Merge pull request #1283 from jn-jairo/fix-vram

Fix memory leak and reduce memory usage
This commit is contained in:
AUTOMATIC1111 2022-10-06 20:10:11 +03:00 committed by GitHub
commit 2cfcb23c16
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 20 additions and 10 deletions

View file

@ -100,6 +100,8 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
outputs.append(image) outputs.append(image)
devices.torch_gc()
return outputs, plaintext_to_html(info), '' return outputs, plaintext_to_html(info), ''

View file

@ -11,7 +11,7 @@ import cv2
from skimage import exposure from skimage import exposure
import modules.sd_hijack import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers from modules import devices, prompt_parser, masking, sd_samplers, lowvram
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
@ -382,6 +382,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim) x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
del samples_ddim
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
if opts.filter_nsfw: if opts.filter_nsfw:
import modules.safety as safety import modules.safety as safety
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim) x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
@ -426,6 +433,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
infotexts.append(infotext(n, i)) infotexts.append(infotext(n, i))
output_images.append(image) output_images.append(image)
del x_samples_ddim
devices.torch_gc()
state.nextjob() state.nextjob()
p.color_corrections = None p.color_corrections = None
@ -663,4 +674,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.mask is not None: if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask samples = samples * self.nmask + self.init_latent * self.mask
del x
devices.torch_gc()
return samples return samples

View file

@ -5,6 +5,7 @@ import traceback
import torch import torch
import numpy as np import numpy as np
from torch import einsum from torch import einsum
from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared from modules import prompt_parser, devices, sd_hijack_optimizations, shared
@ -19,11 +20,12 @@ diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.At
def apply_optimizations(): def apply_optimizations():
ldm.modules.diffusionmodules.model.nonlinearity = silu
if cmd_opts.opt_split_attention_v1: if cmd_opts.opt_split_attention_v1:
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.nonlinearity = sd_hijack_optimizations.nonlinearity_hijack
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward

View file

@ -92,14 +92,6 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2) return self.to_out(r2)
def nonlinearity_hijack(x):
# swish
t = torch.sigmoid(x)
x *= t
del t
return x
def cross_attention_attnblock_forward(self, x): def cross_attention_attnblock_forward(self, x):
h_ = x h_ = x
h_ = self.norm(h_) h_ = self.norm(h_)