "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", - "Tiling": "타일링", - "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", - "Highres. fix": "고해상도 보정", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", - "Firstpass width": "초기 가로길이", - "Firstpass height": "초기 세로길이", - "Denoising strength": "디노이즈 강도", - "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", - "Batch count": "배치 수", - "Batch size": "배치 크기", - "How many batches of images to create": "생성할 이미지 배치 수", - "How many image to create in a single batch": "한 배치당 이미지 수", - "CFG Scale": "CFG 스케일", - "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", - "Seed": "시드", - "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", - "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", - "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", - "Extra": "고급", - "Variation seed": "바리에이션 시드", - "Variation strength": "바리에이션 강도", - "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", - "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", - "Resize seed from height": "시드 리사이징 가로길이", - "Resize seed from width": "시드 리사이징 세로길이", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", - "Script": "스크립트", - "Save": "저장", - "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", - "Send to img2img": "이미지→이미지로 전송", - "Send to inpaint": "인페인트로 전송", - "Send to extras": "부가기능으로 전송", - "Open images output directory": "이미지 저장 경로 열기", - "Make Zip when Save?": "저장 시 Zip 생성하기", - "Always save all generated images": "생성된 이미지 항상 저장하기" -} \ No newline at end of file From 1a96f856c4c3348708974b80d0de5a8ac18c1799 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 21:50:34 +0900 Subject: [PATCH 100/321] update ko-KR.json Translated all text on txt2img window, plus some extra --- localizations/ko-KR.json | 42 ++++++++++++++++++++++++++++++++++++---- 1 file changed, 38 insertions(+), 4 deletions(-) diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json index a4367dc5..c6e55bb1 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko-KR.json @@ -4,9 +4,10 @@ "×": "×", "❮": "❮", "❯": "❯", - "Loading...": "로딩중...", - "view": "", - "api": "api", + "Loading...": "", + "view": "api 보이기", + "hide": "api 숨기기", + "api": "", "•": "•", "txt2img": "텍스트→이미지", "img2img": "이미지→이미지", @@ -50,7 +51,7 @@ "Tiling": "타일링", "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", "Highres. fix": "고해상도 보정", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", "Firstpass width": "초기 가로길이", "Firstpass height": "초기 세로길이", "Denoising strength": "디노이즈 강도", @@ -81,5 +82,38 @@ "Send to extras": "부가기능으로 전송", "Open images output directory": "이미지 저장 경로 열기", "Make Zip when Save?": "저장 시 Zip 생성하기", + "Prompt matrix": "프롬프트 매트릭스", + "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)": "(|)를 이용해 프롬프트를 분리할 시 첫 프롬프트를 제외하고 모든 프롬프트의 조합마다 이미지를 생성합니다. 첫 프롬프트는 모든 조합에 포함되게 됩니다.", + "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", + "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", + "Show Textbox": "텍스트박스 보이기", + "File with inputs": "설정값 파일", + "Prompts": "프롬프트", + "X/Y plot": "X/Y 플롯", + "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", + "X type": "X축", + "Y type": "Y축", + "X values": "X 설정값", + "Y values": "Y 설정값", + "Separate values for X axis using commas.": "쉼표로 X축에 적용할 값 분리", + "Separate values for Y axis using commas.": "쉼표로 Y축에 적용할 값 분리", + "Draw legend": "범례 그리기", + "Include Separate Images": "분리된 이미지 포함하기", + "Keep -1 for seeds": "시드값 -1로 유지", + "Var. seed": "바리에이션 시드", + "Var. strength": "바리에이션 강도", + "Steps": "스텝 수", + "Prompt S/R": "프롬프트 스타일 변경", + "Prompt order": "프롬프트 순서", + "Sampler": "샘플러", + "Checkpoint name": "체크포인트 이름", + "Hypernet str.": "하이퍼네트워크 강도", + "Sigma Churn": "시그마 섞기", + "Sigma min": "시그마 최솟값", + "Sigma max": "시그마 최댓값", + "Sigma noise": "시그마 노이즈", + "Clip skip": "클립 건너뛰기", + "Denoising": "디노이징", + "Nothing": "없음", "Always save all generated images": "생성된 이미지 항상 저장하기" } \ No newline at end of file From e210b61d6a4189817e27b7a4f3c1028cdb67a868 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Tue, 18 Oct 2022 22:12:41 +0900 Subject: [PATCH 101/321] update ko-KR.json --- localizations/ko-KR.json | 1 + 1 file changed, 1 insertion(+) diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json index c6e55bb1..b263b13c 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko-KR.json @@ -115,5 +115,6 @@ "Clip skip": "클립 건너뛰기", "Denoising": "디노이징", "Nothing": "없음", + "Apply settings": "설정 적용하기", "Always save all generated images": "생성된 이미지 항상 저장하기" } \ No newline at end of file From 499713c54697ae7ccdb264316307f4aa2c39faea Mon Sep 17 00:00:00 2001 From: Dynamic Date: Thu, 20 Oct 2022 19:20:39 +0900 Subject: [PATCH 102/321] Updated file with basic template and added new translations Translation done in txt2img-img2img windows and following scripts --- localizations/ko-KR.json | 498 +++++++++++++++++++++++++++++++-------- 1 file changed, 400 insertions(+), 98 deletions(-) diff --git a/localizations/ko-KR.json b/localizations/ko-KR.json index b263b13c..7cc431c6 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko-KR.json @@ -1,120 +1,422 @@ { - "⤡": "⤡", - "⊞": "⊞", "×": "×", + "•": "•", + "⊞": "⊞", "❮": "❮", "❯": "❯", - "Loading...": "", - "view": "api 보이기", - "hide": "api 숨기기", - "api": "", - "•": "•", - "txt2img": "텍스트→이미지", - "img2img": "이미지→이미지", - "Extras": "부가기능", - "PNG Info": "PNG 정보", - "History": "기록", - "Checkpoint Merger": "체크포인트 병합", - "Train": "훈련", - "Settings": "설정", - "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", - "Hypernetwork": "하이퍼네트워크", - "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", - "Generate": "생성", - "Style 1": "스타일 1", - "Style 2": "스타일 2", + "⤡": "⤡", + "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", + "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", + "A merger of the two checkpoints will be generated in your": "A merger of the two checkpoints will be generated in your", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", - "Save style": "스타일 저장", + "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", + "Add difference": "Add difference", + "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", + "Add layer normalization": "Add layer normalization", + "Add model hash to generation information": "Add model hash to generation information", + "Add model name to generation information": "Add model name to generation information", + "Always print all generation info to standard output": "Always print all generation info to standard output", + "Always save all generated image grids": "Always save all generated image grids", + "Always save all generated images": "생성된 이미지 항상 저장하기", + "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", - "Do not do anything special": "아무것도 하지 않기", - "Generate forever": "반복 생성", - "Cancel generate forever": "반복 생성 취소", - "Interrupt": "중단", - "Skip": "건너뛰기", - "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", - "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", - "Prompt": "프롬프트", - "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Negative prompt": "네거티브 프롬프트", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Sampling Steps": "샘플링 스텝 수", - "Sampling method": "샘플링 방법", - "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", - "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", - "Width": "가로", - "Height": "세로", - "Restore faces": "얼굴 보정", - "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", - "Tiling": "타일링", - "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", - "Highres. fix": "고해상도 보정", - "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", - "Firstpass width": "초기 가로길이", - "Firstpass height": "초기 세로길이", - "Denoising strength": "디노이즈 강도", - "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Apply settings": "설정 적용하기", + "BSRGAN 4x": "BSRGAN 4x", + "Batch Process": "Batch Process", "Batch count": "배치 수", + "Batch from Directory": "Batch from Directory", + "Batch img2img": "이미지→이미지 배치", "Batch size": "배치 크기", + "CFG Scale": "CFG 스케일", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "Cancel generate forever": "반복 생성 취소", + "Check progress (first)": "Check progress (first)", + "Check progress": "Check progress", + "Checkpoint Merger": "체크포인트 병합", + "Checkpoint name": "체크포인트 이름", + "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Clip skip": "클립 건너뛰기", + "CodeFormer visibility": "CodeFormer visibility", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", + "Color variation": "색깔 다양성", + "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", + "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", + "Create embedding": "Create embedding", + "Create flipped copies": "Create flipped copies", + "Create hypernetwork": "Create hypernetwork", + "Crop and resize": "잘라낸 후 리사이징", + "Crop to fit": "Crop to fit", + "Custom Name (Optional)": "Custom Name (Optional)", + "DDIM": "DDIM", + "DPM adaptive": "DPM adaptive", + "DPM fast": "DPM fast", + "DPM2 Karras": "DPM2 Karras", + "DPM2 a Karras": "DPM2 a Karras", + "DPM2 a": "DPM2 a", + "DPM2": "DPM2", + "Dataset directory": "Dataset directory", + "Decode CFG scale": "디코딩 CFG 스케일", + "Decode steps": "디코딩 스텝 수", + "Delete": "Delete", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Denoising strength change factor": "디노이즈 강도 변경 배수", + "Denoising strength": "디노이즈 강도", + "Denoising": "디노이징", + "Destination directory": "Destination directory", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", + "Directory for saving images using the Save button": "Directory for saving images using the Save button", + "Directory name pattern": "Directory name pattern", + "Do not add watermark to images": "Do not add watermark to images", + "Do not do anything special": "아무것도 하지 않기", + "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", + "Do not show any images in results for web": "Do not show any images in results for web", + "Download localization template": "Download localization template", + "Draw legend": "범례 그리기", + "Draw mask": "마스크 직접 그리기", + "Drop File Here": "Drop File Here", + "Drop Image Here": "Drop Image Here", + "ESRGAN_4x": "ESRGAN_4x", + "Embedding": "Embedding", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", + "Enable full page image viewer": "Enable full page image viewer", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", + "End Page": "End Page", + "Enter hypernetwork layer structure": "Enter hypernetwork layer structure", + "Eta noise seed delta": "Eta noise seed delta", + "Eta": "Eta", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Euler a": "Euler a", + "Euler": "Euler", + "Extra": "고급", + "Extras": "부가기능", + "Face restoration": "Face restoration", + "Fall-off exponent (lower=higher detail)": "감쇠 지수 (낮을수록 디테일이 올라감)", + "File Name": "File Name", + "File format for grids": "File format for grids", + "File format for images": "File format for images", + "File with inputs": "설정값 파일", + "File": "File", + "Filename join string": "Filename join string", + "Filename word regex": "Filename word regex", + "Filter NSFW content": "Filter NSFW content", + "First Page": "First Page", + "Firstpass height": "초기 세로길이", + "Firstpass width": "초기 가로길이", + "Font for image grids that have text": "Font for image grids that have text", + "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SD 업스케일링에서 타일 간 몇 픽셀을 겹치게 할지 결정하는 설정값입니다. 타일들이 다시 한 이미지로 합쳐질 때, 눈에 띄는 이음매가 없도록 서로 겹치게 됩니다.", + "GFPGAN visibility": "GFPGAN visibility", + "Generate Info": "Generate Info", + "Generate forever": "반복 생성", + "Generate": "생성", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", + "Height": "세로", + "Heun": "Heun", + "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", + "Highres. fix": "고해상도 보정", + "History": "기록", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", - "CFG Scale": "CFG 스케일", - "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", - "Seed": "시드", - "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", - "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", - "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", - "Extra": "고급", - "Variation seed": "바리에이션 시드", - "Variation strength": "바리에이션 강도", - "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", + "How many times to repeat processing an image and using it as input for the next iteration": "이미지를 생성 후 원본으로 몇 번 반복해서 사용할지 결정하는 값", + "How much to blur the mask before processing, in pixels.": "이미지 생성 전 마스크를 얼마나 블러처리할지 결정하는 값. 픽셀 단위", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", + "Hypernet str.": "하이퍼네트워크 강도", + "Hypernetwork strength": "Hypernetwork strength", + "Hypernetwork": "하이퍼네트워크", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "Image for img2img": "Image for img2img", + "Image for inpainting with mask": "Image for inpainting with mask", + "Image": "Image", + "Images filename pattern": "Images filename pattern", + "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "루프백 모드에서는 매 루프마다 디노이즈 강도에 이 값이 곱해집니다. 1보다 작을 경우 다양성이 낮아져 결과 이미지들이 고정된 형태로 모일 겁니다. 1보다 클 경우 다양성이 높아져 결과 이미지들이 갈수록 혼란스러워지겠죠.", + "Include Separate Images": "분리된 이미지 포함하기", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", + "Initialization text": "Initialization text", + "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", + "Inpaint at full resolution": "전체 해상도로 인페인트하기", + "Inpaint masked": "마스크만 처리", + "Inpaint not masked": "마스크 이외만 처리", + "Inpaint": "인페인트", + "Input directory": "인풋 이미지 경로", + "Interpolation Method": "Interpolation Method", + "Interrogate\nCLIP": "CLIP\n분석", + "Interrogate\nDeepBooru": "DeepBooru\n분석", + "Interrogate Options": "Interrogate Options", + "Interrogate: deepbooru score threshold": "Interrogate: deepbooru score threshold", + "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", + "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).", + "Interrogate: keep models in VRAM": "Interrogate: keep models in VRAM", + "Interrogate: maximum description length": "Interrogate: maximum description length", + "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", + "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", + "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", + "Interrupt": "중단", + "Just resize": "리사이징", + "Keep -1 for seeds": "시드값 -1로 유지", + "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "LDSR": "LDSR", + "LMS Karras": "LMS Karras", + "LMS": "LMS", + "Label": "Label", + "Lanczos": "Lanczos", + "Learning rate": "Learning rate", + "Leave blank to save images to the default path.": "Leave blank to save images to the default path.", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "Loading...": "로딩 중...", + "Localization (requires restart)": "Localization (requires restart)", + "Log directory": "Log directory", + "Loopback": "루프백", + "Loops": "루프 수", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", + "Make Zip when Save?": "저장 시 Zip 생성하기", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Mask blur": "마스크 블러", + "Mask mode": "Mask mode", + "Mask": "마스크", + "Masked content": "마스크된 부분", + "Masking mode": "Masking mode", + "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", + "Max steps": "Max steps", + "Modules": "Modules", + "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", + "Multiplier (M) - set to 0 to get model A": "Multiplier (M) - set to 0 to get model A", + "Name": "Name", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Negative prompt": "네거티브 프롬프트", + "Next Page": "Next Page", + "None": "None", + "Nothing": "없음", + "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", + "Number of vectors per token": "Number of vectors per token", + "Open images output directory": "이미지 저장 경로 열기", + "Open output directory": "Open output directory", + "Original negative prompt": "기존 네거티브 프롬프트", + "Original prompt": "기존 프롬프트", + "Outpainting direction": "아웃페인팅 방향", + "Outpainting mk2": "아웃페인팅 마크 2", + "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", + "Output directory for images from extras tab": "Output directory for images from extras tab", + "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", + "Output directory for img2img grids": "Output directory for img2img grids", + "Output directory for img2img images": "Output directory for img2img images", + "Output directory for txt2img grids": "Output directory for txt2img grids", + "Output directory for txt2img images": "Output directory for txt2img images", + "Output directory": "이미지 저장 경로", + "Override `Denoising strength` to 1?": "디노이즈 강도를 1로 적용할까요?", + "Override `Sampling Steps` to the same value as `Decode steps`?": "샘플링 스텝 수를 디코딩 스텝 수와 동일하게 적용할까요?", + "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", + "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "프롬프트 값을 기존 프롬프트와 동일하게 적용할까요?(네거티브 프롬프트 포함)", + "PLMS": "PLMS", + "PNG Info": "PNG 정보", + "Page Index": "Page Index", + "Path to directory where to write outputs": "Path to directory where to write outputs", + "Path to directory with input images": "Path to directory with input images", + "Paths for saving": "Paths for saving", + "Pixels to expand": "확장할 픽셀 수", + "Poor man's outpainting": "가난뱅이의 아웃페인팅", + "Preprocess images": "Preprocess images", + "Preprocess": "Preprocess", + "Prev Page": "Prev Page", + "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", + "Primary model (A)": "Primary model (A)", + "Process an image, use it as an input, repeat.": "이미지를 생성하고, 생성한 이미지를 다시 원본으로 사용하는 과정을 반복합니다.", + "Process images in a directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리의 이미지들을 처리합니다.", + "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Prompt S/R": "프롬프트 스타일 변경", + "Prompt matrix": "프롬프트 매트릭스", + "Prompt order": "프롬프트 순서", + "Prompt template file": "Prompt template file", + "Prompt": "프롬프트", + "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", + "Prompts": "프롬프트", + "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", + "Quality for saved jpeg images": "Quality for saved jpeg images", + "Quicksettings list": "Quicksettings list", + "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", + "Randomness": "랜덤성", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", + "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "추천 설정값 - 샘플링 스텝 수 : 80-100 , 샘플러 : Euler a, 디노이즈 강도 : 0.8", + "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "Renew Page": "Renew Page", + "Request browser notifications": "Request browser notifications", + "Resize and fill": "리사이징 후 채우기", + "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "설정된 해상도로 이미지 리사이징을 진행합니다. 원본과 가로/세로 길이가 일치하지 않을 경우, 부정확한 화면비의 이미지를 얻게 됩니다.", + "Resize mode": "Resize mode", "Resize seed from height": "시드 리사이징 가로길이", "Resize seed from width": "시드 리사이징 세로길이", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", - "Script": "스크립트", + "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "이미지 전체가 설정된 해상도 내부에 들어가게 리사이징을 진행합니다. 빈 공간은 이미지의 색상으로 채웁니다.", + "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "설정된 해상도 전체가 이미지로 가득차게 리사이징을 진행합니다. 