diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index e5cb1817..edb8cba1 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -5,6 +5,7 @@ import os import sys import traceback import tqdm +import csv import torch @@ -262,6 +263,20 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) + if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0: + write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True + + with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout: + + csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss", "learn_rate"]) + + if write_csv_header: + csv_writer.writeheader() + + csv_writer.writerow({"step": hypernetwork.step, + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate}) + if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 3d835358..1f5ace6f 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm import html import datetime +import csv from PIL import Image, PngImagePlugin @@ -256,6 +257,21 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') embedding.save(last_saved_file) + if write_csv_every > 0 and log_directory is not None and embedding.step % write_csv_every == 0: + write_csv_header = False if os.path.exists(os.path.join(log_directory, "textual_inversion_loss.csv")) else True + + with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout: + + csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss", "learn_rate"]) + + if write_csv_header: + csv_writer.writeheader() + + csv_writer.writerow({"epoch": epoch_num + 1, + "epoch_step": epoch_step - 1, + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate}) + if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') diff --git a/modules/ui.py b/modules/ui.py index a08ffc9b..be4a43a7 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1172,6 +1172,7 @@ def create_ui(wrap_gradio_gpu_call): training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) + write_csv_every = gr.Number(label='Save an csv containing the loss to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) @@ -1250,6 +1251,7 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, + write_csv_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, @@ -1272,6 +1274,7 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, + write_csv_every, template_file, preview_from_txt2img, *txt2img_preview_params,