Merge branch 'master' into api-authorization
This commit is contained in:
commit
336c341a7c
28 changed files with 193 additions and 150 deletions
|
@ -9,9 +9,9 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||||
from secrets import compare_digest
|
from secrets import compare_digest
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
from modules import sd_samplers
|
||||||
from modules.api.models import *
|
from modules.api.models import *
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.sd_samplers import all_samplers
|
|
||||||
from modules.extras import run_extras, run_pnginfo
|
from modules.extras import run_extras, run_pnginfo
|
||||||
from PIL import PngImagePlugin
|
from PIL import PngImagePlugin
|
||||||
from modules.sd_models import checkpoints_list
|
from modules.sd_models import checkpoints_list
|
||||||
|
@ -28,8 +28,12 @@ def upscaler_to_index(name: str):
|
||||||
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
|
||||||
|
|
||||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
def validate_sampler_name(name):
|
||||||
|
config = sd_samplers.all_samplers_map.get(name, None)
|
||||||
|
if config is None:
|
||||||
|
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||||
|
|
||||||
|
return name
|
||||||
|
|
||||||
def setUpscalers(req: dict):
|
def setUpscalers(req: dict):
|
||||||
reqDict = vars(req)
|
reqDict = vars(req)
|
||||||
|
@ -77,6 +81,7 @@ class Api:
|
||||||
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
||||||
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
|
||||||
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
|
||||||
|
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
|
||||||
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
|
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
|
||||||
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
||||||
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
|
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
|
||||||
|
@ -103,14 +108,9 @@ class Api:
|
||||||
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
|
||||||
|
|
||||||
if sampler_index is None:
|
|
||||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
||||||
|
|
||||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||||
"sd_model": shared.sd_model,
|
"sd_model": shared.sd_model,
|
||||||
"sampler_index": sampler_index[0],
|
"sampler_name": validate_sampler_name(txt2imgreq.sampler_index),
|
||||||
"do_not_save_samples": True,
|
"do_not_save_samples": True,
|
||||||
"do_not_save_grid": True
|
"do_not_save_grid": True
|
||||||
}
|
}
|
||||||
|
@ -130,12 +130,6 @@ class Api:
|
||||||
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||||
|
|
||||||
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
|
||||||
|
|
||||||
if sampler_index is None:
|
|
||||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
|
||||||
|
|
||||||
|
|
||||||
init_images = img2imgreq.init_images
|
init_images = img2imgreq.init_images
|
||||||
if init_images is None:
|
if init_images is None:
|
||||||
raise HTTPException(status_code=404, detail="Init image not found")
|
raise HTTPException(status_code=404, detail="Init image not found")
|
||||||
|
@ -144,10 +138,9 @@ class Api:
|
||||||
if mask:
|
if mask:
|
||||||
mask = decode_base64_to_image(mask)
|
mask = decode_base64_to_image(mask)
|
||||||
|
|
||||||
|
|
||||||
populate = img2imgreq.copy(update={ # Override __init__ params
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||||
"sd_model": shared.sd_model,
|
"sd_model": shared.sd_model,
|
||||||
"sampler_index": sampler_index[0],
|
"sampler_name": validate_sampler_name(img2imgreq.sampler_index),
|
||||||
"do_not_save_samples": True,
|
"do_not_save_samples": True,
|
||||||
"do_not_save_grid": True,
|
"do_not_save_grid": True,
|
||||||
"mask": mask
|
"mask": mask
|
||||||
|
@ -266,6 +259,9 @@ class Api:
|
||||||
|
|
||||||
return {}
|
return {}
|
||||||
|
|
||||||
|
def skip(self):
|
||||||
|
shared.state.skip()
|
||||||
|
|
||||||
def get_config(self):
|
def get_config(self):
|
||||||
options = {}
|
options = {}
|
||||||
for key in shared.opts.data.keys():
|
for key in shared.opts.data.keys():
|
||||||
|
@ -277,14 +273,10 @@ class Api:
|
||||||
|
|
||||||
return options
|
return options
|
||||||
|
|
||||||
def set_config(self, req: OptionsModel):
|
def set_config(self, req: Dict[str, Any]):