튀어나오는 부분은 잘라냅니다.", + "Resize": "Resize", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", + "Restore faces": "얼굴 보정", + "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", + "Result = A * (1 - M) + B * M": "Result = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "Result = A + (B - C) * M", + "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", + "Run": "Run", + "SD upscale": "SD 업스케일링", + "Sampler parameters": "Sampler parameters", + "Sampler": "샘플러", + "Sampling Steps": "샘플링 스텝 수", + "Sampling method": "샘플링 방법", + "Save a copy of embedding to log directory every N steps, 0 to disable": "Save a copy of embedding to log directory every N steps, 0 to disable", + "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", + "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", + "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", + "Save an image to log directory every N steps, 0 to disable": "Save an image to log directory every N steps, 0 to disable", + "Save as float16": "Save as float16", + "Save grids to a subdirectory": "Save grids to a subdirectory", + "Save images to a subdirectory": "Save images to a subdirectory", + "Save images with embedding in PNG chunks": "Save images with embedding in PNG chunks", + "Save style": "스타일 저장", + "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", "Save": "저장", - "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "Saving images/grids": "Saving images/grids", + "Saving to a directory": "Saving to a directory", + "Scale by": "Scale by", + "Scale to": "Scale to", + "Script": "스크립트", + "ScuNET GAN": "ScuNET GAN", + "ScuNET PSNR": "ScuNET PSNR", + "Secondary model (B)": "Secondary model (B)", + "See": "See", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "Seed": "시드", + "Send to extras": "부가기능으로 전송", "Send to img2img": "이미지→이미지로 전송", "Send to inpaint": "인페인트로 전송", - "Send to extras": "부가기능으로 전송", - "Open images output directory": "이미지 저장 경로 열기", - "Make Zip when Save?": "저장 시 Zip 생성하기", - "Prompt matrix": "프롬프트 매트릭스", + "Send to txt2img": "텍스트→이미지로 전송", "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)": "(|)를 이용해 프롬프트를 분리할 시 첫 프롬프트를 제외하고 모든 프롬프트의 조합마다 이미지를 생성합니다. 첫 프롬프트는 모든 조합에 포함되게 됩니다.", - "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", - "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", - "Show Textbox": "텍스트박스 보이기", - "File with inputs": "설정값 파일", - "Prompts": "프롬프트", - "X/Y plot": "X/Y 플롯", - "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", - "X type": "X축", - "Y type": "Y축", - "X values": "X 설정값", - "Y values": "Y 설정값", "Separate values for X axis using commas.": "쉼표로 X축에 적용할 값 분리", "Separate values for Y axis using commas.": "쉼표로 Y축에 적용할 값 분리", - "Draw legend": "범례 그리기", - "Include Separate Images": "분리된 이미지 포함하기", - "Keep -1 for seeds": "시드값 -1로 유지", + "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "Settings": "설정", + "Show Textbox": "텍스트박스 보이기", + "Show generation progress in window title.": "Show generation progress in window title.", + "Show grid in results for web": "Show grid in results for web", + "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", + "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", + "Show progressbar": "Show progressbar", + "Show result images": "Show result images", + "Sigma Churn": "시그마 섞기", + "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", + "Sigma max": "시그마 최댓값", + "Sigma min": "시그마 최솟값", + "Sigma noise": "시그마 노이즈", + "Single Image": "Single Image", + "Skip": "건너뛰기", + "Source directory": "Source directory", + "Source": "Source", + "Split oversized images into two": "Split oversized images into two", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Stable Diffusion": "Stable Diffusion", + "Steps": "스텝 수", + "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", + "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", + "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", + "Style 1": "스타일 1", + "Style 2": "스타일 2", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", + "SwinIR 4x": "SwinIR 4x", + "System": "System", + "Tertiary model (C)": "Tertiary model (C)", + "Textbox": "Textbox", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", + "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", + "Tile overlap": "타일 겹침", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", + "Tile size for all SwinIR.": "Tile size for all SwinIR.", + "Tiling": "타일링", + "Train Embedding": "Train Embedding", + "Train Hypernetwork": "Train Hypernetwork", + "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Train an embedding; must specify a directory with a set of 1:1 ratio images", + "Train": "훈련", + "Training": "Training", + "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", + "Upload mask": "마스크 업로드하기", + "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", + "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "마스크된 부분을 설정된 해상도로 업스케일하고, 인페인팅을 진행한 뒤, 다시 다운스케일 후 원본 이미지에 붙여넣습니다.", + "Upscaler 2 visibility": "Upscaler 2 visibility", + "Upscaler for img2img": "Upscaler for img2img", + "Upscaler": "업스케일러", + "Upscaling": "Upscaling", + "Use BLIP for caption": "Use BLIP for caption", + "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", + "Use an empty output directory to save pictures normally instead of writing to the output directory.": "저장 경로를 비워두면 기본 저장 폴더에 이미지들이 저장됩니다.", + "Use deepbooru for caption": "Use deepbooru for caption", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", + "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", + "User interface": "User interface", + "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", "Var. seed": "바리에이션 시드", "Var. strength": "바리에이션 강도", - "Steps": "스텝 수", - "Prompt S/R": "프롬프트 스타일 변경", - "Prompt order": "프롬프트 순서", - "Sampler": "샘플러", - "Checkpoint name": "체크포인트 이름", - "Hypernet str.": "하이퍼네트워크 강도", - "Sigma Churn": "시그마 섞기", - "Sigma min": "시그마 최솟값", - "Sigma max": "시그마 최댓값", - "Sigma noise": "시그마 노이즈", - "Clip skip": "클립 건너뛰기", - "Denoising": "디노이징", - "Nothing": "없음", - "Apply settings": "설정 적용하기", - "Always save all generated images": "생성된 이미지 항상 저장하기" + "Variation seed": "바리에이션 시드", + "Variation strength": "바리에이션 강도", + "Weighted sum": "Weighted sum", + "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusion으로 이미지를 생성하기 전 마스크된 부분에 무엇을 채울지 결정하는 설정값", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", + "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", + "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", + "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", + "Width": "가로", + "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "이미지를 설정된 사이즈의 2배로 업스케일합니다. 상단의 가로와 세로 슬라이더를 이용해 타일 사이즈를 지정하세요.", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", + "X type": "X축", + "X values": "X 설정값", + "X/Y plot": "X/Y 플롯", + "Y type": "Y축", + "Y values": "Y 설정값", + "api": "", + "built with gradio": "gradio로 제작되었습니다", + "checkpoint": "checkpoint", + "directory.": "directory.", + "down": "아래쪽", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", + "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", + "extras history": "extras history", + "fill it with colors of the image": "이미지의 색상으로 채우기", + "fill it with latent space noise": "잠재 공간 노이즈로 채우기", + "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", + "fill": "채우기", + "for detailed explanation.": "for detailed explanation.", + "hide": "api 숨기기", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", + "img2img DDIM discretize": "img2img DDIM discretize", + "img2img alternative test": "이미지→이미지 대체버전 테스트", + "img2img history": "img2img history", + "img2img": "이미지→이미지", + "keep whatever was there originally": "이미지 원본 유지", + "latent noise": "잠재 노이즈", + "latent nothing": "잠재 공백", + "left": "왼쪽", + "number of images to delete consecutively next": "number of images to delete consecutively next", + "or": "or", + "original": "원본 유지", + "quad": "quad", + "right": "오른쪽", + "set_index": "set_index", + "should be 2 or lower.": "이 2 이하여야 합니다.", + "sigma churn": "sigma churn", + "sigma noise": "sigma noise", + "sigma tmin": "sigma tmin", + "txt2img history": "txt2img history", + "txt2img": "텍스트→이미지", + "uniform": "uniform", + "up": "위쪽", + "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", + "view": "api 보이기", + "wiki": "wiki" } \ No newline at end of file From 6cfe23a6f183be58746feb7d7d58f83e877ed630 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Sun, 23 Oct 2022 22:37:40 +0900 Subject: [PATCH 103/321] Rename ko-KR.json to ko_KR.json --- localizations/{ko-KR.json => ko_KR.json} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename localizations/{ko-KR.json => ko_KR.json} (98%) diff --git a/localizations/ko-KR.json b/localizations/ko_KR.json similarity index 98% rename from localizations/ko-KR.json rename to localizations/ko_KR.json index 7cc431c6..f665042e 100644 --- a/localizations/ko-KR.json +++ b/localizations/ko_KR.json @@ -419,4 +419,4 @@ "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", "view": "api 보이기", "wiki": "wiki" -} \ No newline at end of file +} From 016712fc4cd523fb18123eed4281245f0dcc5bc3 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Sun, 23 Oct 2022 22:38:49 +0900 Subject: [PATCH 104/321] Update ko_KR.json Updated translation for everything except the Settings tab --- localizations/ko_KR.json | 381 ++++++++++++++++++++++----------------- 1 file changed, 219 insertions(+), 162 deletions(-) diff --git a/localizations/ko_KR.json b/localizations/ko_KR.json index f665042e..a48ece87 100644 --- a/localizations/ko_KR.json +++ b/localizations/ko_KR.json @@ -5,118 +5,158 @@ "❮": "❮", "❯": "❯", "⤡": "⤡", + " images in this directory. Loaded ": "개의 이미지가 이 경로에 존재합니다. ", + " images during ": "개의 이미지를 불러왔고, 생성 기간은 ", + ", divided into ": "입니다. ", + " pages": "페이지로 나뉘어 표시합니다.", "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", - "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", - "A merger of the two checkpoints will be generated in your": "A merger of the two checkpoints will be generated in your", + "[wiki]": " [위키] 참조", + "A directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리를 선택해 주세요.", + "A merger of the two checkpoints will be generated in your": "체크포인트들이 병합된 결과물이 당신의", "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", - "Add difference": "Add difference", + "Add difference": "차이점 추가", "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", - "Add layer normalization": "Add layer normalization", + "Add layer normalization": "레이어 정규화(normalization) 추가", "Add model hash to generation information": "Add model hash to generation information", "Add model name to generation information": "Add model name to generation information", + "Aesthetic imgs embedding": "스타일 이미지 임베딩", + "Aesthetic learning rate": "스타일 학습 수", + "Aesthetic steps": "스타일 스텝 수", + "Aesthetic text for imgs": "스타일 텍스트", + "Aesthetic weight": "스타일 가중치", "Always print all generation info to standard output": "Always print all generation info to standard output", "Always save all generated image grids": "Always save all generated image grids", "Always save all generated images": "생성된 이미지 항상 저장하기", + "api": "", + "append": "뒤에 삽입", "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", "Apply settings": "설정 적용하기", - "BSRGAN 4x": "BSRGAN 4x", - "Batch Process": "Batch Process", "Batch count": "배치 수", - "Batch from Directory": "Batch from Directory", + "Batch from Directory": "저장 경로로부터 여러장 처리", "Batch img2img": "이미지→이미지 배치", + "Batch Process": "이미지 여러장 처리", "Batch size": "배치 크기", - "CFG Scale": "CFG 스케일", - "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "BSRGAN 4x": "BSRGAN 4x", + "built with gradio": "gradio로 제작되었습니다", "Cancel generate forever": "반복 생성 취소", - "Check progress (first)": "Check progress (first)", + "CFG Scale": "CFG 스케일", "Check progress": "Check progress", + "Check progress (first)": "Check progress (first)", + "checkpoint": " 체크포인트 ", "Checkpoint Merger": "체크포인트 병합", "Checkpoint name": "체크포인트 이름", "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", + "Click to Upload": "Click to Upload", "Clip skip": "클립 건너뛰기", - "CodeFormer visibility": "CodeFormer visibility", - "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "CodeFormer visibility": "CodeFormer 가시성", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer 가중치 (0 = 최대 효과, 1 = 최소 효과)", "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", "Color variation": "색깔 다양성", + "Collect": "즐겨찾기", + "copy": "복사", "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", - "Create embedding": "Create embedding", - "Create flipped copies": "Create flipped copies", - "Create hypernetwork": "Create hypernetwork", + "Create aesthetic images embedding": "Create aesthetic images embedding", + "Create embedding": "임베딩 생성", + "Create flipped copies": "좌우로 뒤집은 복사본 생성", + "Create hypernetwork": "하이퍼네트워크 생성", + "Create images embedding": "Create images embedding", "Crop and resize": "잘라낸 후 리사이징", - "Crop to fit": "Crop to fit", - "Custom Name (Optional)": "Custom Name (Optional)", + "Crop to fit": "잘라내서 맞추기", + "Custom Name (Optional)": "병합 모델 이름 (선택사항)", + "Dataset directory": "데이터셋 경로", "DDIM": "DDIM", - "DPM adaptive": "DPM adaptive", - "DPM fast": "DPM fast", - "DPM2 Karras": "DPM2 Karras", - "DPM2 a Karras": "DPM2 a Karras", - "DPM2 a": "DPM2 a", - "DPM2": "DPM2", - "Dataset directory": "Dataset directory", "Decode CFG scale": "디코딩 CFG 스케일", "Decode steps": "디코딩 스텝 수", - "Delete": "Delete", - "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", - "Denoising strength change factor": "디노이즈 강도 변경 배수", - "Denoising strength": "디노이즈 강도", + "Delete": "삭제", "Denoising": "디노이징", - "Destination directory": "Destination directory", + "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 인페이팅에 뛰어남", + "Denoising strength": "디노이즈 강도", + "Denoising strength change factor": "디노이즈 강도 변경 배수", + "Destination directory": "결과물 저장 경로", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", "Directory for saving images using the Save button": "Directory for saving images using the Save button", "Directory name pattern": "Directory name pattern", + "directory.": "저장 경로에 저장됩니다.", "Do not add watermark to images": "Do not add watermark to images", "Do not do anything special": "아무것도 하지 않기", "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", "Do not show any images in results for web": "Do not show any images in results for web", + "down": "아래쪽", "Download localization template": "Download localization template", + "Download": "다운로드", + "DPM adaptive": "DPM adaptive", + "DPM fast": "DPM fast", + "DPM2": "DPM2", + "DPM2 a": "DPM2 a", + "DPM2 a Karras": "DPM2 a Karras", + "DPM2 Karras": "DPM2 Karras", "Draw legend": "범례 그리기", "Draw mask": "마스크 직접 그리기", "Drop File Here": "Drop File Here", "Drop Image Here": "Drop Image Here", - "ESRGAN_4x": "ESRGAN_4x", - "Embedding": "Embedding", + "Embedding": "임베딩", + "Embedding Learning rate": "임베딩 학습률", "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", "Enable full page image viewer": "Enable full page image viewer", "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", - "End Page": "End Page", - "Enter hypernetwork layer structure": "Enter hypernetwork layer structure", - "Eta noise seed delta": "Eta noise seed delta", + "End Page": "마지막 페이지", + "Enter hypernetwork layer structure": "하이퍼네트워크 레이어 구조 입력", + "Error": "오류", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "ESRGAN_4x": "ESRGAN_4x", "Eta": "Eta", - "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", - "Euler a": "Euler a", + "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", + "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", + "Eta noise seed delta": "Eta noise seed delta", "Euler": "Euler", + "Euler a": "Euler a", + "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", + "Existing Caption txt Action": "이미 존재하는 캡션 텍스트 처리", "Extra": "고급", "Extras": "부가기능", + "extras history": "extras history", "Face restoration": "Face restoration", "Fall-off exponent (lower=higher detail)": "감쇠 지수 (낮을수록 디테일이 올라감)", - "File Name": "File Name", + "favorites": "즐겨찾기", + "File": "File", "File format for grids": "File format for grids", "File format for images": "File format for images", + "File Name": "파일 이름", "File with inputs": "설정값 파일", - "File": "File", "Filename join string": "Filename join string", "Filename word regex": "Filename word regex", + "fill": "채우기", + "fill it with colors of the image": "이미지의 색상으로 채우기", + "fill it with latent space noise": "잠재 공간 노이즈로 채우기", + "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", "Filter NSFW content": "Filter NSFW content", - "First Page": "First Page", + "First Page": "처음 페이지", "Firstpass height": "초기 세로길이", "Firstpass width": "초기 가로길이", "Font for image grids that have text": "Font for image grids that have text", + "for detailed explanation.": "를 참조하십시오.", "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SD 업스케일링에서 타일 간 몇 픽셀을 겹치게 할지 결정하는 설정값입니다. 타일들이 다시 한 이미지로 합쳐질 때, 눈에 띄는 이음매가 없도록 서로 겹치게 됩니다.", - "GFPGAN visibility": "GFPGAN visibility", - "Generate Info": "Generate Info", - "Generate forever": "반복 생성", "Generate": "생성", + "Generate forever": "반복 생성", + "Generate Info": "생성 정보", + "GFPGAN visibility": "GFPGAN 가시성", "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", "Height": "세로", "Heun": "Heun", + "hide": "api 숨기기", "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", "Highres. fix": "고해상도 보정", "History": "기록", + "Image Browser": "이미지 브라우저", + "Images directory": "이미지 경로", + "extras": "부가기능", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", @@ -124,26 +164,32 @@ "How much to blur the mask before processing, in pixels.": "이미지 생성 전 마스크를 얼마나 블러처리할지 결정하는 값. 픽셀 단위", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "바리에이션을 얼마나 줄지 정하는 수치 - 0일 경우 아무것도 바뀌지 않고, 1일 경우 바리에이션 시드로부터 생성된 이미지를 얻게 됩니다. (Ancestral 샘플러 제외 - 이 경우에는 좀 다른 무언가를 얻게 됩니다)", "Hypernet str.": "하이퍼네트워크 강도", - "Hypernetwork strength": "Hypernetwork strength", "Hypernetwork": "하이퍼네트워크", + "Hypernetwork Learning rate": "하이퍼네트워크 학습률", + "Hypernetwork strength": "Hypernetwork strength", "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "ignore": "무시", + "Image": "Image", "Image for img2img": "Image for img2img", "Image for inpainting with mask": "Image for inpainting with mask", - "Image": "Image", "Images filename pattern": "Images filename pattern", + "img2img": "이미지→이미지", + "img2img alternative test": "이미지→이미지 대체버전 테스트", + "img2img DDIM discretize": "img2img DDIM discretize", + "img2img history": "img2img history", "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "루프백 모드에서는 매 루프마다 디노이즈 강도에 이 값이 곱해집니다. 