should fix the issue with missing layers in chechpoint merger
This commit is contained in:
parent
6cdf55627c
commit
2f0e089c7c
1 changed files with 6 additions and 1 deletions
|
@ -209,7 +209,12 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
|
|||
|
||||
for key in tqdm.tqdm(theta_0.keys()):
|
||||
if 'model' in key and key in theta_1:
|
||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key] if theta_2 else None, (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
|
||||
t2 = (theta_2 or {}).get(key)
|
||||
if t2 is None:
|
||||
t2 = torch.zeros_like(theta_0[key])
|
||||
|
||||
theta_0[key] = theta_func(theta_0[key], theta_1[key], t2, (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint
|
||||
|
||||
if save_as_half:
|
||||
theta_0[key] = theta_0[key].half()
|
||||
|
||||
|
|
Loading…
Reference in a new issue