|
||||||
# currently req has all options fields even if you send a dict like { "send_seed": false }, which means it will
|
|
||||||
# overwrite all options with default values.
|
for o in req:
|
||||||
raise RuntimeError('Setting options via API is not supported')
|
setattr(shared.opts, o, req[o])
|
||||||
|
|
||||||
reqDict = vars(req)
|
|
||||||
for o in reqDict:
|
|
||||||
setattr(shared.opts, o, reqDict[o])
|
|
||||||
|
|
||||||
shared.opts.save(shared.config_filename)
|
shared.opts.save(shared.config_filename)
|
||||||
return
|
return
|
||||||
|
@ -293,7 +285,7 @@ class Api:
|
||||||
return vars(shared.cmd_opts)
|
return vars(shared.cmd_opts)
|
||||||
|
|
||||||
def get_samplers(self):
|
def get_samplers(self):
|
||||||
return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
|
return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
|
||||||
|
|
||||||
def get_upscalers(self):
|
def get_upscalers(self):
|
||||||
upscalers = []
|
upscalers = []
|
||||||
|
|
|
@ -176,9 +176,9 @@ class InterrogateResponse(BaseModel):
|
||||||
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
|
||||||
|
|
||||||
fields = {}
|
fields = {}
|
||||||
for key, value in opts.data.items():
|
for key, metadata in opts.data_labels.items():
|
||||||
metadata = opts.data_labels.get(key)
|
value = opts.data.get(key)
|
||||||
optType = opts.typemap.get(type(value), type(value))
|
optType = opts.typemap.get(type(metadata.default), type(value))
|
||||||
|
|
||||||
if (metadata is not None):
|
if (metadata is not None):
|
||||||
fields.update({key: (Optional[optType], Field(
|
fields.update({key: (Optional[optType], Field(
|
||||||
|
|
|
@ -65,9 +65,12 @@ class Extension:
|
||||||
self.can_update = False
|
self.can_update = False
|
||||||
self.status = "latest"
|
self.status = "latest"
|
||||||
|
|
||||||
def pull(self):
|
def fetch_and_reset_hard(self):
|
||||||
repo = git.Repo(self.path)
|
repo = git.Repo(self.path)
|
||||||
repo.remotes.origin.pull()
|
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
|
||||||
|
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
|
||||||
|
repo.git.fetch('--all')
|
||||||
|
repo.git.reset('--hard', 'origin')
|
||||||
|
|
||||||
|
|
||||||
def list_extensions():
|
def list_extensions():
|
||||||
|
|
|
@ -73,6 +73,7 @@ def integrate_settings_paste_fields(component_dict):
|
||||||
'sd_hypernetwork': 'Hypernet',
|
'sd_hypernetwork': 'Hypernet',
|
||||||
'sd_hypernetwork_strength': 'Hypernet strength',
|
'sd_hypernetwork_strength': 'Hypernet strength',
|
||||||
'CLIP_stop_at_last_layers': 'Clip skip',
|
'CLIP_stop_at_last_layers': 'Clip skip',
|
||||||
|
'inpainting_mask_weight': 'Conditional mask weight',
|
||||||
'sd_model_checkpoint': 'Model hash',
|
'sd_model_checkpoint': 'Model hash',
|
||||||
}
|
}
|
||||||
settings_paste_fields = [
|
settings_paste_fields = [
|
||||||
|
|
|
@ -12,7 +12,7 @@ import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange, repeat
|
||||||
from ldm.util import default
|
from ldm.util import default
|
||||||
from modules import devices, processing, sd_models, shared
|
from modules import devices, processing, sd_models, shared, sd_samplers
|
||||||
from modules.textual_inversion import textual_inversion
|
from modules.textual_inversion import textual_inversion
|
||||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||||
from torch import einsum
|
from torch import einsum
|
||||||
|
@ -535,7 +535,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||||
p.prompt = preview_prompt
|
p.prompt = preview_prompt
|
||||||
p.negative_prompt = preview_negative_prompt
|
p.negative_prompt = preview_negative_prompt
|
||||||
p.steps = preview_steps
|
p.steps = preview_steps
|
||||||
p.sampler_index = preview_sampler_index
|
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||||
p.cfg_scale = preview_cfg_scale
|
p.cfg_scale = preview_cfg_scale
|
||||||
p.seed = preview_seed
|
p.seed = preview_seed
|
||||||
p.width = preview_width
|
p.width = preview_width
|
||||||
|
|
|
@ -303,7 +303,7 @@ class FilenameGenerator:
|
||||||
'width': lambda self: self.image.width,
|
'width': lambda self: self.image.width,
|
||||||
'height': lambda self: self.image.height,
|
'height': lambda self: self.image.height,
|
||||||
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
||||||
'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False),
|
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
||||||
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
||||||
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
||||||
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
||||||
|
|
|
@ -6,7 +6,7 @@ import traceback
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, ImageOps, ImageChops
|
from PIL import Image, ImageOps, ImageChops
|
||||||
|
|
||||||
from modules import devices
|
from modules import devices, sd_samplers
|
||||||
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.shared import opts, state
|
from modules.shared import opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
@ -99,7 +99,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
|
||||||
seed_resize_from_h=seed_resize_from_h,
|
seed_resize_from_h=seed_resize_from_h,
|
||||||
seed_resize_from_w=seed_resize_from_w,
|
seed_resize_from_w=seed_resize_from_w,
|
||||||
seed_enable_extras=seed_enable_extras,
|
seed_enable_extras=seed_enable_extras,
|
||||||
sampler_index=sampler_index,
|
sampler_index=sd_samplers.samplers_for_img2img[sampler_index].name,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_iter=n_iter,
|
n_iter=n_iter,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
|
|
|
@ -2,6 +2,7 @@ import json
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import warnings
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -66,19 +67,15 @@ def apply_overlay(image, paste_loc, index, overlays):
|
||||||
|
|
||||||
return image
|
return image
|
||||||
|
|
||||||
def get_correct_sampler(p):
|
|
||||||
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
|
|
||||||
return sd_samplers.samplers
|
|
||||||
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
|
|
||||||
return sd_samplers.samplers_for_img2img
|
|
||||||
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
|
|
||||||
return sd_samplers.samplers
|
|
||||||
|
|
||||||
class StableDiffusionProcessing():
|
class StableDiffusionProcessing():
|
||||||
"""
|
"""
|
||||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||||
"""
|
"""
|
||||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, sampler_index: int = None):
|
||||||
|
if sampler_index is not None:
|
||||||
|
warnings.warn("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name")
|
||||||
|
|
||||||
self.sd_model = sd_model
|
self.sd_model = sd_model
|
||||||
self.outpath_samples: str = outpath_samples
|
self.outpath_samples: str = outpath_samples
|
||||||
self.outpath_grids: str = outpath_grids
|
self.outpath_grids: str = outpath_grids
|
||||||
|
@ -91,7 +88,7 @@ class StableDiffusionProcessing():
|
||||||
self.subseed_strength: float = subseed_strength
|
self.subseed_strength: float = subseed_strength
|
||||||
self.seed_resize_from_h: int = seed_resize_from_h
|
self.seed_resize_from_h: int = seed_resize_from_h
|
||||||
self.seed_resize_from_w: int = seed_resize_from_w
|
self.seed_resize_from_w: int = seed_resize_from_w
|
||||||
self.sampler_index: int = sampler_index
|
self.sampler_name: str = sampler_name
|
||||||
self.batch_size: int = batch_size
|
self.batch_size: int = batch_size
|
||||||
self.n_iter: int = n_iter
|
self.n_iter: int = n_iter
|
||||||
self.steps: int = steps
|
self.steps: int = steps
|
||||||
|
@ -116,6 +113,7 @@ class StableDiffusionProcessing():
|
||||||
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
||||||
self.s_noise = s_noise or opts.s_noise
|
self.s_noise = s_noise or opts.s_noise
|
||||||
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
|
||||||
|
self.is_using_inpainting_conditioning = False
|
||||||
|
|
||||||
if not seed_enable_extras:
|
if not seed_enable_extras:
|
||||||
self.subseed = -1
|
self.subseed = -1
|
||||||
|
@ -126,6 +124,7 @@ class StableDiffusionProcessing():
|
||||||
self.scripts = None
|
self.scripts = None
|
||||||
self.script_args = None
|
self.script_args = None
|
||||||
self.all_prompts = None
|
self.all_prompts = None
|
||||||
|
self.all_negative_prompts = None
|
||||||
self.all_seeds = None
|
self.all_seeds = None
|
||||||
self.all_subseeds = None
|
self.all_subseeds = None
|
||||||
|
|
||||||
|
@ -136,6 +135,8 @@ class StableDiffusionProcessing():
|
||||||
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
|
||||||
return x.new_zeros(x.shape[0], 5, 1, 1)
|
return x.new_zeros(x.shape[0], 5, 1, 1)
|
||||||
|
|
||||||
|
self.is_using_inpainting_conditioning = True
|
||||||
|
|
||||||
height = height or self.height
|
height = height or self.height
|
||||||
width = width or self.width
|
width = width or self.width
|
||||||
|
|
||||||
|
@ -154,6 +155,8 @@ class StableDiffusionProcessing():