1보다 작을 경우 다양성이 낮아져 결과 이미지들이 고정된 형태로 모일 겁니다. 1보다 클 경우 다양성이 높아져 결과 이미지들이 갈수록 혼란스러워지겠죠.", "Include Separate Images": "분리된 이미지 포함하기", "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", - "Initialization text": "Initialization text", - "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", + "Initialization text": "초기화 텍스트", + "Inpaint": "인페인트", "Inpaint at full resolution": "전체 해상도로 인페인트하기", + "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", "Inpaint masked": "마스크만 처리", "Inpaint not masked": "마스크 이외만 처리", - "Inpaint": "인페인트", "Input directory": "인풋 이미지 경로", - "Interpolation Method": "Interpolation Method", + "Interpolation Method": "보간 방법", "Interrogate\nCLIP": "CLIP\n분석", "Interrogate\nDeepBooru": "DeepBooru\n분석", "Interrogate Options": "Interrogate Options", @@ -156,49 +202,68 @@ "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", "Interrupt": "중단", + "Is negative text": "네거티브 텍스트일시 체크", "Just resize": "리사이징", "Keep -1 for seeds": "시드값 -1로 유지", - "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", - "LDSR": "LDSR", - "LMS Karras": "LMS Karras", - "LMS": "LMS", + "keep whatever was there originally": "이미지 원본 유지", "Label": "Label", "Lanczos": "Lanczos", - "Learning rate": "Learning rate", - "Leave blank to save images to the default path.": "Leave blank to save images to the default path.", + "Last prompt:": "Last prompt:", + "Last saved hypernetwork:": "Last saved hypernetwork:", + "Last saved image:": "Last saved image:", + "latent noise": "잠재 노이즈", + "latent nothing": "잠재 공백", + "LDSR": "LDSR", + "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "leakyrelu": "leakyrelu", + "Leave blank to save images to the default path.": "기존 저장 경로에 이미지들을 저장하려면 비워두세요.", + "left": "왼쪽", + "linear": "linear", "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "LMS": "LMS", + "LMS Karras": "LMS Karras", + "Load": "불러오기", "Loading...": "로딩 중...", "Localization (requires restart)": "Localization (requires restart)", - "Log directory": "Log directory", + "Log directory": "로그 경로", "Loopback": "루프백", "Loops": "루프 수", + "Loss:": "Loss:", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", "Make Zip when Save?": "저장 시 Zip 생성하기", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", + "Mask": "마스크", "Mask blur": "마스크 블러", "Mask mode": "Mask mode", - "Mask": "마스크", "Masked content": "마스크된 부분", "Masking mode": "Masking mode", "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", - "Max steps": "Max steps", - "Modules": "Modules", + "Max steps": "최대 스텝 수", + "Modules": "모듈", "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", - "Multiplier (M) - set to 0 to get model A": "Multiplier (M) - set to 0 to get model A", - "Name": "Name", - "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.", + "Multiplier (M) - set to 0 to get model A": "배율 (M) - 0으로 적용하면 모델 A를 얻게 됩니다", + "Name": "이름", "Negative prompt": "네거티브 프롬프트", - "Next Page": "Next Page", + "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", + "Next batch": "다음 묶음", + "Next Page": "다음 페이지", "None": "None", "Nothing": "없음", + "Nothing found in the image.": "Nothing found in the image.", + "number of images to delete consecutively next": "연속적으로 삭제할 이미지 수", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", - "Number of vectors per token": "Number of vectors per token", + "Number of vectors per token": "토큰별 벡터 수", + "Open for Clip Aesthetic!": "클립 스타일 기능을 활성화하려면 클릭!", "Open images output directory": "이미지 저장 경로 열기", - "Open output directory": "Open output directory", + "Open output directory": "저장 경로 열기", + "or": "or", + "original": "원본 유지", "Original negative prompt": "기존 네거티브 프롬프트", "Original prompt": "기존 프롬프트", "Outpainting direction": "아웃페인팅 방향", "Outpainting mk2": "아웃페인팅 마크 2", + "Output directory": "이미지 저장 경로", "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", "Output directory for images from extras tab": "Output directory for images from extras tab", "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", @@ -206,46 +271,54 @@ "Output directory for img2img images": "Output directory for img2img images", "Output directory for txt2img grids": "Output directory for txt2img grids", "Output directory for txt2img images": "Output directory for txt2img images", - "Output directory": "이미지 저장 경로", "Override `Denoising strength` to 1?": "디노이즈 강도를 1로 적용할까요?", - "Override `Sampling Steps` to the same value as `Decode steps`?": "샘플링 스텝 수를 디코딩 스텝 수와 동일하게 적용할까요?", - "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "프롬프트 값을 기존 프롬프트와 동일하게 적용할까요?(네거티브 프롬프트 포함)", - "PLMS": "PLMS", - "PNG Info": "PNG 정보", - "Page Index": "Page Index", + "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", + "Override `Sampling Steps` to the same value as `Decode steps`?": "샘플링 스텝 수를 디코딩 스텝 수와 동일하게 적용할까요?", + "Overwrite Old Embedding": "기존 임베딩 덮어쓰기", + "Overwrite Old Hypernetwork": "기존 하이퍼네트워크 덮어쓰기", + "Page Index": "페이지 인덱스", + "parameters": "설정값", "Path to directory where to write outputs": "Path to directory where to write outputs", - "Path to directory with input images": "Path to directory with input images", + "Path to directory with input images": "인풋 이미지가 있는 경로", "Paths for saving": "Paths for saving", "Pixels to expand": "확장할 픽셀 수", + "PLMS": "PLMS", + "PNG Info": "PNG 정보", "Poor man's outpainting": "가난뱅이의 아웃페인팅", - "Preprocess images": "Preprocess images", - "Preprocess": "Preprocess", - "Prev Page": "Prev Page", + "Preparing dataset from": "Preparing dataset from", + "prepend": "앞에 삽입", + "Preprocess": "전처리", + "Preprocess images": "이미지 전처리", + "Prev batch": "이전 묶음", + "Prev Page": "이전 페이지", "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", - "Primary model (A)": "Primary model (A)", + "Primary model (A)": "주 모델 (A)", "Process an image, use it as an input, repeat.": "이미지를 생성하고, 생성한 이미지를 다시 원본으로 사용하는 과정을 반복합니다.", "Process images in a directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리의 이미지들을 처리합니다.", "Produce an image that can be tiled.": "타일링 가능한 이미지를 생성합니다.", + "Prompt": "프롬프트", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", - "Prompt S/R": "프롬프트 스타일 변경", "Prompt matrix": "프롬프트 매트릭스", "Prompt order": "프롬프트 순서", - "Prompt template file": "Prompt template file", - "Prompt": "프롬프트", - "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", + "Prompt S/R": "프롬프트 스타일 변경", + "Prompt template file": "프롬프트 템플릿 파일 경로", "Prompts": "프롬프트", + "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", + "quad": "quad", "Quality for saved jpeg images": "Quality for saved jpeg images", "Quicksettings list": "Quicksettings list", "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", "Randomness": "랜덤성", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", - "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "프리뷰 이미지 생성 시 텍스트→이미지 탭에서 설정값(프롬프트 등) 읽어오기", "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "추천 설정값 - 샘플링 스텝 수 : 80-100 , 샘플러 : Euler a, 디노이즈 강도 : 0.8", "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "relu": "relu", "Renew Page": "Renew Page", "Request browser notifications": "Request browser notifications", + "Resize": "리사이징 배수", "Resize and fill": "리사이징 후 채우기", "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "설정된 해상도로 이미지 리사이징을 진행합니다. 원본과 가로/세로 길이가 일치하지 않을 경우, 부정확한 화면비의 이미지를 얻게 됩니다.", "Resize mode": "Resize mode", @@ -253,42 +326,43 @@ "Resize seed from width": "시드 리사이징 세로길이", "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "이미지 전체가 설정된 해상도 내부에 들어가게 리사이징을 진행합니다. 빈 공간은 이미지의 색상으로 채웁니다.", "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "설정된 해상도 전체가 이미지로 가득차게 리사이징을 진행합니다. 튀어나오는 부분은 잘라냅니다.", - "Resize": "Resize", "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", "Restore faces": "얼굴 보정", "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", - "Result = A * (1 - M) + B * M": "Result = A * (1 - M) + B * M", - "Result = A + (B - C) * M": "Result = A + (B - C) * M", + "Result = A * (1 - M) + B * M": "결과물 = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "결과물 = A + (B - C) * M", "Reuse seed from last generation, mostly useful if it was randomed": "이전 생성에서 사용된 시드를 불러옵니다. 랜덤하게 생성했을 시 도움됨", - "Run": "Run", - "SD upscale": "SD 업스케일링", - "Sampler parameters": "Sampler parameters", + "right": "오른쪽", + "Run": "가동", "Sampler": "샘플러", - "Sampling Steps": "샘플링 스텝 수", + "Sampler parameters": "Sampler parameters", "Sampling method": "샘플링 방법", - "Save a copy of embedding to log directory every N steps, 0 to disable": "Save a copy of embedding to log directory every N steps, 0 to disable", + "Sampling Steps": "샘플링 스텝 수", + "Save": "저장", + "Save a copy of embedding to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 임베딩을 저장합니다, 비활성화하려면 0으로 설정하십시오.", "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", - "Save an image to log directory every N steps, 0 to disable": "Save an image to log directory every N steps, 0 to disable", - "Save as float16": "Save as float16", + "Save an image to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 이미지를 저장합니다, 비활성화하려면 0으로 설정하십시오.", + "Save as float16": "float16으로 저장", "Save grids to a subdirectory": "Save grids to a subdirectory", "Save images to a subdirectory": "Save images to a subdirectory", - "Save images with embedding in PNG chunks": "Save images with embedding in PNG chunks", + "Save images with embedding in PNG chunks": "PNG 청크로 이미지에 임베딩을 포함시켜 저장", "Save style": "스타일 저장", "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", - "Save": "저장", "Saving images/grids": "Saving images/grids", "Saving to a directory": "Saving to a directory", - "Scale by": "Scale by", - "Scale to": "Scale to", + "Scale by": "스케일링 배수 지정", + "Scale to": "스케일링 사이즈 지정", "Script": "스크립트", "ScuNET GAN": "ScuNET GAN", "ScuNET PSNR": "ScuNET PSNR", - "Secondary model (B)": "Secondary model (B)", - "See": "See", - "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "SD upscale": "SD 업스케일링", + "Secondary model (B)": "2차 모델 (B)", + "See": "자세한 설명은", "Seed": "시드", + "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", + "Select activation function of hypernetwork": "하이퍼네트워크 활성화 함수 선택", "Send to extras": "부가기능으로 전송", "Send to img2img": "이미지→이미지로 전송", "Send to inpaint": "인페인트로 전송", @@ -297,26 +371,36 @@ "Separate values for X axis using commas.": "쉼표로 X축에 적용할 값 분리", "Separate values for Y axis using commas.": "쉼표로 Y축에 적용할 값 분리", "Set seed to -1, which will cause a new random number to be used every time": "시드를 -1로 적용 - 매번 랜덤한 시드가 적용되게 됩니다.", + "set_index": "set_index", "Settings": "설정", - "Show Textbox": "텍스트박스 보이기", + "should be 2 or lower.": "이 2 이하여야 합니다.", "Show generation progress in window title.": "Show generation progress in window title.", "Show grid in results for web": "Show grid in results for web", "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", "Show progressbar": "Show progressbar", - "Show result images": "Show result images", - "Sigma Churn": "시그마 섞기", + "Show result images": "이미지 결과 보이기", + "Show Textbox": "텍스트박스 보이기", "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", + "Sigma Churn": "시그마 섞기", + "sigma churn": "sigma churn", "Sigma max": "시그마 최댓값", "Sigma min": "시그마 최솟값", "Sigma noise": "시그마 노이즈", - "Single Image": "Single Image", + "sigma noise": "sigma noise", + "sigma tmin": "sigma tmin", + "Single Image": "단일 이미지", "Skip": "건너뛰기", - "Source directory": "Source directory", - "Source": "Source", - "Split oversized images into two": "Split oversized images into two", - "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Slerp angle": "구면 선형 보간 각도", + "Slerp interpolation": "구면 선형 보간", + "Source": "원본", + "Source directory": "원본 경로", + "Split image threshold": "Split image threshold", + "Split image overlap ratio": "Split image overlap ratio", + "Split oversized images": "사이즈가 큰 이미지 분할하기", "Stable Diffusion": "Stable Diffusion", + "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "Step:": "Step:", "Steps": "스텝 수", "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", "Stop processing current image and continue processing.": "현재 진행중인 이미지 생성을 중단하고 작업을 계속하기", @@ -325,51 +409,65 @@ "Style 2": "스타일 2", "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", "SwinIR 4x": "SwinIR 4x", + "Sys VRAM:": "시스템 VRAM : ", "System": "System", - "Tertiary model (C)": "Tertiary model (C)", + "Tertiary model (C)": "3차 모델 (C)", "Textbox": "Textbox", "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "This text is used to rotate the feature space of the imgs embs": "이 텍스트는 이미지 임베딩의 특징 공간을 회전하는 데 사용됩니다.", + "Tile overlap": "타일 겹침", "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", - "Tile overlap": "타일 겹침", - "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", "Tile size for all SwinIR.": "Tile size for all SwinIR.", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", "Tiling": "타일링", - "Train Embedding": "Train Embedding", - "Train Hypernetwork": "Train Hypernetwork", - "Train an embedding; must specify a directory with a set of 1:1 ratio images": "Train an embedding; must specify a directory with a set of 1:1 ratio images", + "Time taken:": "소요 시간 : ", + "Torch active/reserved:": "활성화/예약된 Torch 양 : ", + "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).": "활성화된 Torch : 생성 도중 캐시된 데이터를 포함해 사용된 VRAM의 최대량\n예약된 Torch : 활성화되고 캐시된 모든 데이터를 포함해 Torch에게 할당된 VRAM의 최대량\n시스템 VRAM : 모든 어플리케이션에 할당된 VRAM 최대량 / 총 GPU VRAM (최고 이용도%)", "Train": "훈련", + "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "임베딩이나 하이퍼네트워크를 훈련시킵니다. 1:1 비율의 이미지가 있는 경로를 지정해야 합니다.", + "Train Embedding": "임베딩 훈련", + "Train Hypernetwork": "하이퍼네트워크 훈련", "Training": "Training", - "Unload VAE and CLIP from VRAM when training": "Unload VAE and CLIP from VRAM when training", + "txt2img": "텍스트→이미지", + "txt2img history": "txt2img history", + "uniform": "uniform", + "up": "위쪽", "Upload mask": "마스크 업로드하기", "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "마스크된 부분을 설정된 해상도로 업스케일하고, 인페인팅을 진행한 뒤, 다시 다운스케일 후 원본 이미지에 붙여넣습니다.", - "Upscaler 2 visibility": "Upscaler 2 visibility", - "Upscaler for img2img": "Upscaler for img2img", "Upscaler": "업스케일러", + "Upscaler 1": "업스케일러 1", + "Upscaler 2": "업스케일러 2", + "Upscaler 2 visibility": "업스케일러 2 가시성", + "Upscaler for img2img": "Upscaler for img2img", "Upscaling": "Upscaling", - "Use BLIP for caption": "Use BLIP for caption", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", "Use an empty output directory to save pictures normally instead of writing to the output directory.": "저장 경로를 비워두면 기본 저장 폴더에 이미지들이 저장됩니다.", - "Use deepbooru for caption": "Use deepbooru for caption", + "Use BLIP for caption": "캡션에 BLIP 사용", + "Use deepbooru for caption": "캡션에 deepbooru 사용", + "Use dropout": "드롭아웃 사용", "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", + "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", "User interface": "User interface", - "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", "Var. seed": "바리에이션 시드", "Var. strength": "바리에이션 강도", "Variation seed": "바리에이션 시드", "Variation strength": "바리에이션 강도", - "Weighted sum": "Weighted sum", + "view": "api 보이기", + "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", + "Weighted sum": "가중 합", "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusion으로 이미지를 생성하기 전 마스크된 부분에 무엇을 채울지 결정하는 설정값", "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", "Width": "가로", + "wiki": " 위키", "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "이미지를 설정된 사이즈의 2배로 업스케일합니다. 상단의 가로와 세로 슬라이더를 이용해 타일 사이즈를 지정하세요.", "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", @@ -377,46 +475,5 @@ "X values": "X 설정값", "X/Y plot": "X/Y 플롯", "Y type": "Y축", - "Y values": "Y 설정값", - "api": "", - "built with gradio": "gradio로 제작되었습니다", - "checkpoint": "checkpoint", - "directory.": "directory.", - "down": "아래쪽", - "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", - "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", - "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", - "extras history": "extras history", - "fill it with colors of the image": "이미지의 색상으로 채우기", - "fill it with latent space noise": "잠재 공간 노이즈로 채우기", - "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", - "fill": "채우기", - "for detailed explanation.": "for detailed explanation.", - "hide": "api 숨기기", - "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", - "img2img DDIM discretize": "img2img DDIM discretize", - "img2img alternative test": "이미지→이미지 대체버전 테스트", - "img2img history": "img2img history", - "img2img": "이미지→이미지", - "keep whatever was there originally": "이미지 원본 유지", - "latent noise": "잠재 노이즈", - "latent nothing": "잠재 공백", - "left": "왼쪽", - "number of images to delete consecutively next": "number of images to delete consecutively next", - "or": "or", - "original": "원본 유지", - "quad": "quad", - "right": "오른쪽", - "set_index": "set_index", - "should be 2 or lower.": "이 2 이하여야 합니다.", - "sigma churn": "sigma churn", - "sigma noise": "sigma noise", - "sigma tmin": "sigma tmin", - "txt2img history": "txt2img history", - "txt2img": "텍스트→이미지", - "uniform": "uniform", - "up": "위쪽", - "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", - "view": "api 보이기", - "wiki": "wiki" -} + "Y values": "Y 설정값" +} \ No newline at end of file From ae7c830c3ae7bb1ebe9b0d935cb33c254354b649 Mon Sep 17 00:00:00 2001 From: Dynamic Date: Mon, 24 Oct 2022 04:29:19 +0900 Subject: [PATCH 105/321] Translation complete --- localizations/ko_KR.json | 302 +++++++++++++++++++++------------------ 1 file changed, 160 insertions(+), 142 deletions(-) diff --git a/localizations/ko_KR.json b/localizations/ko_KR.json index a48ece87..6889de46 100644 --- a/localizations/ko_KR.json +++ b/localizations/ko_KR.json @@ -15,23 +15,24 @@ "A merger of the two checkpoints will be generated in your": "체크포인트들이 병합된 결과물이 당신의", "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "난수 생성기의 결과물을 지정하는 값 - 동일한 설정값과 동일한 시드를 적용 시, 완전히 똑같은 결과물을 얻게 됩니다.", "Add a random artist to the prompt.": "프롬프트에 랜덤한 작가 추가", - "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", + "Add a second progress bar to the console that shows progress for an entire job.": "콘솔에 전체 작업의 진행도를 보여주는 2번째 프로그레스 바 추가하기", "Add difference": "차이점 추가", - "Add extended info (seed, prompt) to filename when saving grid": "Add extended info (seed, prompt) to filename when saving grid", + "Add extended info (seed, prompt) to filename when saving grid": "그리드 저장 시 파일명에 추가 정보(시드, 프롬프트) 기입", "Add layer normalization": "레이어 정규화(normalization) 추가", - "Add model hash to generation information": "Add model hash to generation information", - "Add model name to generation information": "Add model name to generation information", + "Add model hash to generation information": "생성 정보에 모델 해시 추가", + "Add model name to generation information": "생성 정보에 모델 이름 추가", "Aesthetic imgs embedding": "스타일 이미지 임베딩", "Aesthetic learning rate": "스타일 학습 수", "Aesthetic steps": "스타일 스텝 수", "Aesthetic text for imgs": "스타일 텍스트", "Aesthetic weight": "스타일 가중치", - "Always print all generation info to standard output": "Always print all generation info to standard output", - "Always save all generated image grids": "Always save all generated image grids", + "Allowed categories for random artists selection when using the Roll button": "랜덤 버튼을 눌러 무작위 작가를 선택할 때 허용된 카테고리", + "Always print all generation info to standard output": "기본 아웃풋에 모든 생성 정보 항상 출력하기", + "Always save all generated image grids": "생성된 이미지 그리드 항상 저장하기", "Always save all generated images": "생성된 이미지 항상 저장하기", "api": "", "append": "뒤에 삽입", - "Apply color correction to img2img results to match original colors.": "Apply color correction to img2img results to match original colors.", + "Apply color correction to img2img results to match original colors.": "이미지→이미지 결과물이 기존 색상과 일치하도록 색상 보정 적용하기", "Apply selected styles to current prompt": "현재 프롬프트에 선택된 스타일 적용", "Apply settings": "설정 적용하기", "Batch count": "배치 수", @@ -43,29 +44,29 @@ "built with gradio": "gradio로 제작되었습니다", "Cancel generate forever": "반복 생성 취소", "CFG Scale": "CFG 스케일", - "Check progress": "Check progress", - "Check progress (first)": "Check progress (first)", + "Check progress": "진행도 체크", + "Check progress (first)": "진행도 체크 (처음)", "checkpoint": " 체크포인트 ", "Checkpoint Merger": "체크포인트 병합", "Checkpoint name": "체크포인트 이름", - "Checkpoints to cache in RAM": "Checkpoints to cache in RAM", + "Checkpoints to cache in RAM": "RAM에 캐싱할 체크포인트 수", "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 이미지가 주어진 프롬프트를 얼마나 따를지를 정해주는 수치 - 낮은 값일수록 더 창의적인 결과물이 나옴", - "Click to Upload": "Click to Upload", + "Click to Upload": "클릭해서 업로드하기", "Clip skip": "클립 건너뛰기", - "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP: maximum number of lines in text file (0 = No limit)", + "CLIP: maximum number of lines in text file (0 = No limit)": "CLIP : 텍스트 파일 최대 라인 수 (0 = 제한 없음)", "CodeFormer visibility": "CodeFormer 가시성", "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer 가중치 (0 = 최대 효과, 1 = 최소 효과)", - "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", + "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer 가중치 설정값 (0 = 최대 효과, 1 = 최소 효과)", "Color variation": "색깔 다양성", "Collect": "즐겨찾기", "copy": "복사", "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", - "Create a text file next to every image with generation parameters.": "Create a text file next to every image with generation parameters.", - "Create aesthetic images embedding": "Create aesthetic images embedding", + "Create a text file next to every image with generation parameters.": "생성된 이미지마다 생성 설정값을 담은 텍스트 파일 생성하기", + "Create aesthetic images embedding": "스타일 이미지 임베딩 생성하기", "Create embedding": "임베딩 생성", "Create flipped copies": "좌우로 뒤집은 복사본 생성", "Create hypernetwork": "하이퍼네트워크 생성", - "Create images embedding": "Create images embedding", + "Create images embedding": "이미지 임베딩 생성하기", "Crop and resize": "잘라낸 후 리사이징", "Crop to fit": "잘라내서 맞추기", "Custom Name (Optional)": "병합 모델 이름 (선택사항)", @@ -80,15 +81,15 @@ "Denoising strength change factor": "디노이즈 강도 변경 배수", "Destination directory": "결과물 저장 경로", "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "알고리즘이 얼마나 원본 이미지를 반영할지를 결정하는 수치입니다. 