extras: Add option to run upscaling before face fixing

Face restoration can look much better if ran after upscaling, as it
allows the restoration to fix upscaling artifacts. This patch adds
an option to choose which order to run upscaling/face fixing in.
This commit is contained in:
Chris OBryan 2022-10-28 13:24:11 -05:00
parent 737eb28fac
commit 26d0819384
2 changed files with 105 additions and 56 deletions

View file

@ -7,6 +7,10 @@ from PIL import Image
import torch import torch
import tqdm import tqdm
from typing import Callable, List, Tuple
from functools import partial
from dataclasses import dataclass
from modules import processing, shared, images, devices, sd_models from modules import processing, shared, images, devices, sd_models
from modules.shared import opts from modules.shared import opts
import modules.gfpgan_model import modules.gfpgan_model
@ -20,7 +24,7 @@ import gradio as gr
cached_images = {} cached_images = {}
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool ):
devices.torch_gc() devices.torch_gc()
imageArr = [] imageArr = []
@ -57,15 +61,8 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
outpath = opts.outdir_samples or opts.outdir_extras_samples outpath = opts.outdir_samples or opts.outdir_extras_samples
for image, image_name in zip(imageArr, imageNameArr): # Extra operation definitions
if image is None: def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
return outputs, "Please select an input image.", ''
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
if gfpgan_visibility > 0:
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img) res = Image.fromarray(restored_img)
@ -73,9 +70,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
res = Image.blend(image, res, gfpgan_visibility) res = Image.blend(image, res, gfpgan_visibility)
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
image = res return (res, info)
if codeformer_visibility > 0: def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img) res = Image.fromarray(restored_img)
@ -83,14 +80,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
res = Image.blend(image, res, codeformer_visibility) res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
image = res return (res, info)
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
if upscaling_resize != 1.0:
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
pixels = tuple(np.array(small).flatten().tolist()) pixels = tuple(np.array(small).flatten().tolist())
@ -106,18 +98,71 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2)) cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
c = cropped c = cropped
cached_images[key] = c cached_images[key] = c
return c return c
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
return (image, info)
@dataclass
class UpscaleParams:
upscaler_idx: int
blend_alpha: float
def run_upscalers_blend( params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
for upscaler in params:
res = upscale(image, upscaler.upscaler_idx, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
if blended_result is None:
blended_result = res
else:
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
return (blended_result, info)
# Build a list of operations to run
facefix_ops: List[Callable] = []
if gfpgan_visibility > 0:
facefix_ops.append(run_gfpgan)
if codeformer_visibility > 0:
facefix_ops.append(run_codeformer)
upscale_ops: List[Callable] = []
if resize_mode == 1:
upscale_ops.append(run_prepare_crop)
if upscaling_resize != 0:
step_params: List[UpscaleParams] = []
step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_1, blend_alpha=1.0 ))
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop) step_params.append( UpscaleParams( upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility ) )
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
res = Image.blend(res, res2, extras_upscaler_2_visibility)
image = res upscale_ops.append( partial(run_upscalers_blend, step_params) )
extras_ops: List[Callable] = []
if upscale_first:
extras_ops = upscale_ops + facefix_ops
else:
extras_ops = facefix_ops + upscale_ops
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
# Run each operation on each image
for op in extras_ops:
image, info = op(image, info)
while len(cached_images) > 2: while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))] del cached_images[next(iter(cached_images.keys()))]

View file

@ -1119,6 +1119,9 @@ def create_ui(wrap_gradio_gpu_call):
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer) codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer) codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
with gr.Group():
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
with gr.Column(variant='panel'): with gr.Column(variant='panel'):
@ -1152,6 +1155,7 @@ def create_ui(wrap_gradio_gpu_call):
extras_upscaler_1, extras_upscaler_1,
extras_upscaler_2, extras_upscaler_2,
extras_upscaler_2_visibility, extras_upscaler_2_visibility,
upscale_before_face_fix,
], ],
outputs=[ outputs=[
result_images, result_images,