|
||||||
# Dummy zero conditioning if we're not using inpainting model.
|
# Dummy zero conditioning if we're not using inpainting model.
|
||||||
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
|
||||||
|
|
||||||
|
self.is_using_inpainting_conditioning = True
|
||||||
|
|
||||||
# Handle the different mask inputs
|
# Handle the different mask inputs
|
||||||
if image_mask is not None:
|
if image_mask is not None:
|
||||||
if torch.is_tensor(image_mask):
|
if torch.is_tensor(image_mask):
|
||||||
|
@ -200,7 +203,7 @@ class StableDiffusionProcessing():
|
||||||
|
|
||||||
|
|
||||||
class Processed:
|
class Processed:
|
||||||
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
|
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
|
||||||
self.images = images_list
|
self.images = images_list
|
||||||
self.prompt = p.prompt
|
self.prompt = p.prompt
|
||||||
self.negative_prompt = p.negative_prompt
|
self.negative_prompt = p.negative_prompt
|
||||||
|
@ -210,8 +213,7 @@ class Processed:
|
||||||
self.info = info
|
self.info = info
|
||||||
self.width = p.width
|
self.width = p.width
|
||||||
self.height = p.height
|
self.height = p.height
|
||||||
self.sampler_index = p.sampler_index
|
self.sampler_name = p.sampler_name
|
||||||
self.sampler = sd_samplers.samplers[p.sampler_index].name
|
|
||||||
self.cfg_scale = p.cfg_scale
|
self.cfg_scale = p.cfg_scale
|
||||||
self.steps = p.steps
|
self.steps = p.steps
|
||||||
self.batch_size = p.batch_size
|
self.batch_size = p.batch_size
|
||||||
|
@ -238,17 +240,20 @@ class Processed:
|
||||||
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
|
||||||
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
|
||||||
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
|
||||||
|
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
|
||||||
|
|
||||||
self.all_prompts = all_prompts or [self.prompt]
|
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
|
||||||
self.all_seeds = all_seeds or [self.seed]
|
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
|
||||||
self.all_subseeds = all_subseeds or [self.subseed]
|
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
|
||||||
|
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
|
||||||
self.infotexts = infotexts or [info]
|
self.infotexts = infotexts or [info]
|
||||||
|
|
||||||
def js(self):
|
def js(self):
|
||||||
obj = {
|
obj = {
|
||||||
"prompt": self.prompt,
|
"prompt": self.all_prompts[0],
|
||||||
"all_prompts": self.all_prompts,
|
"all_prompts": self.all_prompts,
|
||||||
"negative_prompt": self.negative_prompt,
|
"negative_prompt": self.all_negative_prompts[0],
|
||||||
|
"all_negative_prompts": self.all_negative_prompts,
|
||||||
"seed": self.seed,
|
"seed": self.seed,
|
||||||
"all_seeds": self.all_seeds,
|
"all_seeds": self.all_seeds,
|
||||||
"subseed": self.subseed,
|
"subseed": self.subseed,
|
||||||
|
@ -256,8 +261,7 @@ class Processed:
|
||||||
"subseed_strength": self.subseed_strength,
|
"subseed_strength": self.subseed_strength,
|
||||||
"width": self.width,
|
"width": self.width,
|
||||||
"height": self.height,
|
"height": self.height,
|
||||||
"sampler_index": self.sampler_index,
|
"sampler_name": self.sampler_name,
|
||||||
"sampler": self.sampler,
|
|
||||||
"cfg_scale": self.cfg_scale,
|
"cfg_scale": self.cfg_scale,
|
||||||
"steps": self.steps,
|
"steps": self.steps,
|
||||||
"batch_size": self.batch_size,
|
"batch_size": self.batch_size,
|
||||||
|
@ -273,6 +277,7 @@ class Processed:
|
||||||
"styles": self.styles,
|
"styles": self.styles,
|
||||||
"job_timestamp": self.job_timestamp,
|
"job_timestamp": self.job_timestamp,
|
||||||
"clip_skip": self.clip_skip,
|
"clip_skip": self.clip_skip,
|
||||||
|
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
|
||||||
}
|
}
|
||||||
|
|
||||||
return json.dumps(obj)
|
return json.dumps(obj)
|
||||||
|
@ -384,7 +389,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
||||||
|
|
||||||
generation_params = {
|
generation_params = {
|
||||||
"Steps": p.steps,
|
"Steps": p.steps,
|
||||||
"Sampler": get_correct_sampler(p)[p.sampler_index].name,
|
"Sampler": p.sampler_name,
|
||||||
"CFG scale": p.cfg_scale,
|
"CFG scale": p.cfg_scale,
|
||||||
"Seed": all_seeds[index],
|
"Seed": all_seeds[index],
|
||||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||||
|
@ -399,6 +404,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
||||||
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
||||||
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||||
|
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
|
||||||
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
||||||
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||||
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
||||||
|
@ -408,7 +414,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
||||||
|
|
||||||
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||||
|
|
||||||
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
|
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[0] if p.all_negative_prompts[0] else ""
|
||||||
|
|
||||||
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||||
|
|
||||||
|
@ -437,10 +443,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
else:
|
else:
|
||||||
assert p.prompt is not None
|
assert p.prompt is not None
|
||||||
|
|
||||||
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
|
|
||||||
processed = Processed(p, [], p.seed, "")
|
|
||||||
file.write(processed.infotext(p, 0))
|
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
seed = get_fixed_seed(p.seed)
|
seed = get_fixed_seed(p.seed)
|
||||||
|
@ -451,12 +453,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
|
||||||
comments = {}
|
comments = {}
|
||||||
|
|
||||||
shared.prompt_styles.apply_styles(p)
|
|
||||||
|
|
||||||
if type(p.prompt) == list:
|
if type(p.prompt) == list:
|
||||||
p.all_prompts = p.prompt
|
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
|
||||||
else:
|
else:
|
||||||
p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
|
p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
|
||||||
|
|
||||||
|
if type(p.negative_prompt) == list:
|
||||||
|
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
|
||||||
|
else:
|
||||||
|
p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
|
||||||
|
|
||||||
if type(seed) == list:
|
if type(seed) == list:
|
||||||
p.all_seeds = seed
|
p.all_seeds = seed
|
||||||
|
@ -471,6 +476,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
def infotext(iteration=0, position_in_batch=0):
|
def infotext(iteration=0, position_in_batch=0):
|
||||||
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
|
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
|
||||||
|
|
||||||
|
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
|
||||||
|
processed = Processed(p, [], p.seed, "")
|
||||||
|
file.write(processed.infotext(p, 0))
|
||||||
|
|
||||||
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
||||||
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||||
|
|
||||||
|
@ -495,6 +504,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
break
|
break
|
||||||
|
|
||||||
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
|
||||||
|
|
||||||
|
@ -505,7 +515,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
|
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
|
||||||
|
|
||||||
with devices.autocast():
|
with devices.autocast():
|
||||||
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
|
uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps)
|
||||||
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
|
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
|
||||||
|
|
||||||
if len(model_hijack.comments) > 0:
|
if len(model_hijack.comments) > 0:
|
||||||
|
@ -591,7 +601,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
|
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
|
||||||
|
|
||||||
if p.scripts is not None:
|
if p.scripts is not None:
|
||||||
p.scripts.postprocess(p, res)
|
p.scripts.postprocess(p, res)
|
||||||
|
@ -645,7 +655,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
|
|
||||||
if not self.enable_hr:
|
if not self.enable_hr:
|
||||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
@ -706,7 +716,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||||
|
|
||||||
shared.state.nextjob()
|
shared.state.nextjob()
|
||||||
|
|
||||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
|
|
||||||
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
|
||||||
|
@ -730,7 +740,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
self.denoising_strength: float = denoising_strength
|
self.denoising_strength: float = denoising_strength
|
||||||
self.init_latent = None
|
self.init_latent = None
|
||||||
self.image_mask = mask
|
self.image_mask = mask
|
||||||
#self.image_unblurred_mask = None
|
|
||||||
self.latent_mask = None
|
self.latent_mask = None
|
||||||
self.mask_for_overlay = None
|
self.mask_for_overlay = None
|
||||||
self.mask_blur = mask_blur
|
self.mask_blur = mask_blur
|
||||||
|
@ -743,39 +752,39 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
self.image_conditioning = None
|
self.image_conditioning = None
|
||||||
|
|
||||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||||
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
|
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
|
||||||
crop_region = None
|
crop_region = None
|
||||||
|
|
||||||
if self.image_mask is not None:
|
image_mask = self.image_mask
|
||||||
self.image_mask = self.image_mask.convert('L')
|
|
||||||
|
if image_mask is not None:
|
||||||
|
image_mask = image_mask.convert('L')
|
||||||
|
|
||||||
if self.inpainting_mask_invert:
|
if self.inpainting_mask_invert:
|
||||||
self.image_mask = ImageOps.invert(self.image_mask)
|
image_mask = ImageOps.invert(image_mask)
|
||||||
|
|
||||||
#self.image_unblurred_mask = self.image_mask
|
|
||||||
|
|
||||||
if self.mask_blur > 0:
|
if self.mask_blur > 0:
|
||||||
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
|
||||||
|
|
||||||
if self.inpaint_full_res:
|
if self.inpaint_full_res:
|
||||||
self.mask_for_overlay = self.image_mask
|
self.mask_for_overlay = image_mask
|
||||||
mask = self.image_mask.convert('L')
|
mask = image_mask.convert('L')
|
||||||
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
|
||||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||||
x1, y1, x2, y2 = crop_region
|
x1, y1, x2, y2 = crop_region
|
||||||
|
|
||||||
mask = mask.crop(crop_region)
|
mask = mask.crop(crop_region)
|
||||||
self.image_mask = images.resize_image(2, mask, self.width, self.height)
|
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||||
else:
|
else:
|
||||||
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
|
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
||||||
np_mask = np.array(self.image_mask)
|
np_mask = np.array(image_mask)
|
||||||
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
||||||
self.mask_for_overlay = Image.fromarray(np_mask)
|
self.mask_for_overlay = Image.fromarray(np_mask)
|
||||||
|
|
||||||
self.overlay_images = []
|
self.overlay_images = []
|
||||||
|
|
||||||
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
|
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
|
||||||
|
|
||||||
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
|
||||||
if add_color_corrections:
|
if add_color_corrections:
|
||||||
|
@ -787,7 +796,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
if crop_region is None:
|
if crop_region is None:
|
||||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||||
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
||||||