0일 경우 아무것도 바뀌지 않고, 1일 경우 원본 이미지와 전혀 관련없는 결과물을 얻게 됩니다. 1.0 아래의 값일 경우, 설정된 샘플링 스텝 수보다 적은 스텝 수를 거치게 됩니다.", - "Directory for saving images using the Save button": "Directory for saving images using the Save button", - "Directory name pattern": "Directory name pattern", + "Directory for saving images using the Save button": "저장 버튼을 이용해 저장하는 이미지들의 저장 경로", + "Directory name pattern": "디렉토리명 패턴", "directory.": "저장 경로에 저장됩니다.", - "Do not add watermark to images": "Do not add watermark to images", + "Do not add watermark to images": "이미지에 워터마크 추가하지 않기", "Do not do anything special": "아무것도 하지 않기", - "Do not save grids consisting of one picture": "Do not save grids consisting of one picture", - "Do not show any images in results for web": "Do not show any images in results for web", + "Do not save grids consisting of one picture": "이미지가 1개뿐인 그리드는 저장하지 않기", + "Do not show any images in results for web": "웹에서 결과창에 아무 이미지도 보여주지 않기", "down": "아래쪽", - "Download localization template": "Download localization template", + "Download localization template": "현지화 템플릿 다운로드", "Download": "다운로드", "DPM adaptive": "DPM adaptive", "DPM fast": "DPM fast", @@ -98,65 +99,67 @@ "DPM2 Karras": "DPM2 Karras", "Draw legend": "범례 그리기", "Draw mask": "마스크 직접 그리기", - "Drop File Here": "Drop File Here", - "Drop Image Here": "Drop Image Here", + "Drop File Here": "파일을 끌어 놓으세요", + "Drop Image Here": "이미지를 끌어 놓으세요", "Embedding": "임베딩", "Embedding Learning rate": "임베딩 학습률", - "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", - "Enable full page image viewer": "Enable full page image viewer", - "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", + "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "강조 : (텍스트)를 이용해 모델의 텍스트에 대한 가중치를 더 강하게 주고 [텍스트]를 이용해 더 약하게 줍니다.", + "Enable full page image viewer": "전체 페이지 이미지 뷰어 활성화", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "더 예리하고 깔끔한 결과물을 위해 K 샘플러들에 양자화를 적용합니다. 존재하는 시드가 변경될 수 있습니다. 재시작이 필요합니다.", "End Page": "마지막 페이지", "Enter hypernetwork layer structure": "하이퍼네트워크 레이어 구조 입력", "Error": "오류", - "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)", + "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)": "deepbooru에서 괄호를 역슬래시(\\)로 이스케이프 처리하기(가중치 강조가 아니라 실제 괄호로 사용되게 하기 위해)", "ESRGAN_4x": "ESRGAN_4x", "Eta": "Eta", - "eta (noise multiplier) for ancestral samplers": "eta (noise multiplier) for ancestral samplers", - "eta (noise multiplier) for DDIM": "eta (noise multiplier) for DDIM", - "Eta noise seed delta": "Eta noise seed delta", + "eta (noise multiplier) for ancestral samplers": "ancestral 샘플러를 위한 eta(노이즈 배수)값", + "eta (noise multiplier) for DDIM": "DDIM을 위한 eta(노이즈 배수)값", + "Eta noise seed delta": "Eta 노이즈 시드 변화", "Euler": "Euler", "Euler a": "Euler a", "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 매우 창의적, 스텝 수에 따라 완전히 다른 결과물이 나올 수 있음. 30~40보다 높은 스텝 수는 효과가 미미함", "Existing Caption txt Action": "이미 존재하는 캡션 텍스트 처리", "Extra": "고급", "Extras": "부가기능", - "extras history": "extras history", - "Face restoration": "Face restoration", + "extras history": "부가기능 기록", + "Face restoration": "얼굴 보정", + "Face restoration model": "얼굴 보정 모델", "Fall-off exponent (lower=higher detail)": "감쇠 지수 (낮을수록 디테일이 올라감)", "favorites": "즐겨찾기", - "File": "File", - "File format for grids": "File format for grids", - "File format for images": "File format for images", + "File": "파일", + "File format for grids": "그리드 이미지 파일 형식", + "File format for images": "이미지 파일 형식", "File Name": "파일 이름", "File with inputs": "설정값 파일", - "Filename join string": "Filename join string", - "Filename word regex": "Filename word regex", + "Filename join string": "파일명 병합 문자열", + "Filename word regex": "파일명 정규표현식", "fill": "채우기", "fill it with colors of the image": "이미지의 색상으로 채우기", "fill it with latent space noise": "잠재 공간 노이즈로 채우기", "fill it with latent space zeroes": "잠재 공간의 0값으로 채우기", - "Filter NSFW content": "Filter NSFW content", + "Filter NSFW content": "성인 컨텐츠 필터링하기", "First Page": "처음 페이지", "Firstpass height": "초기 세로길이", "Firstpass width": "초기 가로길이", - "Font for image grids that have text": "Font for image grids that have text", + "Font for image grids that have text": "텍스트가 존재하는 그리드 이미지의 폰트", "for detailed explanation.": "를 참조하십시오.", "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SD 업스케일링에서 타일 간 몇 픽셀을 겹치게 할지 결정하는 설정값입니다. 타일들이 다시 한 이미지로 합쳐질 때, 눈에 띄는 이음매가 없도록 서로 겹치게 됩니다.", "Generate": "생성", "Generate forever": "반복 생성", "Generate Info": "생성 정보", "GFPGAN visibility": "GFPGAN 가시성", - "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", + "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "그리드 세로줄 수 : -1로 설정 시 자동 감지/0으로 설정 시 배치 크기와 동일", "Height": "세로", "Heun": "Heun", "hide": "api 숨기기", - "Hide samplers in user interface (requires restart)": "Hide samplers in user interface (requires restart)", + "Hide samplers in user interface (requires restart)": "사용자 인터페이스에서 숨길 샘플러 선택(재시작 필요)", "Highres. fix": "고해상도 보정", "History": "기록", "Image Browser": "이미지 브라우저", + "Images Browser": "이미지 브라우저", "Images directory": "이미지 경로", "extras": "부가기능", - "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "훈련이 얼마나 빨리 이루어질지 정하는 값입니다. 값이 낮을수록 훈련 시간이 길어지고, 높은 값일수록 정확한 결과를 내는 데 실패하고 임베딩을 망가뜨릴 수 있습니다(임베딩이 망가진 경우에는 훈련 정보 텍스트박스에 손실(Loss) : nan 이라고 출력되게 됩니다. 이 경우에는 망가지지 않은 이전 백업본을 불러와야 합니다).\n\n학습률은 하나의 값으로 설정할 수도 있고, 다음 문법을 사용해 여러 값을 사용할 수도 있습니다 :\n\n학습률_1:최대 스텝수_1, 학습률_2:최대 스텝수_2, ...\n\n예 : 0.005:100, 1e-3:1000, 1e-5\n\n예의 설정값은 첫 100스텝동안 0.005의 학습률로, 그 이후 1000스텝까지는 1e-3으로, 남은 스텝은 1e-5로 훈련하게 됩니다.", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "생성된 이미지를 향상할 횟수; 매우 낮은 값은 만족스럽지 못한 결과물을 출력할 수 있음", @@ -166,111 +169,114 @@ "Hypernet str.": "하이퍼네트워크 강도", "Hypernetwork": "하이퍼네트워크", "Hypernetwork Learning rate": "하이퍼네트워크 학습률", - "Hypernetwork strength": "Hypernetwork strength", - "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG", - "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", - "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "Hypernetwork strength": "하이퍼네트워크 강도", + "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "PNG 이미지가 4MB보다 크거나 가로 또는 세로길이가 4000보다 클 경우, 다운스케일 후 JPG로 복사본 저장하기", + "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "이 옵션이 활성화되면 생성된 이미지에 워터마크가 추가되지 않습니다. 경고 : 워터마크를 추가하지 않는다면, 비윤리적인 행동을 하는 중일지도 모릅니다.", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "이 값이 0이 아니라면, 시드에 해당 값이 더해지고, Eta가 있는 샘플러를 사용할 때 노이즈의 RNG 조정을 위해 해당 값이 사용됩니다. 이 설정으로 더 다양한 이미지를 생성하거나, 잘 알고 계시다면 특정 소프트웨어의 결과값을 재현할 수도 있습니다.", "ignore": "무시", - "Image": "Image", + "Image": "이미지", "Image for img2img": "Image for img2img", - "Image for inpainting with mask": "Image for inpainting with mask", - "Images filename pattern": "Images filename pattern", + "Image for inpainting with mask": "마스크로 인페인팅할 이미지", + "Images filename pattern": "이미지 파일명 패턴", "img2img": "이미지→이미지", "img2img alternative test": "이미지→이미지 대체버전 테스트", - "img2img DDIM discretize": "img2img DDIM discretize", - "img2img history": "img2img history", + "img2img DDIM discretize": "이미지→이미지 DDIM 이산화", + "img2img history": "이미지→이미지 기록", "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "루프백 모드에서는 매 루프마다 디노이즈 강도에 이 값이 곱해집니다. 1보다 작을 경우 다양성이 낮아져 결과 이미지들이 고정된 형태로 모일 겁니다. 1보다 클 경우 다양성이 높아져 결과 이미지들이 갈수록 혼란스러워지겠죠.", "Include Separate Images": "분리된 이미지 포함하기", - "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "75개보다 많은 토큰을 사용시 마지막 쉼표로부터 N개의 토큰 이내에 패딩을 추가해 통일성 증가시키기", "Initialization text": "초기화 텍스트", "Inpaint": "인페인트", "Inpaint at full resolution": "전체 해상도로 인페인트하기", - "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트 패딩값(픽셀 단위)", + "Inpaint at full resolution padding, pixels": "전체 해상도로 인페인트시 패딩값(픽셀 단위)", "Inpaint masked": "마스크만 처리", "Inpaint not masked": "마스크 이외만 처리", "Input directory": "인풋 이미지 경로", "Interpolation Method": "보간 방법", "Interrogate\nCLIP": "CLIP\n분석", "Interrogate\nDeepBooru": "DeepBooru\n분석", - "Interrogate Options": "Interrogate Options", - "Interrogate: deepbooru score threshold": "Interrogate: deepbooru score threshold", - "Interrogate: deepbooru sort alphabetically": "Interrogate: deepbooru sort alphabetically", - "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).", - "Interrogate: keep models in VRAM": "Interrogate: keep models in VRAM", - "Interrogate: maximum description length": "Interrogate: maximum description length", - "Interrogate: minimum description length (excluding artists, etc..)": "Interrogate: minimum description length (excluding artists, etc..)", - "Interrogate: num_beams for BLIP": "Interrogate: num_beams for BLIP", - "Interrogate: use artists from artists.csv": "Interrogate: use artists from artists.csv", + "Interrogate Options": "분석 설정", + "Interrogate: deepbooru score threshold": "분석 : deepbooru 점수 임계값", + "Interrogate: deepbooru sort alphabetically": "분석 : deepbooru 알파벳 순서로 정렬하기", + "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators).": "분석 : 결과물에 모델 태그의 랭크 포함하기 (캡션 바탕의 분석기에는 효과 없음)", + "Interrogate: keep models in VRAM": "분석 : VRAM에 모델 유지하기", + "Interrogate: maximum description length": "분석 : 설명 최대 길이", + "Interrogate: minimum description length (excluding artists, etc..)": "분석 : 설명 최소 길이(작가 등등..제외)", + "Interrogate: num_beams for BLIP": "분석 : BLIP의 num_beams값", + "Interrogate: use artists from artists.csv": "분석 : artists.csv의 작가들 사용하기", "Interrupt": "중단", "Is negative text": "네거티브 텍스트일시 체크", "Just resize": "리사이징", "Keep -1 for seeds": "시드값 -1로 유지", "keep whatever was there originally": "이미지 원본 유지", - "Label": "Label", + "Label": "라벨", "Lanczos": "Lanczos", - "Last prompt:": "Last prompt:", - "Last saved hypernetwork:": "Last saved hypernetwork:", - "Last saved image:": "Last saved image:", + "Last prompt:": "마지막 프롬프트 : ", + "Last saved hypernetwork:": "마지막으로 저장된 하이퍼네트워크 : ", + "Last saved image:": "마지막으로 저장된 이미지 : ", "latent noise": "잠재 노이즈", "latent nothing": "잠재 공백", "LDSR": "LDSR", - "LDSR processing steps. Lower = faster": "LDSR processing steps. Lower = faster", + "LDSR processing steps. Lower = faster": "LDSR 스텝 수. 낮은 값 = 빠른 속도", "leakyrelu": "leakyrelu", "Leave blank to save images to the default path.": "기존 저장 경로에 이미지들을 저장하려면 비워두세요.", "left": "왼쪽", "linear": "linear", - "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "설정 탭이 아니라 상단의 빠른 설정 바에 위치시킬 설정 이름을 쉼표로 분리해서 입력하십시오. 설정 이름은 modules/shared.py에서 찾을 수 있습니다. 재시작이 필요합니다.", "LMS": "LMS", "LMS Karras": "LMS Karras", "Load": "불러오기", "Loading...": "로딩 중...", - "Localization (requires restart)": "Localization (requires restart)", + "Localization (requires restart)": "현지화 (재시작 필요)", "Log directory": "로그 경로", "Loopback": "루프백", "Loops": "루프 수", - "Loss:": "Loss:", + "Loss:": "손실(Loss) : ", "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "동일한 시드 값으로 생성되었을 이미지를 주어진 해상도로 최대한 유사하게 재현합니다.", - "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "K-diffusion 샘플러들이 단일 이미지를 생성하는 것처럼 배치에서도 동일한 이미지를 생성하게 하기", "Make Zip when Save?": "저장 시 Zip 생성하기", "Mask": "마스크", "Mask blur": "마스크 블러", - "Mask mode": "Mask mode", + "Mask mode": "마스크 모드", "Masked content": "마스크된 부분", - "Masking mode": "Masking mode", - "Max prompt words for [prompt_words] pattern": "Max prompt words for [prompt_words] pattern", + "Masking mode": "마스킹 모드", + "Max prompt words for [prompt_words] pattern": "[prompt_words] 패턴의 최대 프롬프트 단어 수", "Max steps": "최대 스텝 수", "Modules": "모듈", - "Move face restoration model from VRAM into RAM after processing": "Move face restoration model from VRAM into RAM after processing", - "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.", + "Move face restoration model from VRAM into RAM after processing": "처리가 완료되면 얼굴 보정 모델을 VRAM에서 RAM으로 옮기기", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "하이퍼네트워크 훈련 진행 시 VAE와 CLIP을 RAM으로 옮기기. VRAM이 절약됩니다.", "Multiplier (M) - set to 0 to get model A": "배율 (M) - 0으로 적용하면 모델 A를 얻게 됩니다", "Name": "이름", "Negative prompt": "네거티브 프롬프트", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "네거티브 프롬프트 입력(Ctrl+Enter나 Alt+Enter로 생성 시작)", "Next batch": "다음 묶음", "Next Page": "다음 페이지", - "None": "None", + "None": "없음", "Nothing": "없음", "Nothing found in the image.": "Nothing found in the image.", "number of images to delete consecutively next": "연속적으로 삭제할 이미지 수", - "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", + "Number of pictures displayed on each page": "각 페이지에 표시될 이미지 수", + "Minimum number of pages per load": "한번 불러올 때마다 불러올 최소 페이지 수", + "Number of grids in each row": "각 세로줄마다 표시될 그리드 수", + "Number of repeats for a single input image per epoch; used only for displaying epoch number": "세대(Epoch)당 단일 인풋 이미지의 반복 횟수 - 세대(Epoch) 숫자를 표시하는 데에만 사용됩니다. ", "Number of vectors per token": "토큰별 벡터 수", "Open for Clip Aesthetic!": "클립 스타일 기능을 활성화하려면 클릭!", "Open images output directory": "이미지 저장 경로 열기", "Open output directory": "저장 경로 열기", - "or": "or", + "or": "또는", "original": "원본 유지", "Original negative prompt": "기존 네거티브 프롬프트", "Original prompt": "기존 프롬프트", "Outpainting direction": "아웃페인팅 방향", "Outpainting mk2": "아웃페인팅 마크 2", "Output directory": "이미지 저장 경로", - "Output directory for grids; if empty, defaults to two directories below": "Output directory for grids; if empty, defaults to two directories below", - "Output directory for images from extras tab": "Output directory for images from extras tab", - "Output directory for images; if empty, defaults to three directories below": "Output directory for images; if empty, defaults to three directories below", - "Output directory for img2img grids": "Output directory for img2img grids", - "Output directory for img2img images": "Output directory for img2img images", - "Output directory for txt2img grids": "Output directory for txt2img grids", - "Output directory for txt2img images": "Output directory for txt2img images", + "Output directory for grids; if empty, defaults to two directories below": "그리드 이미지 저장 경로 - 비워둘 시 하단의 2가지 기본 경로로 설정됨", + "Output directory for images from extras tab": "부가기능 탭 저장 경로", + "Output directory for images; if empty, defaults to three directories below": "이미지 저장 경로 - 비워둘 시 하단의 3가지 기본 경로로 설정됨", + "Output directory for img2img grids": "이미지→이미지 그리드 저장 경로", + "Output directory for img2img images": "이미지→이미지 저장 경로", + "Output directory for txt2img grids": "텍스트→이미지 그리드 저장 경로", + "Output directory for txt2img images": "텍스트→이미지 저장 경로", "Override `Denoising strength` to 1?": "디노이즈 강도를 1로 적용할까요?", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "프롬프트 값을 기존 프롬프트와 동일하게 적용할까요?(네거티브 프롬프트 포함)", "Override `Sampling method` to Euler?(this method is built for it)": "샘플링 방법을 Euler로 적용할까요?(이 기능은 해당 샘플러를 위해 만들어져 있습니다)", @@ -279,20 +285,21 @@ "Overwrite Old Hypernetwork": "기존 하이퍼네트워크 덮어쓰기", "Page Index": "페이지 인덱스", "parameters": "설정값", - "Path to directory where to write outputs": "Path to directory where to write outputs", + "Path to directory where to write outputs": "결과물을 출력할 경로", "Path to directory with input images": "인풋 이미지가 있는 경로", - "Paths for saving": "Paths for saving", + "Paths for saving": "저장 경로", "Pixels to expand": "확장할 픽셀 수", "PLMS": "PLMS", "PNG Info": "PNG 정보", "Poor man's outpainting": "가난뱅이의 아웃페인팅", - "Preparing dataset from": "Preparing dataset from", + "Preload images at startup": "WebUI 가동 시 이미지 프리로드하기", + "Preparing dataset from": "준비된 데이터셋 경로 : ", "prepend": "앞에 삽입", "Preprocess": "전처리", "Preprocess images": "이미지 전처리", "Prev batch": "이전 묶음", "Prev Page": "이전 페이지", - "Prevent empty spots in grid (when set to autodetect)": "Prevent empty spots in grid (when set to autodetect)", + "Prevent empty spots in grid (when set to autodetect)": "(자동 감지 사용시)그리드에 빈칸이 생기는 것 방지하기", "Primary model (A)": "주 모델 (A)", "Process an image, use it as an input, repeat.": "이미지를 생성하고, 생성한 이미지를 다시 원본으로 사용하는 과정을 반복합니다.", "Process images in a directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리의 이미지들을 처리합니다.", @@ -307,26 +314,26 @@ "Prompts from file or textbox": "파일이나 텍스트박스로부터 프롬프트 불러오기", "Put variable parts at start of prompt": "변경되는 프롬프트를 앞에 위치시키기", "quad": "quad", - "Quality for saved jpeg images": "Quality for saved jpeg images", - "Quicksettings list": "Quicksettings list", + "Quality for saved jpeg images": "저장된 jpeg 이미지들의 품질", + "Quicksettings list": "빠른 설정 리스트", "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", "Randomness": "랜덤성", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", "Read parameters (prompt, etc...) from txt2img tab when making previews": "프리뷰 이미지 생성 시 텍스트→이미지 탭에서 설정값(프롬프트 등) 읽어오기", "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "추천 설정값 - 샘플링 스텝 수 : 80-100 , 샘플러 : Euler a, 디노이즈 강도 : 0.8", - "Reload custom script bodies (No ui updates, No restart)": "Reload custom script bodies (No ui updates, No restart)", + "Reload custom script bodies (No ui updates, No restart)": "커스텀 스크립트 리로드하기(UI 업데이트 없음, 재시작 없음)", "relu": "relu", "Renew Page": "Renew Page", - "Request browser notifications": "Request browser notifications", + "Request browser notifications": "브라우저 알림 권한 요청", "Resize": "리사이징 배수", "Resize and fill": "리사이징 후 채우기", "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "설정된 해상도로 이미지 리사이징을 진행합니다. 원본과 가로/세로 길이가 일치하지 않을 경우, 부정확한 화면비의 이미지를 얻게 됩니다.", - "Resize mode": "Resize mode", + "Resize mode": "리사이징 모드", "Resize seed from height": "시드 리사이징 가로길이", "Resize seed from width": "시드 리사이징 세로길이", "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "이미지 전체가 설정된 해상도 내부에 들어가게 리사이징을 진행합니다. 