diff --git a/modules/api/api.py b/modules/api/api.py index c17d7580..3b804373 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -8,20 +8,42 @@ import json import io import base64 from modules.api.models import * +from PIL import Image +from modules.extras import run_extras + +def upscaler_to_index(name: str): + try: + return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) + except: + raise HTTPException(status_code=400, detail="Upscaler not found") sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) -def img_to_base64(img): +def img_to_base64(img: str): buffer = io.BytesIO() img.save(buffer, format="png") return base64.b64encode(buffer.getvalue()) +def base64_to_bytes(base64Img: str): + if "," in base64Img: + base64Img = base64Img.split(",")[1] + return io.BytesIO(base64.b64decode(base64Img)) + +def base64_to_images(base64Imgs: list[str]): + imgs = [] + for img in base64Imgs: + img = Image.open(base64_to_bytes(img)) + imgs.append(img) + return imgs + + class Api: def __init__(self, app, queue_lock): self.router = APIRouter() self.app = app self.queue_lock = queue_lock - self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) + self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) + self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): sampler_index = sampler_to_index(txt2imgreq.sampler_index) @@ -45,12 +67,23 @@ class Api: return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info)) - def img2imgapi(self): raise NotImplementedError - def extrasapi(self): - raise NotImplementedError + def extras_single_image_api(self, req: ExtrasSingleImageRequest): + upscaler1Index = upscaler_to_index(req.upscaler_1) + upscaler2Index = upscaler_to_index(req.upscaler_2) + + reqDict = vars(req) + reqDict.pop('upscaler_1') + reqDict.pop('upscaler_2') + + reqDict['image'] = base64_to_images([reqDict['image']])[0] + + with self.queue_lock: + result = run_extras(**reqDict, extras_upscaler_1=upscaler1Index, extras_upscaler_2=upscaler2Index, extras_mode=0, image_folder="", input_dir="", output_dir="") + + return ExtrasSingleImageResponse(image="data:image/png;base64,"+img_to_base64(result[0]), html_info_x=result[1], html_info=result[2]) def pnginfoapi(self): raise NotImplementedError diff --git a/modules/api/models.py b/modules/api/models.py index a7d247d8..dcf1ab54 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -1,8 +1,32 @@ from pydantic import BaseModel, Field, Json +from typing_extensions import Literal +from modules.shared import sd_upscalers class TextToImageResponse(BaseModel): images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") parameters: Json info: Json - \ No newline at end of file +class ExtrasBaseRequest(BaseModel): + resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") + show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") + gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") + codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") + codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") + upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") + upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?") + upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") + +class ExtraBaseResponse(BaseModel): + html_info_x: str + html_info: str + +class ExtrasSingleImageRequest(ExtrasBaseRequest): + image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + +class ExtrasSingleImageResponse(ExtraBaseResponse): + image: str = Field(default=None, title="Image", description="The generated image in base64 format.") \ No newline at end of file