|
|
||||||
|
@ -797,7 +806,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
image = image.crop(crop_region)
|
image = image.crop(crop_region)
|
||||||
image = images.resize_image(2, image, self.width, self.height)
|
image = images.resize_image(2, image, self.width, self.height)
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
if self.inpainting_fill != 1:
|
if self.inpainting_fill != 1:
|
||||||
image = masking.fill(image, latent_mask)
|
image = masking.fill(image, latent_mask)
|
||||||
|
|
||||||
|
@ -829,7 +838,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
|
|
||||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||||
|
|
||||||
if self.image_mask is not None:
|
if image_mask is not None:
|
||||||
init_mask = latent_mask
|
init_mask = latent_mask
|
||||||
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
|
||||||
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
|
||||||
|
@ -846,7 +855,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
elif self.inpainting_fill == 3:
|
elif self.inpainting_fill == 3:
|
||||||
self.init_latent = self.init_latent * self.mask
|
self.init_latent = self.init_latent * self.mask
|
||||||
|
|
||||||
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
|
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
|
||||||
|
|
||||||
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
||||||
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
|
||||||
|
|
|
@ -96,8 +96,8 @@ class StableDiffusionModelHijack:
|
||||||
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
|
||||||
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
|
||||||
|
|
||||||
|
self.apply_circular(False)
|
||||||
self.layers = None
|
self.layers = None
|
||||||
self.circular_enabled = False
|
|
||||||
self.clip = None
|
self.clip = None
|
||||||
|
|
||||||
def apply_circular(self, enable):
|
def apply_circular(self, enable):
|
||||||
|
|
|
@ -165,16 +165,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||||
|
|
||||||
cache_enabled = shared.opts.sd_checkpoint_cache > 0
|
cache_enabled = shared.opts.sd_checkpoint_cache > 0
|
||||||
|
|
||||||
if cache_enabled:
|
|
||||||
sd_vae.restore_base_vae(model)
|
|
||||||
|
|
||||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
|
||||||
|
|
||||||
if cache_enabled and checkpoint_info in checkpoints_loaded:
|
if cache_enabled and checkpoint_info in checkpoints_loaded:
|
||||||
# use checkpoint cache
|
# use checkpoint cache
|
||||||
vae_name = sd_vae.get_filename(vae_file) if vae_file else None
|
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||||
vae_message = f" with {vae_name} VAE" if vae_name else ""
|
|
||||||
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
|
|
||||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||||
else:
|
else:
|
||||||
# load from file
|
# load from file
|
||||||
|
@ -220,6 +213,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||||
model.sd_model_checkpoint = checkpoint_file
|
model.sd_model_checkpoint = checkpoint_file
|
||||||
model.sd_checkpoint_info = checkpoint_info
|
model.sd_checkpoint_info = checkpoint_info
|
||||||
|
|
||||||
|
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||||
sd_vae.load_vae(model, vae_file)
|
sd_vae.load_vae(model, vae_file)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -46,16 +46,23 @@ all_samplers = [
|
||||||
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
|
||||||
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
|
||||||
]
|
]
|
||||||
|
all_samplers_map = {x.name: x for x in all_samplers}
|
||||||
|
|
||||||
samplers = []
|
samplers = []
|
||||||
samplers_for_img2img = []
|
samplers_for_img2img = []
|
||||||
|
|
||||||
|
|
||||||
def create_sampler_with_index(list_of_configs, index, model):
|
def create_sampler(name, model):
|
||||||
config = list_of_configs[index]
|
if name is not None:
|
||||||
|
config = all_samplers_map.get(name, None)
|
||||||
|
else:
|
||||||
|
config = all_samplers[0]
|
||||||
|
|
||||||
|
assert config is not None, f'bad sampler name: {name}'
|
||||||
|
|
||||||
sampler = config.constructor(model)
|
sampler = config.constructor(model)
|
||||||
sampler.config = config
|
sampler.config = config
|
||||||
|
|
||||||
return sampler
|
return sampler
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -83,47 +83,54 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||||
return vae_list
|
return vae_list
|
||||||
|
|
||||||
|
|
||||||
def resolve_vae(checkpoint_file, vae_file="auto"):
|
def get_vae_from_settings(vae_file="auto"):
|
||||||
global first_load, vae_dict, vae_list
|
# else, we load from settings, if not set to be default
|
||||||
|
|
||||||
# if vae_file argument is provided, it takes priority, but not saved
|
|
||||||
if vae_file and vae_file not in default_vae_list:
|
|
||||||
if not os.path.isfile(vae_file):
|
|
||||||
vae_file = "auto"
|
|
||||||
print("VAE provided as function argument doesn't exist")
|
|
||||||
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
|
|
||||||
if first_load and shared.cmd_opts.vae_path is not None:
|
|
||||||
if os.path.isfile(shared.cmd_opts.vae_path):
|
|
||||||
vae_file = shared.cmd_opts.vae_path
|
|
||||||
shared.opts.data['sd_vae'] = get_filename(vae_file)
|
|
||||||
else:
|
|
||||||
print("VAE provided as command line argument doesn't exist")
|
|
||||||
# else, we load from settings
|
|
||||||
if vae_file == "auto" and shared.opts.sd_vae is not None:
|
if vae_file == "auto" and shared.opts.sd_vae is not None:
|
||||||
# if saved VAE settings isn't recognized, fallback to auto
|
# if saved VAE settings isn't recognized, fallback to auto
|
||||||
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
|
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
|
||||||
# if VAE selected but not found, fallback to auto
|
# if VAE selected but not found, fallback to auto
|