빈 공간은 이미지의 색상으로 채웁니다.", "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "설정된 해상도 전체가 이미지로 가득차게 리사이징을 진행합니다. 튀어나오는 부분은 잘라냅니다.", - "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)", + "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradio를 재시작하고 컴포넌트 새로고침하기 (커스텀 스크립트, ui.py, js, css만 해당됨)", "Restore faces": "얼굴 보정", "Restore low quality faces using GFPGAN neural network": "GFPGAN 신경망을 이용해 저품질의 얼굴을 보정합니다.", "Result = A * (1 - M) + B * M": "결과물 = A * (1 - M) + B * M", @@ -335,23 +342,23 @@ "right": "오른쪽", "Run": "가동", "Sampler": "샘플러", - "Sampler parameters": "Sampler parameters", + "Sampler parameters": "샘플러 설정값", "Sampling method": "샘플링 방법", "Sampling Steps": "샘플링 스텝 수", "Save": "저장", "Save a copy of embedding to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 임베딩을 저장합니다, 비활성화하려면 0으로 설정하십시오.", - "Save a copy of image before applying color correction to img2img results": "Save a copy of image before applying color correction to img2img results", - "Save a copy of image before doing face restoration.": "Save a copy of image before doing face restoration.", - "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", + "Save a copy of image before applying color correction to img2img results": "이미지→이미지 결과물에 색상 보정을 진행하기 전 이미지의 복사본을 저장하기", + "Save a copy of image before doing face restoration.": "얼굴 보정을 진행하기 전 이미지의 복사본을 저장하기", + "Save an csv containing the loss to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 손실(Loss)을 포함하는 csv 파일을 저장합니다, 비활성화하려면 0으로 설정하십시오.", "Save an image to log directory every N steps, 0 to disable": "N스텝마다 로그 경로에 이미지를 저장합니다, 비활성화하려면 0으로 설정하십시오.", "Save as float16": "float16으로 저장", - "Save grids to a subdirectory": "Save grids to a subdirectory", - "Save images to a subdirectory": "Save images to a subdirectory", + "Save grids to a subdirectory": "그리드 이미지를 하위 디렉토리에 저장하기", + "Save images to a subdirectory": "이미지를 하위 디렉토리에 저장하기", "Save images with embedding in PNG chunks": "PNG 청크로 이미지에 임베딩을 포함시켜 저장", "Save style": "스타일 저장", - "Save text information about generation parameters as chunks to png files": "Save text information about generation parameters as chunks to png files", - "Saving images/grids": "Saving images/grids", - "Saving to a directory": "Saving to a directory", + "Save text information about generation parameters as chunks to png files": "이미지 생성 설정값을 PNG 청크에 텍스트로 저장", + "Saving images/grids": "이미지/그리드 저장", + "Saving to a directory": "디렉토리에 저장", "Scale by": "스케일링 배수 지정", "Scale to": "스케일링 사이즈 지정", "Script": "스크립트", @@ -363,6 +370,7 @@ "Seed": "시드", "Seed of a different picture to be mixed into the generation.": "결과물에 섞일 다른 그림의 시드", "Select activation function of hypernetwork": "하이퍼네트워크 활성화 함수 선택", + "Select which Real-ESRGAN models to show in the web UI. (Requires restart)": "WebUI에 표시할 Real-ESRGAN 모델을 선택하십시오. (재시작 필요)", "Send to extras": "부가기능으로 전송", "Send to img2img": "이미지→이미지로 전송", "Send to inpaint": "인페인트로 전송", @@ -374,29 +382,30 @@ "set_index": "set_index", "Settings": "설정", "should be 2 or lower.": "이 2 이하여야 합니다.", - "Show generation progress in window title.": "Show generation progress in window title.", - "Show grid in results for web": "Show grid in results for web", - "Show image creation progress every N sampling steps. Set 0 to disable.": "Show image creation progress every N sampling steps. Set 0 to disable.", - "Show images zoomed in by default in full page image viewer": "Show images zoomed in by default in full page image viewer", - "Show progressbar": "Show progressbar", + "Show generation progress in window title.": "창 타이틀에 생성 진행도 보여주기", + "Show grid in results for web": "웹에서 결과창에 그리드 보여주기", + "Show image creation progress every N sampling steps. Set 0 to disable.": "N번째 샘플링 스텝마다 이미지 생성 과정 보이기 - 비활성화하려면 0으로 설정", + "Show images zoomed in by default in full page image viewer": "전체 페이지 이미지 뷰어에서 기본값으로 이미지 확대해서 보여주기", + "Show progressbar": "프로그레스 바 보이기", "Show result images": "이미지 결과 보이기", "Show Textbox": "텍스트박스 보이기", + "Show previews of all images generated in a batch as a grid": "배치에서 생성된 모든 이미지의 미리보기를 그리드 형식으로 보여주기", "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", "Sigma Churn": "시그마 섞기", - "sigma churn": "sigma churn", + "sigma churn": "시그마 섞기", "Sigma max": "시그마 최댓값", "Sigma min": "시그마 최솟값", "Sigma noise": "시그마 노이즈", - "sigma noise": "sigma noise", - "sigma tmin": "sigma tmin", + "sigma noise": "시그마 노이즈", + "sigma tmin": "시그마 tmin", "Single Image": "단일 이미지", "Skip": "건너뛰기", "Slerp angle": "구면 선형 보간 각도", "Slerp interpolation": "구면 선형 보간", "Source": "원본", "Source directory": "원본 경로", - "Split image threshold": "Split image threshold", - "Split image overlap ratio": "Split image overlap ratio", + "Split image threshold": "이미지 분할 임계값", + "Split image overlap ratio": "이미지 분할 겹침 비율", "Split oversized images": "사이즈가 큰 이미지 분할하기", "Stable Diffusion": "Stable Diffusion", "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", @@ -407,20 +416,20 @@ "Stop processing images and return any results accumulated so far.": "이미지 생성을 중단하고 지금까지 진행된 결과물 출력", "Style 1": "스타일 1", "Style 2": "스타일 2", - "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "적용할 스타일 - 스타일은 긍정/부정 프롬프트 모두에 대한 설정값을 가지고 있고 양쪽 모두에 적용 가능합니다.", "SwinIR 4x": "SwinIR 4x", "Sys VRAM:": "시스템 VRAM : ", - "System": "System", + "System": "시스템", "Tertiary model (C)": "3차 모델 (C)", - "Textbox": "Textbox", - "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", - "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", + "Textbox": "텍스트박스", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "이 정규표현식은 파일명으로부터 단어를 추출하는 데 사용됩니다. 추출된 단어들은 하단의 설정을 이용해 라벨 텍스트로 변환되어 훈련에 사용됩니다. 파일명 텍스트를 유지하려면 비워두십시오.", + "This string will be used to join split words into a single line if the option above is enabled.": "이 문자열은 상단 설정이 활성화되어있을 때 분리된 단어들을 한 줄로 합치는 데 사용됩니다.", "This text is used to rotate the feature space of the imgs embs": "이 텍스트는 이미지 임베딩의 특징 공간을 회전하는 데 사용됩니다.", "Tile overlap": "타일 겹침", - "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", - "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "Tile overlap, in pixels for SwinIR. Low values = visible seam.", - "Tile size for all SwinIR.": "Tile size for all SwinIR.", - "Tile size for ESRGAN upscalers. 0 = no tiling.": "Tile size for ESRGAN upscalers. 0 = no tiling.", + "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.": "ESRGAN 업스케일러들의 타일 중첩 수치, 픽셀 단위. 낮은 값 = 눈에 띄는 이음매.", + "Tile overlap, in pixels for SwinIR. Low values = visible seam.": "SwinIR의 타일 중첩 수치, 픽셀 단위. 낮은 값 = 눈에 띄는 이음매.", + "Tile size for all SwinIR.": "SwinIR의 타일 사이즈.", + "Tile size for ESRGAN upscalers. 0 = no tiling.": "ESRGAN 업스케일러들의 타일 사이즈. 0 = 타일링 없음.", "Tiling": "타일링", "Time taken:": "소요 시간 : ", "Torch active/reserved:": "활성화/예약된 Torch 양 : ", @@ -429,51 +438,60 @@ "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "임베딩이나 하이퍼네트워크를 훈련시킵니다. 1:1 비율의 이미지가 있는 경로를 지정해야 합니다.", "Train Embedding": "임베딩 훈련", "Train Hypernetwork": "하이퍼네트워크 훈련", - "Training": "Training", + "Training": "훈련", "txt2img": "텍스트→이미지", - "txt2img history": "txt2img history", + "txt2img history": "텍스트→이미지 기록", "uniform": "uniform", "up": "위쪽", "Upload mask": "마스크 업로드하기", - "Upscale latent space image when doing hires. fix": "Upscale latent space image when doing hires. fix", + "Upscale latent space image when doing hires. fix": "고해상도 보정 사용시 잠재 공간 이미지 업스케일하기", "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "마스크된 부분을 설정된 해상도로 업스케일하고, 인페인팅을 진행한 뒤, 다시 다운스케일 후 원본 이미지에 붙여넣습니다.", "Upscaler": "업스케일러", "Upscaler 1": "업스케일러 1", "Upscaler 2": "업스케일러 2", "Upscaler 2 visibility": "업스케일러 2 가시성", - "Upscaler for img2img": "Upscaler for img2img", - "Upscaling": "Upscaling", + "Upscaler for img2img": "이미지→이미지 업스케일러", + "Upscaling": "업스케일링", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "저해상도 이미지를 1차적으로 생성 후 업스케일을 진행하여, 이미지의 전체적인 구성을 바꾸지 않고 세부적인 디테일을 향상시킵니다.", "Use an empty output directory to save pictures normally instead of writing to the output directory.": "저장 경로를 비워두면 기본 저장 폴더에 이미지들이 저장됩니다.", "Use BLIP for caption": "캡션에 BLIP 사용", "Use deepbooru for caption": "캡션에 deepbooru 사용", "Use dropout": "드롭아웃 사용", - "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "Use old emphasis implementation. Can be useful to reproduce old seeds.": "Use old emphasis implementation. Can be useful to reproduce old seeds.", - "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", - "use spaces for tags in deepbooru": "use spaces for tags in deepbooru", - "User interface": "User interface", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "다음 태그들을 사용해 이미지 파일명 형식을 결정하세요 : [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]. 비워두면 기본값으로 설정됩니다.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "다음 태그들을 사용해 이미지와 그리드의 하위 디렉토리명의 형식을 결정하세요 : [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]. 비워두면 기본값으로 설정됩니다.", + "Use old emphasis implementation. Can be useful to reproduce old seeds.": "옛 방식의 강조 구현을 사용합니다. 옛 시드를 재현하는 데 효과적일 수 있습니다.", + "Use original name for output filename during batch process in extras tab": "부가기능 탭에서 이미지를 여러장 처리 시 결과물 파일명에 기존 파일명 사용하기", + "use spaces for tags in deepbooru": "deepbooru에서 태그에 공백 사용", + "User interface": "사용자 인터페이스", "Var. seed": "바리에이션 시드", "Var. strength": "바리에이션 강도", "Variation seed": "바리에이션 시드", "Variation strength": "바리에이션 강도", "view": "api 보이기", - "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", + "VRAM usage polls per second during generation. Set to 0 to disable.": "생성 도중 초당 VRAM 사용량 폴링 수. 비활성화하려면 0으로 설정하십시오.", "Weighted sum": "가중 합", "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusion으로 이미지를 생성하기 전 마스크된 부분에 무엇을 채울지 결정하는 설정값", - "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", - "When using \"Save\" button, save images to a subdirectory": "When using \"Save\" button, save images to a subdirectory", - "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "PNG 정보나 붙여넣은 텍스트로부터 생성 설정값을 읽어올 때, 선택된 모델/체크포인트는 변경하지 않기.", + "When using \"Save\" button, save images to a subdirectory": "저장 버튼 사용시, 이미지를 하위 디렉토리에 저장하기", + "When using 'Save' button, only save a single selected image": "저장 버튼 사용시, 선택된 이미지 1개만 저장하기", "Which algorithm to use to produce the image": "이미지를 생성할 때 사용할 알고리즘", "Width": "가로", "wiki": " 위키", "Will upscale the image to twice the dimensions; use width and height sliders to set tile size": "이미지를 설정된 사이즈의 2배로 업스케일합니다. 상단의 가로와 세로 슬라이더를 이용해 타일 사이즈를 지정하세요.", - "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).", + "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "이미지→이미지 진행 시, 슬라이더로 설정한 스텝 수를 정확히 실행하기 (일반적으로 디노이즈 강도가 낮을수록 실제 설정된 스텝 수보다 적게 진행됨)", "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", "X type": "X축", "X values": "X 설정값", "X/Y plot": "X/Y 플롯", "Y type": "Y축", - "Y values": "Y 설정값" + "Y values": "Y 설정값", + "step1 min/max": "스텝1 최소/최대", + "step2 min/max": "스텝2 최소/최대", + "step count": "스텝 변화 횟수", + "cfg1 min/max": "CFG1 최소/최대", + "cfg2 min/max": "CFG2 최소/최대", + "cfg count": "CFG 변화 횟수", + "x/y change": "X/Y축 변경", + "Random": "랜덤", + "Random grid": "랜덤 그리드" } \ No newline at end of file From dd25722d6c3f9d9a5f7d76307822bf7558386a0f Mon Sep 17 00:00:00 2001 From: Dynamic Date: Mon, 24 Oct 2022 04:38:16 +0900 Subject: [PATCH 106/321] Finalize ko_KR.json --- localizations/ko_KR.json | 44 ++++++++++++++++++++-------------------- 1 file changed, 22 insertions(+), 22 deletions(-) diff --git a/localizations/ko_KR.json b/localizations/ko_KR.json index 6889de46..ab12c37e 100644 --- a/localizations/ko_KR.json +++ b/localizations/ko_KR.json @@ -5,10 +5,10 @@ "❮": "❮", "❯": "❯", "⤡": "⤡", - " images in this directory. Loaded ": "개의 이미지가 이 경로에 존재합니다. ", " images during ": "개의 이미지를 불러왔고, 생성 기간은 ", - ", divided into ": "입니다. ", + " images in this directory. Loaded ": "개의 이미지가 이 경로에 존재합니다. ", " pages": "페이지로 나뉘어 표시합니다.", + ", divided into ": "입니다. ", "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", "[wiki]": " [위키] 참조", "A directory on the same machine where the server is running.": "WebUI 서버가 돌아가고 있는 디바이스에 존재하는 디렉토리를 선택해 주세요.", @@ -43,7 +43,10 @@ "BSRGAN 4x": "BSRGAN 4x", "built with gradio": "gradio로 제작되었습니다", "Cancel generate forever": "반복 생성 취소", + "cfg count": "CFG 변화 횟수", "CFG Scale": "CFG 스케일", + "cfg1 min/max": "CFG1 최소/최대", + "cfg2 min/max": "CFG2 최소/최대", "Check progress": "진행도 체크", "Check progress (first)": "진행도 체크 (처음)", "checkpoint": " 체크포인트 ", @@ -57,8 +60,8 @@ "CodeFormer visibility": "CodeFormer 가시성", "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer 가중치 (0 = 최대 효과, 1 = 최소 효과)", "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormer 가중치 설정값 (0 = 최대 효과, 1 = 최소 효과)", - "Color variation": "색깔 다양성", "Collect": "즐겨찾기", + "Color variation": "색깔 다양성", "copy": "복사", "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "서로 다른 설정값으로 생성된 이미지의 그리드를 만듭니다. 아래의 설정으로 가로/세로에 어떤 설정값을 적용할지 선택하세요.", "Create a text file next to every image with generation parameters.": "생성된 이미지마다 생성 설정값을 담은 텍스트 파일 생성하기", @@ -89,8 +92,8 @@ "Do not save grids consisting of one picture": "이미지가 1개뿐인 그리드는 저장하지 않기", "Do not show any images in results for web": "웹에서 결과창에 아무 이미지도 보여주지 않기", "down": "아래쪽", - "Download localization template": "현지화 템플릿 다운로드", "Download": "다운로드", + "Download localization template": "현지화 템플릿 다운로드", "DPM adaptive": "DPM adaptive", "DPM fast": "DPM fast", "DPM2": "DPM2", @@ -121,6 +124,7 @@ "Existing Caption txt Action": "이미 존재하는 캡션 텍스트 처리", "Extra": "고급", "Extras": "부가기능", + "extras": "부가기능", "extras history": "부가기능 기록", "Face restoration": "얼굴 보정", "Face restoration model": "얼굴 보정 모델", @@ -155,10 +159,6 @@ "Hide samplers in user interface (requires restart)": "사용자 인터페이스에서 숨길 샘플러 선택(재시작 필요)", "Highres. fix": "고해상도 보정", "History": "기록", - "Image Browser": "이미지 브라우저", - "Images Browser": "이미지 브라우저", - "Images directory": "이미지 경로", - "extras": "부가기능", "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "훈련이 얼마나 빨리 이루어질지 정하는 값입니다. 값이 낮을수록 훈련 시간이 길어지고, 높은 값일수록 정확한 결과를 내는 데 실패하고 임베딩을 망가뜨릴 수 있습니다(임베딩이 망가진 경우에는 훈련 정보 텍스트박스에 손실(Loss) : nan 이라고 출력되게 됩니다. 이 경우에는 망가지지 않은 이전 백업본을 불러와야 합니다).\n\n학습률은 하나의 값으로 설정할 수도 있고, 다음 문법을 사용해 여러 값을 사용할 수도 있습니다 :\n\n학습률_1:최대 스텝수_1, 학습률_2:최대 스텝수_2, ...\n\n예 : 0.005:100, 1e-3:1000, 1e-5\n\n예의 설정값은 첫 100스텝동안 0.005의 학습률로, 그 이후 1000스텝까지는 1e-3으로, 남은 스텝은 1e-5로 훈련하게 됩니다.", "How many batches of images to create": "생성할 이미지 배치 수", "How many image to create in a single batch": "한 배치당 이미지 수", @@ -175,8 +175,11 @@ "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "이 값이 0이 아니라면, 시드에 해당 값이 더해지고, Eta가 있는 샘플러를 사용할 때 노이즈의 RNG 조정을 위해 해당 값이 사용됩니다. 이 설정으로 더 다양한 이미지를 생성하거나, 잘 알고 계시다면 특정 소프트웨어의 결과값을 재현할 수도 있습니다.", "ignore": "무시", "Image": "이미지", + "Image Browser": "이미지 브라우저", "Image for img2img": "Image for img2img", "Image for inpainting with mask": "마스크로 인페인팅할 이미지", + "Images Browser": "이미지 브라우저", + "Images directory": "이미지 경로", "Images filename pattern": "이미지 파일명 패턴", "img2img": "이미지→이미지", "img2img alternative test": "이미지→이미지 대체버전 테스트", @@ -242,6 +245,7 @@ "Masking mode": "마스킹 모드", "Max prompt words for [prompt_words] pattern": "[prompt_words] 패턴의 최대 프롬프트 단어 수", "Max steps": "최대 스텝 수", + "Minimum number of pages per load": "한번 불러올 때마다 불러올 최소 페이지 수", "Modules": "모듈", "Move face restoration model from VRAM into RAM after processing": "처리가 완료되면 얼굴 보정 모델을 VRAM에서 RAM으로 옮기기", "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "하이퍼네트워크 훈련 진행 시 VAE와 CLIP을 RAM으로 옮기기. VRAM이 절약됩니다.", @@ -254,10 +258,9 @@ "None": "없음", "Nothing": "없음", "Nothing found in the image.": "Nothing found in the image.", + "Number of grids in each row": "각 세로줄마다 표시될 그리드 수", "number of images to delete consecutively next": "연속적으로 삭제할 이미지 수", "Number of pictures displayed on each page": "각 페이지에 표시될 이미지 수", - "Minimum number of pages per load": "한번 불러올 때마다 불러올 최소 페이지 수", - "Number of grids in each row": "각 세로줄마다 표시될 그리드 수", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "세대(Epoch)당 단일 인풋 이미지의 반복 횟수 - 세대(Epoch) 숫자를 표시하는 데에만 사용됩니다. ", "Number of vectors per token": "토큰별 벡터 수", "Open for Clip Aesthetic!": "클립 스타일 기능을 활성화하려면 클릭!", @@ -317,6 +320,8 @@ "Quality for saved jpeg images": "저장된 jpeg 이미지들의 품질", "Quicksettings list": "빠른 설정 리스트", "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", + "Random": "랜덤", + "Random grid": "랜덤 그리드", "Randomness": "랜덤성", "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "클립보드에 복사된 정보로부터 설정값 읽어오기/프롬프트창이 비어있을경우 제일 최근 설정값 불러오기", "Read parameters (prompt, etc...) from txt2img tab when making previews": "프리뷰 이미지 생성 시 텍스트→이미지 탭에서 설정값(프롬프트 등) 읽어오기", @@ -386,10 +391,10 @@ "Show grid in results for web": "웹에서 결과창에 그리드 보여주기", "Show image creation progress every N sampling steps. Set 0 to disable.": "N번째 샘플링 스텝마다 이미지 생성 과정 보이기 - 비활성화하려면 0으로 설정", "Show images zoomed in by default in full page image viewer": "전체 페이지 이미지 뷰어에서 기본값으로 이미지 확대해서 보여주기", + "Show previews of all images generated in a batch as a grid": "배치에서 생성된 모든 이미지의 미리보기를 그리드 형식으로 보여주기", "Show progressbar": "프로그레스 바 보이기", "Show result images": "이미지 결과 보이기", "Show Textbox": "텍스트박스 보이기", - "Show previews of all images generated in a batch as a grid": "배치에서 생성된 모든 이미지의 미리보기를 그리드 형식으로 보여주기", "Sigma adjustment for finding noise for image": "이미지 노이즈를 찾기 위해 시그마 조정", "Sigma Churn": "시그마 섞기", "sigma churn": "시그마 섞기", @@ -404,11 +409,14 @@ "Slerp interpolation": "구면 선형 보간", "Source": "원본", "Source directory": "원본 경로", - "Split image threshold": "이미지 분할 임계값", "Split image overlap ratio": "이미지 분할 겹침 비율", + "Split image threshold": "이미지 분할 임계값", "Split oversized images": "사이즈가 큰 이미지 분할하기", "Stable Diffusion": "Stable Diffusion", "Stable Diffusion checkpoint": "Stable Diffusion 체크포인트", + "step count": "스텝 변화 횟수", + "step1 min/max": "스텝1 최소/최대", + "step2 min/max": "스텝2 최소/최대", "Step:": "Step:", "Steps": "스텝 수", "Stop At last layers of CLIP model": "CLIP 모델의 n번째 레이어에서 멈추기", @@ -482,16 +490,8 @@ "Write image to a directory (default - log/images) and generation parameters into csv file.": "이미지를 경로에 저장하고, 설정값들을 csv 파일로 저장합니다. (기본 경로 - log/images)", "X type": "X축", "X values": "X 설정값", + "x/y change": "X/Y축 변경", "X/Y plot": "X/Y 플롯", "Y type": "Y축", - "Y values": "Y 설정값", - "step1 min/max": "스텝1 최소/최대", - "step2 min/max": "스텝2 최소/최대", - "step count": "스텝 변화 횟수", - "cfg1 min/max": "CFG1 최소/최대", - "cfg2 min/max": "CFG2 최소/최대", - "cfg count": "CFG 변화 횟수", - "x/y change": "X/Y축 변경", - "Random": "랜덤", - "Random grid": "랜덤 그리드" + "Y values": "Y 설정값" } \ No newline at end of file From 974196932583b96b6b76632052fc0d7e70820bf3 Mon Sep 17 00:00:00 2001 From: Vladimir Repin <32306715+mezotaken@users.noreply.github.com> Date: Sun, 23 Oct 2022 22:38:42 +0300 Subject: [PATCH 107/321] Save properly processed image before color correction --- modules/processing.py | 33 ++++++++++++++++++--------------- 1 file changed, 18 insertions(+), 15 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index ff83023c..15b639e1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -46,6 +46,20 @@ def apply_color_correction(correction, image): return image +def apply_overlay(overlay_exists, overlay, paste_loc, image): + if overlay_exists: + if paste_loc is not None: + x, y, w, h = paste_loc + base_image = Image.new('RGBA', (overlay.width, overlay.height)) + image = images.resize_image(1, image, w, h) + base_image.paste(image, (x, y)) + image = base_image + + image = image.convert('RGBA') + image.alpha_composite(overlay) + image = image.convert('RGB') + + return image def get_correct_sampler(p): if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img): @@ -446,25 +460,14 @@ def process_images(p: StableDiffusionProcessing) -> Processed: devices.torch_gc() image = Image.fromarray(x_sample) - + if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: - images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction") + image_without_cc = apply_overlay(p.overlay_images is not None and i < len(p.overlay_images), p.overlay_images[i], p.paste_to, image) + images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction") image = apply_color_correction(p.color_corrections[i], image) - if p.overlay_images is not None and i < len(p.overlay_images): - overlay = p.overlay_images[i] - - if p.paste_to is not None: - x, y, w, h = p.paste_to - base_image = Image.new('RGBA', (overlay.width, overlay.height)) - image = images.resize_image(1, image, w, h) - base_image.paste(image, (x, y)) - image = base_image - - image = image.convert('RGBA') - image.alpha_composite(overlay) - image = image.convert('RGB') + image = apply_overlay(p.overlay_images is not None and i < len(p.overlay_images), p.overlay_images[i], p.paste_to, image) if opts.samples_save and not p.do_not_save_samples: images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p) From f2cc3f32d5bc8538e95edec54d7dc1b9efdf769a Mon Sep 17 00:00:00 2001 From: Vladimir Repin <32306715+mezotaken@users.noreply.github.com> Date: Sun, 23 Oct 2022 22:44:46 +0300 Subject: [PATCH 108/321] fix whitespaces --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/processing.py b/modules/processing.py index 15b639e1..2a332514 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -460,7 +460,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: devices.torch_gc() image = Image.fromarray(x_sample) - + if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: image_without_cc = apply_overlay(p.overlay_images is not None and i < len(p.overlay_images), p.overlay_images[i], p.paste_to, image) From b297cc3324979ec78d69b2d11dd18030dfad7bcc Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 20:06:42 +0900 Subject: [PATCH 109/321] Hypernetworks - fix KeyError in statistics caching Statistics logging has changed to {filename : list[losses]}, so it has to use loss_info[key].pop() --- modules/hypernetworks/hypernetwork.