eliminate duplicated code

add an option to samplers for skipping next to last sigma
This commit is contained in:
AUTOMATIC 2022-12-24 09:03:45 +03:00
parent 5667ec4ca7
commit 399b229783

View file

@ -23,16 +23,16 @@ samplers_k_diffusion = [
('Euler', 'sample_euler', ['k_euler'], {}), ('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}), ('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}), ('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}), ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}), ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}), ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}), ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}), ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}), ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}), ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}), ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
@ -444,9 +444,7 @@ class KDiffusionSampler:
return extra_params_kwargs return extra_params_kwargs
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): def get_sigmas(self, p, steps):
steps, t_enc = setup_img2img_steps(p, steps)
if p.sampler_noise_scheduler_override: if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps) sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
@ -454,9 +452,16 @@ class KDiffusionSampler:
else: else:
sigmas = self.model_wrap.get_sigmas(steps) sigmas = self.model_wrap.get_sigmas(steps)
if self.funcname in ['sample_dpm_2_ancestral', 'sample_dpm_2']: if self.config is not None and self.config.options.get('discard_next_to_last_sigma', False):
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:] sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0] xi = x + noise * sigma_sched[0]
@ -488,18 +493,10 @@ class KDiffusionSampler:
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps steps = steps or p.steps
if p.sampler_noise_scheduler_override: sigmas = self.get_sigmas(p, steps)
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
x = x * sigmas[0] x = x * sigmas[0]
if self.funcname in ['sample_dpm_2_ancestral', 'sample_dpm_2']:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
extra_params_kwargs = self.initialize(p) extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters: if 'sigma_min' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()