||||||
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
|
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
|
||||||
vae_file = "auto"
|
vae_file = "auto"
|
||||||
print("Selected VAE doesn't exist")
|
print(f"Selected VAE doesn't exist: {vae_file}")
|
||||||
|
return vae_file
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_vae(checkpoint_file=None, vae_file="auto"):
|
||||||
|
global first_load, vae_dict, vae_list
|
||||||
|
|
||||||
|
# if vae_file argument is provided, it takes priority, but not saved
|
||||||
|
if vae_file and vae_file not in default_vae_list:
|
||||||
|
if not os.path.isfile(vae_file):
|
||||||
|
print(f"VAE provided as function argument doesn't exist: {vae_file}")
|
||||||
|
vae_file = "auto"
|
||||||
|
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
|
||||||
|
if first_load and shared.cmd_opts.vae_path is not None:
|
||||||
|
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
|
vae_file = shared.cmd_opts.vae_path
|
||||||
|
shared.opts.data['sd_vae'] = get_filename(vae_file)
|
||||||
|
else:
|
||||||
|
print(f"VAE provided as command line argument doesn't exist: {vae_file}")
|
||||||
|
# fallback to selector in settings, if vae selector not set to act as default fallback
|
||||||
|
if not shared.opts.sd_vae_as_default:
|
||||||
|
vae_file = get_vae_from_settings(vae_file)
|
||||||
# vae-path cmd arg takes priority for auto
|
# vae-path cmd arg takes priority for auto
|
||||||
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
|
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
|
||||||
if os.path.isfile(shared.cmd_opts.vae_path):
|
if os.path.isfile(shared.cmd_opts.vae_path):
|
||||||
vae_file = shared.cmd_opts.vae_path
|
vae_file = shared.cmd_opts.vae_path
|
||||||
print("Using VAE provided as command line argument")
|
print(f"Using VAE provided as command line argument: {vae_file}")
|
||||||
# if still not found, try look for ".vae.pt" beside model
|
# if still not found, try look for ".vae.pt" beside model
|
||||||
model_path = os.path.splitext(checkpoint_file)[0]
|
model_path = os.path.splitext(checkpoint_file)[0]
|
||||||
if vae_file == "auto":
|
if vae_file == "auto":
|
||||||
vae_file_try = model_path + ".vae.pt"
|
vae_file_try = model_path + ".vae.pt"
|
||||||
if os.path.isfile(vae_file_try):
|
if os.path.isfile(vae_file_try):
|
||||||
vae_file = vae_file_try
|
vae_file = vae_file_try
|
||||||
print("Using VAE found beside selected model")
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
# if still not found, try look for ".vae.ckpt" beside model
|
# if still not found, try look for ".vae.ckpt" beside model
|
||||||
if vae_file == "auto":
|
if vae_file == "auto":
|
||||||
vae_file_try = model_path + ".vae.ckpt"
|
vae_file_try = model_path + ".vae.ckpt"
|
||||||
if os.path.isfile(vae_file_try):
|
if os.path.isfile(vae_file_try):
|
||||||
vae_file = vae_file_try
|
vae_file = vae_file_try
|
||||||
print("Using VAE found beside selected model")
|
print(f"Using VAE found similar to selected model: {vae_file}")
|
||||||
# No more fallbacks for auto
|
# No more fallbacks for auto
|
||||||
if vae_file == "auto":
|
if vae_file == "auto":
|
||||||
vae_file = None
|
vae_file = None
|
||||||
|
@ -139,6 +146,7 @@ def load_vae(model, vae_file=None):
|
||||||
# save_settings = False
|
# save_settings = False
|
||||||
|
|
||||||
if vae_file:
|
if vae_file:
|
||||||
|
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
|
||||||
print(f"Loading VAE weights from: {vae_file}")
|
print(f"Loading VAE weights from: {vae_file}")
|
||||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||||
|
|
|
@ -335,7 +335,8 @@ options_templates.update(options_section(('training', "Training"), {
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
|
||||||
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||||
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
|
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
|
||||||
|
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
||||||
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
|
||||||
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
|
|
|
@ -65,17 +65,6 @@ class StyleDatabase:
|
||||||
def apply_negative_styles_to_prompt(self, prompt, styles):
|
def apply_negative_styles_to_prompt(self, prompt, styles):
|
||||||
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
|
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
|
||||||
|
|
||||||
def apply_styles(self, p: StableDiffusionProcessing) -> None:
|
|
||||||
if isinstance(p.prompt, list):
|
|
||||||
p.prompt = [self.apply_styles_to_prompt(prompt, p.styles) for prompt in p.prompt]
|
|
||||||
else:
|
|
||||||
p.prompt = self.apply_styles_to_prompt(p.prompt, p.styles)
|
|
||||||
|
|
||||||
if isinstance(p.negative_prompt, list):
|
|
||||||
p.negative_prompt = [self.apply_negative_styles_to_prompt(prompt, p.styles) for prompt in p.negative_prompt]
|
|
||||||
else:
|
|
||||||
p.negative_prompt = self.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)
|
|
||||||
|
|
||||||
def save_styles(self, path: str) -> None:
|
def save_styles(self, path: str) -> None:
|
||||||
# Write to temporary file first, so we don't nuke the file if something goes wrong
|
# Write to temporary file first, so we don't nuke the file if something goes wrong
|
||||||
fd, temp_path = tempfile.mkstemp(".csv")
|
fd, temp_path = tempfile.mkstemp(".csv")
|
||||||
|
|
|
@ -10,7 +10,7 @@ import csv
|
||||||
|
|
||||||
from PIL import Image, PngImagePlugin
|
from PIL import Image, PngImagePlugin
|
||||||
|
|
||||||
from modules import shared, devices, sd_hijack, processing, sd_models, images
|
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
|
||||||
import modules.textual_inversion.dataset
|
import modules.textual_inversion.dataset
|
||||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||||