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 98a7b62e..33827210 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -274,8 +274,8 @@ def log_statistics(loss_info:dict, key, value): loss_info[key] = [value] else: loss_info[key].append(value) - if len(loss_info) > 1024: - loss_info.pop(0) + if len(loss_info[key]) > 1024: + loss_info[key].pop(0) def statistics(data): From 40b56c9289bf9458ae5ef3c1990ccea851c6c3e2 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 21:07:07 +0900 Subject: [PATCH 110/321] cleanup some code --- modules/hypernetworks/hypernetwork.py | 14 +++----------- 1 file changed, 3 insertions(+), 11 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 33827210..4072bf54 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -16,6 +16,7 @@ from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum +from collections import defaultdict, deque from statistics import stdev, mean class HypernetworkModule(torch.nn.Module): @@ -269,15 +270,6 @@ def stack_conds(conds): return torch.stack(conds) -def log_statistics(loss_info:dict, key, value): - if key not in loss_info: - loss_info[key] = [value] - else: - loss_info[key].append(value) - if len(loss_info[key]) > 1024: - loss_info[key].pop(0) - - def statistics(data): total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})" recent_data = data[-32:] @@ -341,7 +333,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log weight.requires_grad = True size = len(ds.indexes) - loss_dict = {} + loss_dict = defaultdict(lambda : deque(maxlen = 1024)) losses = torch.zeros((size,)) previous_mean_loss = 0 print("Mean loss of {} elements".format(size)) @@ -383,7 +375,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item() for entry in entries: - log_statistics(loss_dict, entry.filename, loss.item()) + loss_dict[entry.filename].append(loss.item()) optimizer.zero_grad() weights[0].grad = None From 348f89c8d40397c1875cff4a7331018785f9c3b8 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 21:29:53 +0900 Subject: [PATCH 111/321] statistics for pbar --- modules/hypernetworks/hypernetwork.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 4072bf54..48b56029 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -335,6 +335,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log size = len(ds.indexes) loss_dict = defaultdict(lambda : deque(maxlen = 1024)) losses = torch.zeros((size,)) + previous_mean_losses = [0] previous_mean_loss = 0 print("Mean loss of {} elements".format(size)) @@ -356,7 +357,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log for i, entries in pbar: hypernetwork.step = i + ititial_step if len(loss_dict) > 0: - previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict) + previous_mean_losses = [i[-1] for i in loss_dict.values()] + previous_mean_loss = mean(previous_mean_losses) scheduler.apply(optimizer, hypernetwork.step) if scheduler.finished: @@ -391,7 +393,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): raise RuntimeError("Loss diverged.") - pbar.set_description(f"dataset loss: {previous_mean_loss:.7f}") + + if len(previous_mean_losses) > 1: + std = stdev(previous_mean_losses) + else: + std = 0 + dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})" + pbar.set_description(dataset_loss_info) if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: # Before saving, change name to match current checkpoint. From 0d2e1dac407a0e2f5b148d314715f0457b2525b7 Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 21:41:39 +0900 Subject: [PATCH 112/321] convert deque -> list I don't feel this being efficient --- modules/hypernetworks/hypernetwork.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 48b56029..fb510fa7 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -282,7 +282,7 @@ def report_statistics(loss_info:dict): for key in keys: try: print("Loss statistics for file " + key) - info, recent = statistics(loss_info[key]) + info, recent = statistics(list(loss_info[key])) print(info) print(recent) except Exception as e: From e9a410b5357612f63528015c5533c2185dcff92e Mon Sep 17 00:00:00 2001 From: AngelBottomless <35677394+aria1th@users.noreply.github.com> Date: Sun, 23 Oct 2022 21:47:39 +0900 Subject: [PATCH 113/321] check length for variance --- modules/hypernetworks/hypernetwork.py | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index fb510fa7..d647ea55 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -271,9 +271,17 @@ def stack_conds(conds): def statistics(data): - total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})" + if len(data) < 2: + std = 0 + else: + std = stdev(data) + total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})" recent_data = data[-32:] - recent_information = f"recent 32 loss:{mean(recent_data):.3f}"+u"\u00B1"+f"({stdev(recent_data)/ (len(recent_data)**0.5):.3f})" + if len(recent_data) < 2: + std = 0 + else: + std = stdev(recent_data) + recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})" return total_information, recent_information From 6cbb04f7a5e675cf1f6dfc247aa9c9e8df7dc5ce Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 24 Oct 2022 09:15:26 +0300 Subject: [PATCH 114/321] fix #3517 breaking txt2img --- modules/processing.py | 31 ++++++++++++++++++------------- 1 file changed, 18 insertions(+), 13 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index 2a332514..c61bbfbd 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -46,18 +46,23 @@ def apply_color_correction(correction, image): return image -def apply_overlay(overlay_exists, overlay, paste_loc, image): - if overlay_exists: - if paste_loc is not None: - x, y, w, h = paste_loc - base_image = Image.new('RGBA', (overlay.width, overlay.height)) - image = images.resize_image(1, image, w, h) - base_image.paste(image, (x, y)) - image = base_image - image = image.convert('RGBA') - image.alpha_composite(overlay) - image = image.convert('RGB') +def apply_overlay(image, paste_loc, index, overlays): + if overlays is None or index >= len(overlays): + return image + + overlay = overlays[index] + + if paste_loc is not None: + x, y, w, h = paste_loc + base_image = Image.new('RGBA', (overlay.width, overlay.height)) + image = images.resize_image(1, image, w, h) + base_image.paste(image, (x, y)) + image = base_image + + image = image.convert('RGBA') + image.alpha_composite(overlay) + image = image.convert('RGB') return image @@ -463,11 +468,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: - image_without_cc = apply_overlay(p.overlay_images is not None and i < len(p.overlay_images), p.overlay_images[i], p.paste_to, image) + image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction") image = apply_color_correction(p.color_corrections[i], image) - image = apply_overlay(p.overlay_images is not None and i < len(p.overlay_images), p.overlay_images[i], p.paste_to, image) + image = apply_overlay(image, p.paste_to, i, p.overlay_images) if opts.samples_save and not p.do_not_save_samples: images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p) From c6459986cb98211565c5a4d7596f9617e82b6d12 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Sun, 23 Oct 2022 02:41:17 +0900 Subject: [PATCH 115/321] update ja translation --- localizations/ja_JP.json | 91 ++++++++++++++++++++++++++++++++++------ 1 file changed, 78 insertions(+), 13 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 514b579e..f9987473 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -14,9 +14,10 @@ "img2img": "img2img", "Extras": "その他", "PNG Info": "PNG内の情報を表示", - "History": "履歴", + "Image Browser": "画像閲覧", "Checkpoint Merger": "Checkpointの統合", "Train": "学習", + "Create aesthetic embedding": "Create aesthetic embedding", "Settings": "設定", "Prompt": "プロンプト", "Negative prompt": "ネガティブ プロンプト", @@ -67,8 +68,18 @@ "Variation strength": "Variation 強度", "Resize seed from width": "Resize seed from width", "Resize seed from height": "Resize seed from height", - "Script": "スクリプト", + "Open for Clip Aesthetic!": "Open for Clip Aesthetic!", + "▼": "▼", + "Aesthetic weight": "Aesthetic weight", + "Aesthetic steps": "Aesthetic steps", + "Aesthetic learning rate": "Aesthetic learning rate", + "Slerp interpolation": "Slerp interpolation", + "Aesthetic imgs embedding": "Aesthetic imgs embedding", "None": "なし", + "Aesthetic text for imgs": "Aesthetic text for imgs", + "Slerp angle": "Slerp angle", + "Is negative text": "Is negative text", + "Script": "スクリプト", "Prompt matrix": "Prompt matrix", "Prompts from file or textbox": "Prompts from file or textbox", "X/Y plot": "X/Y plot", @@ -76,6 +87,7 @@ "Show Textbox": "Show Textbox", "File with inputs": "File with inputs", "Prompts": "プロンプト", + "Save images to path": "Save images to path", "X type": "X軸の種類", "Nothing": "なし", "Var. seed": "Var. seed", @@ -86,7 +98,7 @@ "Sampler": "サンプラー", "Checkpoint name": "Checkpoint名", "Hypernetwork": "Hypernetwork", - "Hypernet str.": "Hypernet強度", + "Hypernet str.": "Hypernetの強度", "Sigma Churn": "Sigma Churn", "Sigma min": "Sigma min", "Sigma max": "Sigma max", @@ -141,6 +153,7 @@ "Outpainting mk2": "Outpainting mk2", "Poor man's outpainting": "Poor man's outpainting", "SD upscale": "SD アップスケール", + "[C] Video to video": "[C] Video to video", "should be 2 or lower.": "2以下にすること", "Override `Sampling method` to Euler?(this method is built for it)": "サンプリングアルゴリズムをEulerに上書きする(そうすることを前提に設計されています)", "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", @@ -170,9 +183,22 @@ "LDSR": "LDSR", "BSRGAN 4x": "BSRGAN 4x", "ESRGAN_4x": "ESRGAN_4x", + "R-ESRGAN General 4xV3": "R-ESRGAN General 4xV3", + "R-ESRGAN General WDN 4xV3": "R-ESRGAN General WDN 4xV3", + "R-ESRGAN AnimeVideo": "R-ESRGAN AnimeVideo", + "R-ESRGAN 4x+": "R-ESRGAN 4x+", + "R-ESRGAN 4x+ Anime6B": "R-ESRGAN 4x+ Anime6B", + "R-ESRGAN 2x+": "R-ESRGAN 2x+", "ScuNET GAN": "ScuNET GAN", "ScuNET PSNR": "ScuNET PSNR", "SwinIR 4x": "SwinIR 4x", + "Input file path": "Input file path", + "CRF (quality, less is better, x264 param)": "CRF (quality, less is better, x264 param)", + "FPS": "FPS", + "Seed step size": "Seed step size", + "Seed max distance": "Seed max distance", + "Start time": "Start time", + "End time": "End time", "Single Image": "単一画像", "Batch Process": "バッチ処理", "Batch from Directory": "フォルダからバッチ処理", @@ -182,17 +208,18 @@ "Scale to": "解像度指定", "Resize": "倍率", "Crop to fit": "合うように切り抜き", - "Upscaler 2": "アップスケーラー 2", "Upscaler 2 visibility": "Upscaler 2 visibility", "GFPGAN visibility": "GFPGAN visibility", "CodeFormer visibility": "CodeFormer visibility", "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", "Open output directory": "出力フォルダを開く", "Send to txt2img": "txt2imgに送る", - "txt2img history": "txt2imgの履歴", - "img2img history": "img2imgの履歴", - "extras history": "その他タブの履歴", - "Renew Page": "更新", + "extras": "その他タブ", + "favorites": "お気に入り", + "Load": "読み込み", + "Images directory": "フォルダ", + "Prev batch": "前の batch", + "Next batch": "次の batch", "First Page": "最初のぺージへ", "Prev Page": "前ページへ", "Page Index": "ページ番号", @@ -202,7 +229,12 @@ "Delete": "削除", "Generate Info": "生成情報", "File Name": "ファイル名", + "Collect": "保存(お気に入り)", + "Refresh page": "Refresh page", + "Date to": "Date to", + "Number": "Number", "set_index": "set_index", + "Checkbox": "Checkbox", "A merger of the two checkpoints will be generated in your": "統合されたチェックポイントはあなたの", "checkpoint": "checkpoint", "directory.": "フォルダに保存されます.", @@ -224,17 +256,37 @@ "Name": "ファイル名", "Initialization text": "Initialization text", "Number of vectors per token": "Number of vectors per token", + "Overwrite Old Embedding": "Overwrite Old Embedding", "Modules": "Modules", + "Enter hypernetwork layer structure": "Enter hypernetwork layer structure", + "Select activation function of hypernetwork": "Select activation function of hypernetwork", + "linear": "linear", + "relu": "relu", + "leakyrelu": "leakyrelu", + "elu": "elu", + "swish": "swish", + "Add layer normalization": "Add layer normalization", + "Use dropout": "Use dropout", + "Overwrite Old Hypernetwork": "Overwrite Old Hypernetwork", "Source directory": "入力フォルダ", "Destination directory": "出力フォルダ", + "Existing Caption txt Action": "Existing Caption txt Action", + "ignore": "ignore", + "copy": "copy", + "prepend": "prepend", + "append": "append", "Create flipped copies": "反転画像を生成する", - "Split oversized images into two": "大きすぎる画像を2分割する", + "Split oversized images": "大きすぎる画像を分割する", "Use BLIP for caption": "BLIPで説明をつける", "Use deepbooru for caption": "deepbooruで説明をつける", + "Split image threshold": "分割する大きさの閾値", + "Split image overlap ratio": "Split image overlap ratio", "Preprocess": "前処理開始", - "Train an embedding; must specify a directory with a set of 1:1 ratio images": "embeddingの学習をします;データセット内の画像は正方形でなければなりません。", + "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images", + "[wiki]": "[wiki]", "Embedding": "Embedding", - "Learning rate": "学習率", + "Embedding Learning rate": "Embedding Learning rate", + "Hypernetwork Learning rate": "Hypernetwork Learning rate", "Dataset directory": "データセットフォルダ", "Log directory": "ログフォルダ", "Prompt template file": "Prompt template file", @@ -245,6 +297,8 @@ "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", "Train Hypernetwork": "Hypernetworkの学習を開始", "Train Embedding": "Embeddingの学習を開始", + "Create an aesthetic embedding out of any number of images": "Create an aesthetic embedding out of any number of images", + "Create images embedding": "Create images embedding", "Apply settings": "Apply settings", "Saving images/grids": "画像/グリッドの保存", "Always save all generated images": "生成された画像をすべて保存する", @@ -295,7 +349,7 @@ "Always print all generation info to standard output": "常にすべての生成に関する情報を標準出力(stdout)に出力する", "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", "Training": "学習", - "Unload VAE and CLIP from VRAM when training": "学習を行う際、VAEとCLIPをVRAMから削除する", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "hypernetworkの学習をするとき、VAEとCLIPをRAMへ退避します。VRAMが節約できます。", "Filename word regex": "Filename word regex", "Filename join string": "Filename join string", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", @@ -332,6 +386,7 @@ "Do not show any images in results for web": "WebUI上で一切画像を表示しない", "Add model hash to generation information": "モデルのハッシュ値を生成情報に追加", "Add model name to generation information": "モデルの名称を生成情報に追加", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", "Font for image grids that have text": "画像グリッド内のテキストフォント", "Enable full page image viewer": "フルページの画像ビューワーを有効化", "Show images zoomed in by default in full page image viewer": "フルページ画像ビューアでデフォルトで画像を拡大して表示する", @@ -350,10 +405,16 @@ "sigma tmin": "sigma tmin", "sigma noise": "sigma noise", "Eta noise seed delta": "Eta noise seed delta", + "Images Browser": "画像閲覧", + "Preload images at startup": "起動時に画像を読み込んでおく", + "Number of pictures displayed on each page": "各ページに表示される画像の枚数", + "Minimum number of pages per load": "Minimum number of pages per load", + "Number of grids in each row": "Number of grids in each row", "Request browser notifications": "ブラウザ通知の許可を要求する", "Download localization template": "ローカライゼーション用のテンプレートをダウンロードする", "Reload custom script bodies (No ui updates, No restart)": "カスタムスクリプトを再読み込み (UIは変更されず、再起動もしません。)", "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradioを再起動してコンポーネントをリフレッシュする (Custom Scripts, ui.py, js, cssのみ影響を受ける)", + "Audio": "Audio", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "ネガティブ プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Add a random artist to the prompt.": "芸術家などの名称をプロンプトに追加", @@ -379,6 +440,7 @@ "Seed of a different picture to be mixed into the generation.": "Seed of a different picture to be mixed into the generation.", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).", "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", + "This text is used to rotate the feature space of the imgs embs": "This text is used to rotate the feature space of the imgs embs", "Separate values for X axis using commas.": "X軸に用いる値をカンマ(,)で区切って入力してください。", "Separate values for Y axis using commas.": "Y軸に用いる値をカンマ(,)で区切って入力してください。", "Write image to a directory (default - log/images) and generation parameters into csv file.": "Write image to a directory (default - log/images) and generation parameters into csv file.", @@ -398,8 +460,10 @@ "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.", "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", "Leave blank to save images to the default path.": "空欄でデフォルトの場所へ画像を保存", + "Input images directory": "Input images directory", "Result = A * (1 - M) + B * M": "結果モデル = A * (1 - M) + B * M", "Result = A + (B - C) * M": "結果モデル = A + (B - C) * M", + "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", "Path to directory with input images": "Path to directory with input images", "Path to directory where to write outputs": "Path to directory where to write outputs", "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", @@ -409,5 +473,6 @@ "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", - "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing." + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "Enable Autocomplete": "自動補完を有効化" } \ No newline at end of file From a921badac3df177ab4bd8f6469dceb0342269cb7 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Sun, 23 Oct 2022 18:12:21 +0900 Subject: [PATCH 116/321] update ja translation --- localizations/ja_JP.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index f9987473..a790b0a6 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -366,7 +366,7 @@ "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", "Filter NSFW content": "NSFW(≒R-18)なコンテンツを検閲する", - "Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか(stop…layers of CLIP model)", + "Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか", "Interrogate Options": "Interrogate 設定", "Interrogate: keep models in VRAM": "Interrogate: モデルをVRAMに保持する", "Interrogate: use artists from artists.csv": "Interrogate: artists.csvにある芸術家などの名称を利用する", From e33a05f263ff39f2750e4aa51b04d463c55cea4c Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Sun, 23 Oct 2022 21:16:44 +0900 Subject: [PATCH 117/321] update ja translation --- localizations/ja_JP.json | 209 ++++++++++++++++++++------------------- 1 file changed, 108 insertions(+), 101 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index a790b0a6..741875c3 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -10,6 +10,7 @@ "•": "•", "gradioで作ろう": "gradioで作ろう", "Stable Diffusion checkpoint": "Stable Diffusion checkpoint", + "Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか", "txt2img": "txt2img", "img2img": "img2img", "Extras": "その他", @@ -17,7 +18,7 @@ "Image Browser": "画像閲覧", "Checkpoint Merger": "Checkpointの統合", "Train": "学習", - "Create aesthetic embedding": "Create aesthetic embedding", + "Create aesthetic embedding": "aesthetic embeddingを作る", "Settings": "設定", "Prompt": "プロンプト", "Negative prompt": "ネガティブ プロンプト", @@ -58,7 +59,7 @@ "Highres. fix": "高解像度 fix(マウスオーバーで詳細)", "Firstpass width": "Firstpass width", "Firstpass height": "Firstpass height", - "Denoising strength": "ノイズ除去 強度", + "Denoising strength": "ノイズ除去強度", "Batch count": "バッチ生成回数", "Batch size": "バッチあたり生成枚数", "CFG Scale": "CFG Scale", @@ -80,13 +81,17 @@ "Slerp angle": "Slerp angle", "Is negative text": "Is negative text", "Script": "スクリプト", + "nai2SD Prompt Converter": "nai2SD Prompt Converter", "Prompt matrix": "Prompt matrix", "Prompts from file or textbox": "Prompts from file or textbox", + "Save steps of the sampling process to files": "Save steps of the sampling process to files", "X/Y plot": "X/Y plot", + "Prompts": "プロンプト", + "convert": "convert", + "Converted Prompts": "Converted Prompts", "Put variable parts at start of prompt": "Put variable parts at start of prompt", "Show Textbox": "Show Textbox", "File with inputs": "File with inputs", - "Prompts": "プロンプト", "Save images to path": "Save images to path", "X type": "X軸の種類", "Nothing": "なし", @@ -125,23 +130,23 @@ "Batch img2img": "Batch img2img", "Image for img2img": "Image for img2img", "Image for inpainting with mask": "Image for inpainting with mask", - "Mask": "Mask", - "Mask blur": "Mask blur", - "Mask mode": "Mask mode", - "Draw mask": "Draw mask", - "Upload mask": "Upload mask", - "Masking mode": "Masking mode", - "Inpaint masked": "Inpaint masked", - "Inpaint not masked": "Inpaint not masked", - "Masked content": "Masked content", - "fill": "fill", + "Mask": "マスク", + "Mask blur": "マスクぼかし", + "Mask mode": "マスクモード", + "Draw mask": "マスクをかける", + "Upload mask": "マスクをアップロードする", + "Masking mode": "マスキング方法", + "Inpaint masked": "マスクされた場所を描き直す", + "Inpaint not masked": "マスクされていない場所を描き直す", + "Masked content": "マスクされたコンテンツ", + "fill": "埋める", "original": "オリジナル", - "latent noise": "latent noise", - "latent nothing": "latent nothing", - "Inpaint at full resolution": "Inpaint at full resolution", - "Inpaint at full resolution padding, pixels": "Inpaint at full resolution padding, pixels", - "Process images in a directory on the same machine where the server is running.": "Process images in a directory on the same machine where the server is running.", - "Use an empty output directory to save pictures normally instead of writing to the output directory.": "Use an empty output directory to save pictures normally instead of writing to the output directory.", + "latent noise": "潜在空間でのノイズ", + "latent nothing": "潜在空間での無", + "Inpaint at full resolution": "フル解像度で描き直す", + "Inpaint at full resolution padding, pixels": "フル解像度で描き直す際のパディング数。px単位。", + "Process images in a directory on the same machine where the server is running.": "サーバーが稼働しているマシンと同じフォルダにある画像を処理します", + "Use an empty output directory to save pictures normally instead of writing to the output directory.": "\"出力フォルダ\"を空にすると、通常の画像と同様に保存されます。", "Input directory": "入力フォルダ", "Output directory": "出力フォルダ", "Resize mode": "リサイズモード", @@ -156,18 +161,18 @@ "[C] Video to video": "[C] Video to video", "should be 2 or lower.": "2以下にすること", "Override `Sampling method` to Euler?(this method is built for it)": "サンプリングアルゴリズムをEulerに上書きする(そうすることを前提に設計されています)", - "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", - "Original prompt": "Original prompt", - "Original negative prompt": "Original negative prompt", - "Override `Sampling Steps` to the same value as `Decode steps`?": "Override `Sampling Steps` to the same value as `Decode steps`?", - "Decode steps": "Decode steps", - "Override `Denoising strength` to 1?": "Override `Denoising strength` to 1?", + "Override `prompt` to the same value as `original prompt`?(and `negative prompt`)": "プロンプトをオリジナルプロンプトと同じ値に上書きする(ネガティブプロンプトも同様)", + "Original prompt": "オリジナルのプロンプト", + "Original negative prompt": "オリジナルのネガティブプロンプト", + "Override `Sampling Steps` to the same value as `Decode steps`?": "サンプリング数をデコードステップ数と同じ値に上書きする", + "Decode steps": "デコードステップ数", + "Override `Denoising strength` to 1?": "ノイズ除去強度を1に上書きする", "Decode CFG scale": "Decode CFG scale", - "Randomness": "Randomness", + "Randomness": "ランダム性", "Sigma adjustment for finding noise for image": "Sigma adjustment for finding noise for image", - "Loops": "Loops", + "Loops": "ループ数", "Denoising strength change factor": "Denoising strength change factor", - "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8", + "Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8": "推奨設定: サンプリング回数: 80-100, サンプリングアルゴリズム: Euler a, ノイズ除去強度: 0.8", "Pixels to expand": "Pixels to expand", "Outpainting direction": "Outpainting direction", "left": "左", @@ -181,7 +186,6 @@ "Upscaler": "アップスケーラー", "Lanczos": "Lanczos", "LDSR": "LDSR", - "BSRGAN 4x": "BSRGAN 4x", "ESRGAN_4x": "ESRGAN_4x", "R-ESRGAN General 4xV3": "R-ESRGAN General 4xV3", "R-ESRGAN General WDN 4xV3": "R-ESRGAN General WDN 4xV3", @@ -211,7 +215,7 @@ "Upscaler 2 visibility": "Upscaler 2 visibility", "GFPGAN visibility": "GFPGAN visibility", "CodeFormer visibility": "CodeFormer visibility", - "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormer weight (0 = maximum effect, 1 = minimum effect)", + "CodeFormer weight (0 = maximum effect, 1 = minimum effect)": "CodeFormerの重み (注:0で最大、1で最小)", "Open output directory": "出力フォルダを開く", "Send to txt2img": "txt2imgに送る", "extras": "その他タブ", @@ -225,12 +229,12 @@ "Page Index": "ページ番号", "Next Page": "次ページへ", "End Page": "最後のページへ", - "number of images to delete consecutively next": "number of images to delete consecutively next", + "number of images to delete consecutively next": "次の削除で一度に削除する画像数", "Delete": "削除", "Generate Info": "生成情報", "File Name": "ファイル名", "Collect": "保存(お気に入り)", - "Refresh page": "Refresh page", + "Refresh page": "ページを更新", "Date to": "Date to", "Number": "Number", "set_index": "set_index", @@ -253,13 +257,13 @@ "Create embedding": "Embeddingを作る", "Create hypernetwork": "Hypernetworkを作る", "Preprocess images": "画像の前処理", - "Name": "ファイル名", + "Name": "名称", "Initialization text": "Initialization text", "Number of vectors per token": "Number of vectors per token", - "Overwrite Old Embedding": "Overwrite Old Embedding", - "Modules": "Modules", - "Enter hypernetwork layer structure": "Enter hypernetwork layer structure", - "Select activation function of hypernetwork": "Select activation function of hypernetwork", + "Overwrite Old Embedding": "古いEmbeddingを上書き", + "Modules": "モジュール", + "Enter hypernetwork layer structure": "Hypernetworkのレイヤー構造を入力", + "Select activation function of hypernetwork": "Hypernetworkの活性化関数", "linear": "linear", "relu": "relu", "leakyrelu": "leakyrelu", @@ -267,14 +271,14 @@ "swish": "swish", "Add layer normalization": "Add layer normalization", "Use dropout": "Use dropout", - "Overwrite Old Hypernetwork": "Overwrite Old Hypernetwork", + "Overwrite Old Hypernetwork": "古いHypernetworkを上書きする", "Source directory": "入力フォルダ", "Destination directory": "出力フォルダ", - "Existing Caption txt Action": "Existing Caption txt Action", - "ignore": "ignore", - "copy": "copy", - "prepend": "prepend", - "append": "append", + "Existing Caption txt Action": "既存のキャプションの取り扱い", + "ignore": "無視する", + "copy": "コピーする", + "prepend": "先頭に加える", + "append": "末尾に加える", "Create flipped copies": "反転画像を生成する", "Split oversized images": "大きすぎる画像を分割する", "Use BLIP for caption": "BLIPで説明をつける", @@ -282,24 +286,24 @@ "Split image threshold": "分割する大きさの閾値", "Split image overlap ratio": "Split image overlap ratio", "Preprocess": "前処理開始", - "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images", + "Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images": "EmbeddingまたはHypernetworkを学習します。1:1の比率の画像セットを含むフォルダを指定する必要があります。", "[wiki]": "[wiki]", "Embedding": "Embedding", - "Embedding Learning rate": "Embedding Learning rate", - "Hypernetwork Learning rate": "Hypernetwork Learning rate", + "Embedding Learning rate": "Embeddingの学習率(Learning rate)", + "Hypernetwork Learning rate": "Hypernetworkの学習率(Learning rate)", "Dataset directory": "データセットフォルダ", "Log directory": "ログフォルダ", - "Prompt template file": "Prompt template file", + "Prompt template file": "プロンプトのテンプレートファイル", "Max steps": "最大ステップ数", "Save an image to log directory every N steps, 0 to disable": "指定したステップ数ごとに画像を生成し、ログに保存する。0で無効化。", "Save a copy of embedding to log directory every N steps, 0 to disable": "指定したステップ数ごとにEmbeddingのコピーをログに保存する。0で無効化。", "Save images with embedding in PNG chunks": "保存する画像にembeddingを埋め込む", - "Read parameters (prompt, etc...) from txt2img tab when making previews": "Read parameters (prompt, etc...) from txt2img tab when making previews", + "Read parameters (prompt, etc...) from txt2img tab when making previews": "プレビューの作成にtxt2imgタブから読み込んだパラメータ(プロンプトなど)を使う", "Train Hypernetwork": "Hypernetworkの学習を開始", "Train Embedding": "Embeddingの学習を開始", "Create an aesthetic embedding out of any number of images": "Create an aesthetic embedding out of any number of images", "Create images embedding": "Create images embedding", - "Apply settings": "Apply settings", + "Apply settings": "設定を適用", "Saving images/grids": "画像/グリッドの保存", "Always save all generated images": "生成された画像をすべて保存する", "File format for images": "画像ファイルの保存形式", @@ -310,15 +314,15 @@ "Do not save grids consisting of one picture": "1画像からなるグリッド画像は保存しない", "Prevent empty spots in grid (when set to autodetect)": "(自動設定のとき)グリッドに空隙が生じるのを防ぐ", "Grid row count; use -1 for autodetect and 0 for it to be same as batch size": "グリッドの列数; -1で自動設定、0でバッチ生成回数と同じにする", - "Save text information about generation parameters as chunks to png files": "生成に関するパラメーターをpng画像に含める", + "Save text information about generation parameters as chunks to png files": "生成に関するパラメーターをPNG画像に含める", "Create a text file next to every image with generation parameters.": "保存する画像とともに生成パラメータをテキストファイルで保存する", "Save a copy of image before doing face restoration.": "顔修復を行う前にコピーを保存しておく。", "Quality for saved jpeg images": "JPG保存時の画質", "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG": "PNG画像が4MBを超えるか、どちらか1辺の長さが4000を超えたなら、ダウンスケールしてコピーを別にJPGで保存する", - "Use original name for output filename during batch process in extras tab": "Use original name for output filename during batch process in extras tab", - "When using 'Save' button, only save a single selected image": "When using 'Save' button, only save a single selected image", + "Use original name for output filename during batch process in extras tab": "その他タブでバッチ処理をする際、元のファイル名を出力ファイル名に使う", + "When using 'Save' button, only save a single selected image": "\"保存\"ボタンを使うとき、単一の選択された画像のみを保存する", "Do not add watermark to images": "電子透かしを画像に追加しない", - "Paths for saving": "Paths for saving", + "Paths for saving": "保存する場所", "Output directory for images; if empty, defaults to three directories below": "画像の保存先フォルダ(下項目のデフォルト値になります)", "Output directory for txt2img images": "txt2imgで作った画像の保存先フォルダ", "Output directory for img2img images": "img2imgで作った画像の保存先フォルダ", @@ -345,13 +349,13 @@ "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect": "CodeFormerの重みパラメーター;0が最大で1が最小", "Move face restoration model from VRAM into RAM after processing": "処理終了後、顔修復モデルをVRAMからRAMへと移動する", "System": "システム設定", - "VRAM usage polls per second during generation. Set to 0 to disable.": "VRAM usage polls per second during generation. Set to 0 to disable.", + "VRAM usage polls per second during generation. Set to 0 to disable.": "生成中のVRAM使用率の取得間隔。0にすると取得しない。", "Always print all generation info to standard output": "常にすべての生成に関する情報を標準出力(stdout)に出力する", - "Add a second progress bar to the console that shows progress for an entire job.": "Add a second progress bar to the console that shows progress for an entire job.", + "Add a second progress bar to the console that shows progress for an entire job.": "ジョブ全体の進捗をコンソールに表示する2つ目のプログレスバーを追加する", "Training": "学習", - "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "hypernetworkの学習をするとき、VAEとCLIPをRAMへ退避します。VRAMが節約できます。", - "Filename word regex": "Filename word regex", - "Filename join string": "Filename join string", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "hypernetworkの学習をするとき、VAEとCLIPをRAMへ退避する。VRAMが節約できます。", + "Filename word regex": "ファイル名の正規表現(学習用)", + "Filename join string": "ファイル名の結合子", "Number of repeats for a single input image per epoch; used only for displaying epoch number": "Number of repeats for a single input image per epoch; used only for displaying epoch number", "Save an csv containing the loss to log directory every N steps, 0 to disable": "Save an csv containing the loss to log directory every N steps, 0 to disable", "Stable Diffusion": "Stable Diffusion", @@ -360,13 +364,12 @@ "Apply color correction to img2img results to match original colors.": "元画像に合わせてimg2imgの結果を色補正する", "Save a copy of image before applying color correction to img2img results": "色補正をする前の画像も保存する", "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising).": "img2imgでスライダーで指定されたステップ数を正確に実行する(通常は、ノイズ除去を少なくするためにより少ないステップ数で実行します)。", - "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.", + "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply.": "より良い結果を得るために、Kサンプラーで量子化を有効にします。これにより既存のシードが変更される可能性があります。適用するには再起動が必要です。", "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention": "強調: (text)とするとモデルはtextをより強く扱い、[text]とするとモデルはtextをより弱く扱います。", "Use old emphasis implementation. Can be useful to reproduce old seeds.": "古い強調の実装を使う。古い生成物を再現するのに使えます。", - "Make K-diffusion samplers produce same images in a batch as when making a single image": "Make K-diffusion samplers produce same images in a batch as when making a single image", - "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", + "Make K-diffusion samplers produce same images in a batch as when making a single image": "K-diffusionサンプラーによるバッチ生成時に、単一画像生成時と同じ画像を生成する", + "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens": "75トークン以上を使用する場合、nトークン内の最後のカンマからパディングして一貫性を高める", "Filter NSFW content": "NSFW(≒R-18)なコンテンツを検閲する", - "Stop At last layers of CLIP model": "最後から何層目でCLIPを止めるか", "Interrogate Options": "Interrogate 設定", "Interrogate: keep models in VRAM": "Interrogate: モデルをVRAMに保持する", "Interrogate: use artists from artists.csv": "Interrogate: artists.csvにある芸術家などの名称を利用する", @@ -382,18 +385,20 @@ "User interface": "UI設定", "Show progressbar": "プログレスバーを表示", "Show image creation progress every N sampling steps. Set 0 to disable.": "指定したステップ数ごとに画像の生成過程を表示する。0で無効化。", + "Show previews of all images generated in a batch as a grid": "Show previews of all images generated in a batch as a grid", "Show grid in results for web": "WebUI上でグリッド表示", "Do not show any images in results for web": "WebUI上で一切画像を表示しない", "Add model hash to generation information": "モデルのハッシュ値を生成情報に追加", "Add model name to generation information": "モデルの名称を生成情報に追加", - "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.", + "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint.": "テキストからUIに生成パラメータを読み込む場合(PNG情報または貼り付けられたテキストから)、選択されたモデル/チェックポイントは変更しない。", "Font for image grids that have text": "画像グリッド内のテキストフォント", "Enable full page image viewer": "フルページの画像ビューワーを有効化", "Show images zoomed in by default in full page image viewer": "フルページ画像ビューアでデフォルトで画像を拡大して表示する", "Show generation progress in window title.": "ウィンドウのタイトルで生成の進捗を表示", - "Quicksettings list": "Quicksettings list", + "Quicksettings list": "クイック設定", "Localization (requires restart)": "言語 (プログラムの再起動が必要)", "ja_JP": "ja_JP", + "ru_RU": "ru_RU", "Sampler parameters": "サンプラー parameters", "Hide samplers in user interface (requires restart)": "使わないサンプリングアルゴリズムを隠す (再起動が必要)", "eta (noise multiplier) for DDIM": "DDIMで用いるeta (noise multiplier)", @@ -414,65 +419,67 @@ "Download localization template": "ローカライゼーション用のテンプレートをダウンロードする", "Reload custom script bodies (No ui updates, No restart)": "カスタムスクリプトを再読み込み (UIは変更されず、再起動もしません。)", "Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)": "Gradioを再起動してコンポーネントをリフレッシュする (Custom Scripts, ui.py, js, cssのみ影響を受ける)", - "Audio": "Audio", + "Audio": "音声", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "ネガティブ プロンプト (Ctrl+Enter か Alt+Enter を押して生成)", "Add a random artist to the prompt.": "芸術家などの名称をプロンプトに追加", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "Read generation parameters from prompt or last generation if prompt is empty into user interface.", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "プロンプトから生成パラメータを読み込むか、プロンプトが空の場合は最後の生成パラメータをユーザーインターフェースに読み込む。", "Save style": "スタイルを保存する", "Apply selected styles to current prompt": "現在のプロンプトに選択したスタイルを適用する", "Stop processing current image and continue processing.": "現在の処理を中断し、その後の処理は続ける", "Stop processing images and return any results accumulated so far.": "処理を中断し、それまでに出来た結果を表示する", - "Style to apply; styles have components for both positive and negative prompts and apply to both": "Style to apply; styles have components for both positive and negative prompts and apply to both", + "Style to apply; styles have components for both positive and negative prompts and apply to both": "適用するスタイル。