|
|
||||||
|
@ -345,7 +345,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
||||||
p.prompt = preview_prompt
|
p.prompt = preview_prompt
|
||||||
p.negative_prompt = preview_negative_prompt
|
p.negative_prompt = preview_negative_prompt
|
||||||
p.steps = preview_steps
|
p.steps = preview_steps
|
||||||
p.sampler_index = preview_sampler_index
|
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
|
||||||
p.cfg_scale = preview_cfg_scale
|
p.cfg_scale = preview_cfg_scale
|
||||||
p.seed = preview_seed
|
p.seed = preview_seed
|
||||||
p.width = preview_width
|
p.width = preview_width
|
||||||
|
|
|
@ -18,7 +18,7 @@ def create_embedding(name, initialization_text, nvpt, overwrite_old):
|
||||||
def preprocess(*args):
|
def preprocess(*args):
|
||||||
modules.textual_inversion.preprocess.preprocess(*args)
|
modules.textual_inversion.preprocess.preprocess(*args)
|
||||||
|
|
||||||
return "Preprocessing finished.", ""
|
return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
|
||||||
|
|
||||||
|
|
||||||
def train_embedding(*args):
|
def train_embedding(*args):
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import modules.scripts
|
import modules.scripts
|
||||||
|
from modules import sd_samplers
|
||||||
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
|
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
|
||||||
StableDiffusionProcessingImg2Img, process_images
|
StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.shared import opts, cmd_opts
|
from modules.shared import opts, cmd_opts
|
||||||
|
@ -21,7 +22,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
|
||||||
seed_resize_from_h=seed_resize_from_h,
|
seed_resize_from_h=seed_resize_from_h,
|
||||||
seed_resize_from_w=seed_resize_from_w,
|
seed_resize_from_w=seed_resize_from_w,
|
||||||
seed_enable_extras=seed_enable_extras,
|
seed_enable_extras=seed_enable_extras,
|
||||||
sampler_index=sampler_index,
|
sampler_name=sd_samplers.samplers[sampler_index].name,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
n_iter=n_iter,
|
n_iter=n_iter,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
|
|
|
@ -69,8 +69,11 @@ sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
|
||||||
css_hide_progressbar = """
|
css_hide_progressbar = """
|
||||||
.wrap .m-12 svg { display:none!important; }
|
.wrap .m-12 svg { display:none!important; }
|
||||||
.wrap .m-12::before { content:"Loading..." }
|
.wrap .m-12::before { content:"Loading..." }
|
||||||
|
.wrap .z-20 svg { display:none!important; }
|
||||||
|
.wrap .z-20::before { content:"Loading..." }
|
||||||
.progress-bar { display:none!important; }
|
.progress-bar { display:none!important; }
|
||||||
.meta-text { display:none!important; }
|
.meta-text { display:none!important; }
|
||||||
|
.meta-text-center { display:none!important; }
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Using constants for these since the variation selector isn't visible.
|
# Using constants for these since the variation selector isn't visible.
|
||||||
|
@ -142,7 +145,7 @@ def save_files(js_data, images, do_make_zip, index):
|
||||||
filenames.append(os.path.basename(txt_fullfn))
|
filenames.append(os.path.basename(txt_fullfn))
|
||||||
fullfns.append(txt_fullfn)
|
fullfns.append(txt_fullfn)
|
||||||
|
|
||||||
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
|
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
|
||||||
|
|
||||||
# Make Zip
|
# Make Zip
|
||||||
if do_make_zip:
|
if do_make_zip:
|
||||||
|
@ -1249,7 +1252,9 @@ def create_ui(wrap_gradio_gpu_call):
|
||||||
gr.HTML(value="")
|
gr.HTML(value="")
|
||||||
|
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
with gr.Row():
|
||||||
|
interrupt_preprocessing = gr.Button("Interrupt")
|
||||||
|
run_preprocess = gr.Button(value="Preprocess", variant='primary')
|
||||||
|
|
||||||
process_split.change(
|
process_split.change(
|
||||||
fn=lambda show: gr_show(show),
|
fn=lambda show: gr_show(show),
|
||||||
|
@ -1422,6 +1427,12 @@ def create_ui(wrap_gradio_gpu_call):
|
||||||
outputs=[],
|
outputs=[],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
interrupt_preprocessing.click(
|
||||||
|
fn=lambda: shared.state.interrupt(),
|
||||||
|
inputs=[],
|
||||||
|
outputs=[],
|
||||||
|
)
|
||||||
|
|
||||||
def create_setting_component(key, is_quicksettings=False):
|
def create_setting_component(key, is_quicksettings=False):
|
||||||
def fun():
|
def fun():
|
||||||
return opts.data[key] if key in opts.data else opts.data_labels[key].default
|
return opts.data[key] if key in opts.data else opts.data_labels[key].default
|
||||||
|
|
|
@ -36,9 +36,9 @@ def apply_and_restart(disable_list, update_list):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
try:
|
try:
|
||||||
ext.pull()
|
ext.fetch_and_reset_hard()
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error pulling updates for {ext.name}:", file=sys.stderr)
|
print(f"Error getting updates for {ext.name}:", file=sys.stderr)
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
shared.opts.disabled_extensions = disabled
|
shared.opts.disabled_extensions = disabled
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
accelerate
|
||||||
basicsr
|
basicsr
|
||||||
diffusers
|
diffusers
|
||||||
fairscale==0.4.4
|
fairscale==0.4.4
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
transformers==4.19.2
|
transformers==4.19.2
|
||||||
diffusers==0.3.0
|
diffusers==0.3.0
|
||||||
|
accelerate==0.12.0
|
||||||
basicsr==1.4.2
|
basicsr==1.4.2
|
||||||
gfpgan==1.3.8
|
gfpgan==1.3.8
|
||||||
gradio==3.9
|
gradio==3.9
|
||||||
|
|
|
@ -157,7 +157,7 @@ class Script(scripts.Script):
|
||||||
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
|
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
|
||||||
# Override
|
# Override
|
||||||
if override_sampler:
|
if override_sampler:
|
||||||
p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
|
p.sampler_name = "Euler"
|
||||||
if override_prompt:
|
if override_prompt:
|
||||||
p.prompt = original_prompt
|
p.prompt = original_prompt
|
||||||
p.negative_prompt = original_negative_prompt
|
p.negative_prompt = original_negative_prompt
|
||||||
|
@ -191,7 +191,7 @@ class Script(scripts.Script):
|
||||||
|
|
||||||
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
|
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
|
||||||
|
|
||||||
sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
|
sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
|
||||||
|
|
||||||
sigmas = sampler.model_wrap.get_sigmas(p.steps)
|
sigmas = sampler.model_wrap.get_sigmas(p.steps)
|
||||||
|
|
||||||
|
|
|
@ -10,9 +10,9 @@ import numpy as np
|
||||||
import modules.scripts as scripts
|
import modules.scripts as scripts
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
from modules import images
|
from modules import images, sd_samplers
|
||||||
from modules.hypernetworks import hypernetwork
|
from modules.hypernetworks import hypernetwork
|
||||||
from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
|
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
import modules.sd_samplers
|
import modules.sd_samplers
|
||||||
|
@ -60,9 +60,9 @@ def apply_order(p, x, xs):
|
||||||
p.prompt = prompt_tmp + p.prompt
|
p.prompt = prompt_tmp + p.prompt
|
||||||
|
|
||||||
|
|
||||||
def build_samplers_dict(p):
|
def build_samplers_dict():
|
||||||
samplers_dict = {}
|
samplers_dict = {}
|
||||||
for i, sampler in enumerate(get_correct_sampler(p)):
|
for i, sampler in enumerate(sd_samplers.all_samplers):
|
||||||
samplers_dict[sampler.name.lower()] = i
|
samplers_dict[sampler.name.lower()] = i
|
||||||
for alias in sampler.aliases:
|
for alias in sampler.aliases:
|
||||||
samplers_dict[alias.lower()] = i
|
samplers_dict[alias.lower()] = i
|
||||||
|
@ -70,7 +70,7 @@ def build_samplers_dict(p):
|
||||||
|
|
||||||
|
|
||||||
def apply_sampler(p, x, xs):
|
def apply_sampler(p, x, xs):
|
||||||
sampler_index = build_samplers_dict(p).get(x.lower(), None)
|
sampler_index = build_samplers_dict().get(x.lower(), None)
|
||||||
if sampler_index is None:
|
if sampler_index is None:
|
||||||
raise RuntimeError(f"Unknown sampler: {x}")
|
raise RuntimeError(f"Unknown sampler: {x}")
|
||||||
|
|
||||||
|
@ -78,7 +78,7 @@ def apply_sampler(p, x, xs):
|
||||||
|
|
||||||
|
|
||||||
def confirm_samplers(p, xs):
|
def confirm_samplers(p, xs):
|
||||||
samplers_dict = build_samplers_dict(p)
|
samplers_dict = build_samplers_dict()
|
||||||
for x in xs:
|
for x in xs:
|
||||||
if x.lower() not in samplers_dict.keys():
|
if x.lower() not in samplers_dict.keys():
|
||||||
raise RuntimeError(f"Unknown sampler: {x}")
|
raise RuntimeError(f"Unknown sampler: {x}")
|
||||||
|
|
|
@ -4,5 +4,6 @@ set PYTHON=
|
||||||
set GIT=
|
set GIT=
|
||||||
set VENV_DIR=
|
set VENV_DIR=
|
||||||
set COMMANDLINE_ARGS=
|
set COMMANDLINE_ARGS=
|
||||||
|
set ACCELERATE=
|
||||||
|
|
||||||
call webui.bat
|
call webui.bat
|
||||||
|
|
|
@ -40,4 +40,7 @@ export COMMANDLINE_ARGS=""
|
||||||
#export CODEFORMER_COMMIT_HASH=""
|
#export CODEFORMER_COMMIT_HASH=""
|
||||||
#export BLIP_COMMIT_HASH=""
|
#export BLIP_COMMIT_HASH=""
|
||||||
|
|
||||||
|
# Uncomment to enable accelerated launch
|
||||||
|
#export ACCELERATE="True"
|
||||||
|
|
||||||
###########################################
|
###########################################
|
||||||
|
|
12
webui.bat
12
webui.bat
|
@ -28,15 +28,27 @@ goto :show_stdout_stderr
|
||||||
:activate_venv
|
:activate_venv
|
||||||
set PYTHON="%~dp0%VENV_DIR%\Scripts\Python.exe"
|
set PYTHON="%~dp0%VENV_DIR%\Scripts\Python.exe"
|
||||||
echo venv %PYTHON%
|
echo venv %PYTHON%
|
||||||
|
if [%ACCELERATE%] == ["True"] goto :accelerate
|
||||||
goto :launch
|
goto :launch
|
||||||
|
|
||||||
:skip_venv
|
:skip_venv
|
||||||
|
|
||||||
|
:accelerate
|
||||||
|
echo "Checking for accelerate"
|
||||||
|
set ACCELERATE="%~dp0%VENV_DIR%\Scripts\accelerate.exe"
|
||||||
|
if EXIST %ACCELERATE% goto :accelerate_launch
|
||||||
|
|
||||||
:launch
|
:launch
|
||||||
%PYTHON% launch.py %*
|
%PYTHON% launch.py %*
|
||||||
pause
|
pause
|
||||||
exit /b
|
exit /b
|
||||||
|
|
||||||
|
:accelerate_launch
|
||||||
|
echo "Accelerating"
|
||||||
|
%ACCELERATE% launch --num_cpu_threads_per_process=6 launch.py
|
||||||
|
pause
|
||||||
|
exit /b
|
||||||
|
|
||||||
:show_stdout_stderr
|
:show_stdout_stderr
|
||||||
|
|
||||||
echo.
|
echo.
|
||||||
|
|
1
webui.py
1
webui.py
|
@ -82,6 +82,7 @@ def initialize():
|
||||||
modules.sd_models.load_model()
|
modules.sd_models.load_model()
|
||||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
|
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
|
||||||
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
||||||
|
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
||||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||||
|
|
||||||
|
|
16
webui.sh
16
webui.sh
|
@ -134,7 +134,15 @@ else
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
printf "\n%s\n" "${delimiter}"
|
if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]
|
||||||
printf "Launching launch.py..."
|
then
|
||||||
printf "\n%s\n" "${delimiter}"
|
printf "\n%s\n" "${delimiter}"
|
||||||
"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
|
printf "Accelerating launch.py..."
|
||||||
|
printf "\n%s\n" "${delimiter}"
|
||||||
|
accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
|
||||||
|
else
|
||||||
|
printf "\n%s\n" "${delimiter}"
|
||||||
|
printf "Launching launch.py..."
|
||||||
|
printf "\n%s\n" "${delimiter}"
|
||||||
|
"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
|
||||||
|
fi
|
||||||
|
|
Loading…
Reference in a new issue