スタイルは、ポジティブプロンプトとネガティブプロンプトの両方のコンポーネントを持ち、両方に適用される。", "Do not do anything special": "特別なことをなにもしない", "Which algorithm to use to produce the image": "どのアルゴリズムを使って生成するか", "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help": "Euler Ancestral - 非常に独創的で、ステップ数によって全く異なる画像が得られる、ステップ数を30~40より高く設定しても効果がない。", "Denoising Diffusion Implicit Models - best at inpainting": "Denoising Diffusion Implicit Models - 描き直しには最適", - "Produce an image that can be tiled.": "Produce an image that can be tiled.", + "Produce an image that can be tiled.": "タイルとして扱える画像を生成する", "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition": "2ステップで、まず部分的に小さい解像度で画像を作成し、その後アップスケールすることで、構図を変えずにディテールが改善されます。", - "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", + "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.": "アルゴリズムが画像の内容をどの程度参考にするかを決定します。0 にすると何も変わりませんし、 1 にすると全く無関係な画像になります。1.0未満の値ではスライダーで指定したサンプリングステップ数よりも少ないステップ数で処理が行われます。", "How many batches of images to create": "バッチ処理を何回行うか", "How many image to create in a single batch": "1回のバッチ処理で何枚の画像を生成するか", - "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results", - "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result", + "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 生成する画像がどの程度プロンプトに沿ったものになるか。 - 低い値の方がよりクリエイティブな結果を生み出します。", + "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "乱数発生器の出力を決定する値。同じパラメータとシードで画像を作成すれば、同じ結果が得られます。", "Set seed to -1, which will cause a new random number to be used every time": "シード値を -1 に設定するとランダムに生成します。", "Reuse seed from last generation, mostly useful if it was randomed": "前回生成時のシード値を読み出す。(ランダム生成時に便利)", - "Seed of a different picture to be mixed into the generation.": "Seed of a different picture to be mixed into the generation.", - "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).", - "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution", + "Seed of a different picture to be mixed into the generation.": "生成時に混合されることになる画像のシード値", + "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "Variationの強度。0の場合、何の効果もありません。1では、バリエーションシードで完全な画像を得ることができます(Ancestalなアルゴリズム以外では、何か(?)を得るだけです)。", + "Make an attempt to produce a picture similar to what would have been produced with same seed at specified resolution": "同じシードで指定された解像度の似た画像を生成することを試みる。", "This text is used to rotate the feature space of the imgs embs": "This text is used to rotate the feature space of the imgs embs", "Separate values for X axis using commas.": "X軸に用いる値をカンマ(,)で区切って入力してください。", "Separate values for Y axis using commas.": "Y軸に用いる値をカンマ(,)で区切って入力してください。", - "Write image to a directory (default - log/images) and generation parameters into csv file.": "Write image to a directory (default - log/images) and generation parameters into csv file.", + "Write image to a directory (default - log/images) and generation parameters into csv file.": "画像はフォルダ(デフォルト:log/images)に、生成パラメータはcsvファイルに書き出します。", "Open images output directory": "画像の出力フォルダを開く", - "How much to blur the mask before processing, in pixels.": "How much to blur the mask before processing, in pixels.", - "What to put inside the masked area before processing it with Stable Diffusion.": "What to put inside the masked area before processing it with Stable Diffusion.", - "fill it with colors of the image": "fill it with colors of the image", - "keep whatever was there originally": "keep whatever was there originally", - "fill it with latent space noise": "fill it with latent space noise", - "fill it with latent space zeroes": "fill it with latent space zeroes", - "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image", - "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.", - "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.", - "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.", - "How many times to repeat processing an image and using it as input for the next iteration": "How many times to repeat processing an image and using it as input for the next iteration", - "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.", - "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.", - "A directory on the same machine where the server is running.": "A directory on the same machine where the server is running.", + "How much to blur the mask before processing, in pixels.": "処理前にどれだけマスクをぼかすか。px単位。", + "What to put inside the masked area before processing it with Stable Diffusion.": "Stable Diffusionにわたす前にマスクされたエリアに何を書き込むか", + "fill it with colors of the image": "元画像の色で埋める", + "keep whatever was there originally": "もともとあったものをそのままにする", + "fill it with latent space noise": "潜在空間(latent space)におけるノイズで埋める", + "fill it with latent space zeroes": "潜在空間(latent space)における0で埋める", + "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image": "マスクされた領域をターゲット解像度にアップスケールし、インペイントを行い、元の解像度にダウンスケールして元の画像に貼り付けます。", + "Resize image to target resolution. Unless height and width match, you will get incorrect aspect ratio.": "画像をターゲット解像度にリサイズします。高さと幅が一致しない場合、アスペクト比が正しくなくなります。", + "Resize the image so that entirety of target resolution is filled with the image. Crop parts that stick out.": "対象の解像度に画像をフィットさせます。はみ出た部分は切り取られます。", + "Resize the image so that entirety of image is inside target resolution. Fill empty space with image's colors.": "画像をリサイズして、ターゲット解像度の中に収まるようにします。空白部分は画像の色で埋めます。", + "How many times to repeat processing an image and using it as input for the next iteration": "何回画像処理を繰り返し、次の反復処理の入力として使用するか", + "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.": "ループバックモードにおいて、各ループでのノイズ除去の強度はこの値によって乗算されます。1より小さければ変化が小さくなっていって、生成される画像は1つの画像に収束します。1より大きいとどんどん変化が大きくなるので、生成される画像はよりカオスになります。", + "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.": "SDアップスケールで、どれだけタイル間の重なりを確保するか(px単位)。タイルの一部を重複させることで、1枚の画像にした時明らかな継ぎ目がなくなります。", + "A directory on the same machine where the server is running.": "サーバーが稼働しているのと同じマシンのあるフォルダ", "Leave blank to save images to the default path.": "空欄でデフォルトの場所へ画像を保存", "Input images directory": "Input images directory", - "Result = A * (1 - M) + B * M": "結果モデル = A * (1 - M) + B * M", - "Result = A + (B - C) * M": "結果モデル = A + (B - C) * M", - "1st and last digit must be 1. ex:'1, 2, 1'": "1st and last digit must be 1. ex:'1, 2, 1'", - "Path to directory with input images": "Path to directory with input images", - "Path to directory where to write outputs": "Path to directory where to write outputs", - "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", + "Result = A * (1 - M) + B * M": "出力されるモデル = A * (1 - M) + B * M", + "Result = A + (B - C) * M": "出力されるモデル = A + (B - C) * M", + "1st and last digit must be 1. ex:'1, 2, 1'": "最初と最後の数字は1でなければなりません。 例:'1, 2, 1'", + "Path to directory with input images": "入力ファイルのあるフォルダの場所", + "Path to directory where to write outputs": "出力を書き込むフォルダの場所", + "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "以下のタグを用いてファイル名パターンを決められます: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; 空白でデフォルト設定。", "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.": "このオプションを有効にすると、作成された画像にウォーターマークが追加されなくなります。警告:ウォーターマークを追加しない場合、非倫理的な行動とみなされる場合があります。", - "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", - "Restore low quality faces using GFPGAN neural network": "GFPGANを用いて低クオリティーの画像を修復", - "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", - "This string will be used to join split words into a single line if the option above is enabled.": "This string will be used to join split words into a single line if the option above is enabled.", - "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.", - "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", + "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.": "以下のタグを用いてサブフォルダのフォルダ名パターンを決められます: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; 空白でデフォルト設定", + "Restore low quality faces using GFPGAN neural network": "GFPGANを用いて低クオリティーな顔画像を修復", + "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.": "この正規表現を使ってファイル名から単語を抽出し、以下のオプションで結合して学習用のラベルテキストにします。ファイル名のテキストをそのまま使用する場合は、空白にしてください。", + "This string will be used to join split words into a single line if the option above is enabled.": "この文字列は、上記のオプションが有効な場合に、分割された単語を1行に結合するために使用されます。", + "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.": "上部のクイックアクセスバーに置く設定の設定名をカンマで区切って入力。設定名については modules/shared.py を参照してください。適用するには再起動が必要です。", + "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.": "この値が0以外の場合、シードに追加され、Etaでサンプラーを使用する際のノイズ用の乱数生成器を初期化するのに使用されます。これを利用して、さらにバリエーション豊かな画像を作成したり、他のソフトの画像に合わせたりすることができます。", + "NAIConvert": "NAIから変換", + "History": "履歴", "Enable Autocomplete": "自動補完を有効化" } \ No newline at end of file From 71d14a4c40503f0788e2881bb406911c102af40d Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Sun, 23 Oct 2022 21:25:25 +0900 Subject: [PATCH 118/321] cleanup ja translation --- localizations/ja_JP.json | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 741875c3..7bb9db30 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -81,17 +81,14 @@ "Slerp angle": "Slerp angle", "Is negative text": "Is negative text", "Script": "スクリプト", - "nai2SD Prompt Converter": "nai2SD Prompt Converter", "Prompt matrix": "Prompt matrix", "Prompts from file or textbox": "Prompts from file or textbox", "Save steps of the sampling process to files": "Save steps of the sampling process to files", "X/Y plot": "X/Y plot", - "Prompts": "プロンプト", - "convert": "convert", - "Converted Prompts": "Converted Prompts", "Put variable parts at start of prompt": "Put variable parts at start of prompt", "Show Textbox": "Show Textbox", "File with inputs": "File with inputs", + "Prompts": "プロンプト", "Save images to path": "Save images to path", "X type": "X軸の種類", "Nothing": "なし", From edc0c907fa257f70d63dfdbb755e674cea08f4a7 Mon Sep 17 00:00:00 2001 From: Kris57 <49682577+yuuki76@users.noreply.github.com> Date: Sun, 23 Oct 2022 22:10:13 +0900 Subject: [PATCH 119/321] fix ja translation --- localizations/ja_JP.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/localizations/ja_JP.json b/localizations/ja_JP.json index 7bb9db30..a6cc2477 100644 --- a/localizations/ja_JP.json +++ b/localizations/ja_JP.json @@ -437,7 +437,7 @@ "How many image to create in a single batch": "1回のバッチ処理で何枚の画像を生成するか", "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results": "Classifier Free Guidance Scale - 生成する画像がどの程度プロンプトに沿ったものになるか。 - 低い値の方がよりクリエイティブな結果を生み出します。", "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result": "乱数発生器の出力を決定する値。同じパラメータとシードで画像を作成すれば、同じ結果が得られます。", - "Set seed to -1, which will cause a new random number to be used every time": "シード値を -1 に設定するとランダムに生成します。", + "Set seed to -1, which will cause a new random number to be used every time": "シード値を-1に設定。つまり、毎回ランダムに生成します。", "Reuse seed from last generation, mostly useful if it was randomed": "前回生成時のシード値を読み出す。(ランダム生成時に便利)", "Seed of a different picture to be mixed into the generation.": "生成時に混合されることになる画像のシード値", "How strong of a variation to produce. At 0, there will be no effect. At 1, you will get the complete picture with variation seed (except for ancestral samplers, where you will just get something).": "Variationの強度。0の場合、何の効果もありません。1では、バリエーションシードで完全な画像を得ることができます(Ancestalなアルゴリズム以外では、何か(?)を得るだけです)。", From 734986dde3231416813f827242c111da212b2ccb Mon Sep 17 00:00:00 2001 From: Trung Ngo Date: Mon, 24 Oct 2022 01:17:09 -0500 Subject: [PATCH 120/321] add callback after image is saved --- modules/images.py | 3 ++- modules/script_callbacks.py | 12 +++++++++++- 2 files changed, 13 insertions(+), 2 deletions(-) diff --git a/modules/images.py b/modules/images.py index b9589563..01c60f89 100644 --- a/modules/images.py +++ b/modules/images.py @@ -12,7 +12,7 @@ from PIL import Image, ImageFont, ImageDraw, PngImagePlugin from fonts.ttf import Roboto import string -from modules import sd_samplers, shared +from modules import sd_samplers, shared, script_callbacks from modules.shared import opts, cmd_opts LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) @@ -467,6 +467,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i else: txt_fullfn = None + script_callbacks.image_saved_callback(image, p, fullfn, txt_fullfn) return fullfn, txt_fullfn diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 5bcccd67..5836e4b9 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -2,11 +2,12 @@ callbacks_model_loaded = [] callbacks_ui_tabs = [] callbacks_ui_settings = [] - +callbacks_image_saved = [] def clear_callbacks(): callbacks_model_loaded.clear() callbacks_ui_tabs.clear() + callbacks_image_saved.clear() def model_loaded_callback(sd_model): @@ -28,6 +29,10 @@ def ui_settings_callback(): callback() +def image_saved_callback(image, p, fullfn, txt_fullfn): + for callback in callbacks_image_saved: + callback(image, p, fullfn, txt_fullfn) + def on_model_loaded(callback): """register a function to be called when the stable diffusion model is created; the model is passed as an argument""" @@ -51,3 +56,8 @@ def on_ui_settings(callback): """register a function to be called before UI settings are populated; add your settings by using shared.opts.add_option(shared.OptionInfo(...)) """ callbacks_ui_settings.append(callback) + + +def on_save_imaged(callback): + """register a function to call after modules.images.save_image is called returning same values, original image and p """ + callbacks_image_saved.append(callback) From 876a96f0f9843382ebc8984db3de5d8af0e9ce4c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 24 Oct 2022 09:39:46 +0300 Subject: [PATCH 121/321] remove erroneous dir in the extension directory remove loading .js files from scripts dir (they go into javascript) load scripts after models, for scripts that depend on loaded models --- extensions/stable-diffusion-webui-inspiration | 1 - modules/ui.py | 2 +- webui.py | 11 ++++++----- 3 files changed, 7 insertions(+), 7 deletions(-) delete mode 160000 extensions/stable-diffusion-webui-inspiration diff --git a/extensions/stable-diffusion-webui-inspiration b/extensions/stable-diffusion-webui-inspiration deleted file mode 160000 index a0b96664..00000000 --- a/extensions/stable-diffusion-webui-inspiration +++ /dev/null @@ -1 +0,0 @@ -Subproject commit a0b96664d2524b87916ae463fbb65411b13a569b diff --git a/modules/ui.py b/modules/ui.py index a73b9ff0..03528968 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1885,7 +1885,7 @@ def load_javascript(raw_response): javascript = f'' scripts_list = modules.scripts.list_scripts("javascript", ".js") - scripts_list += modules.scripts.list_scripts("scripts", ".js") + for basedir, filename, path in scripts_list: with open(path, "r", encoding="utf8") as jsfile: javascript += f"\n" diff --git a/webui.py b/webui.py index a0f3757f..ade7334b 100644 --- a/webui.py +++ b/webui.py @@ -9,7 +9,7 @@ from fastapi.middleware.gzip import GZipMiddleware from modules.paths import script_path -from modules import devices, sd_samplers +from modules import devices, sd_samplers, upscaler import modules.codeformer_model as codeformer import modules.extras import modules.face_restoration @@ -73,12 +73,11 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): def initialize(): - modules.scripts.load_scripts() if cmd_opts.ui_debug_mode: - class enmpty(): - name = None - shared.sd_upscalers = [enmpty()] + shared.sd_upscalers = upscaler.UpscalerLanczos().scalers + modules.scripts.load_scripts() return + modelloader.cleanup_models() modules.sd_models.setup_model() codeformer.setup_model(cmd_opts.codeformer_models_path) @@ -86,6 +85,8 @@ def initialize(): shared.face_restorers.append(modules.face_restoration.FaceRestoration()) modelloader.load_upscalers() + modules.scripts.load_scripts() + modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) From c623fa1f0b9a3936a29f1d1bd65f4e0fadf1c9c4 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 24 Oct 2022 09:51:17 +0300 Subject: [PATCH 122/321] add extensions dir --- extensions/put extensions here.txt | 0 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 extensions/put extensions here.txt diff --git a/extensions/put extensions here.txt b/extensions/put extensions here.txt new file mode 100644 index 00000000..e69de29b From 3be6b29d81408d2adb741bff5b11c80214aa621e Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Mon, 24 Oct 2022 15:14:34 +0900 Subject: [PATCH 123/321] indent=4 config.json --- modules/shared.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/shared.py b/modules/shared.py index 6541e679..d6ddfe59 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -348,7 +348,7 @@ class Options: def save(self, filename): with open(filename, "w", encoding="utf8") as file: - json.dump(self.data, file) + json.dump(self.data, file, indent=4) def same_type(self, x, y): if x is None or y is None: From c5d90628a4058bf49c2fdabf620a24db73407f31 Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Sat, 22 Oct 2022 17:16:55 +0900 Subject: [PATCH 124/321] move "file_decoration" initialize section into "if forced_filename is None:" no need to initialize it if it's not going to be used --- modules/images.py | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/modules/images.py b/modules/images.py index b9589563..50a59cff 100644 --- a/modules/images.py +++ b/modules/images.py @@ -386,18 +386,6 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i txt_fullfn (`str` or None): If a text file is saved for this image, this will be its full path. Otherwise None. ''' - if short_filename or prompt is None or seed is None: - file_decoration = "" - elif opts.save_to_dirs: - file_decoration = opts.samples_filename_pattern or "[seed]" - else: - file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]" - - if file_decoration != "": - file_decoration = "-" + file_decoration.lower() - - file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix - if extension == 'png' and opts.enable_pnginfo and info is not None: pnginfo = PngImagePlugin.PngInfo() @@ -419,6 +407,18 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i os.makedirs(path, exist_ok=True) if forced_filename is None: + if short_filename or prompt is None or seed is None: + file_decoration = "" + elif opts.save_to_dirs: + file_decoration = opts.samples_filename_pattern or "[seed]" + else: + file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]" + + if file_decoration != "": + file_decoration = "-" + file_decoration.lower() + + file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix + basecount = get_next_sequence_number(path, basename) fullfn = "a.png" fullfn_without_extension = "a" From 7d4a4db9ea7543c079f4a4a702c2945f4b66cd11 Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Sat, 22 Oct 2022 17:48:59 +0900 Subject: [PATCH 125/321] modify unnecessary sting assignment as it's going to get overwritten --- modules/images.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/images.py b/modules/images.py index 50a59cff..cc5066b1 100644 --- a/modules/images.py +++ b/modules/images.py @@ -420,8 +420,8 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix basecount = get_next_sequence_number(path, basename) - fullfn = "a.png" - fullfn_without_extension = "a" + fullfn = None + fullfn_without_extension = None for i in range(500): fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}" fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}") From 37dd6deafb831a809eaf7ae8d232937a8c7998e7 Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Sat, 22 Oct 2022 21:11:15 +0900 Subject: [PATCH 126/321] filename pattern [datetime], extended customizable Format and Time Zone format: [datetime] [datetime] [datetime