From 3b1b1444d4d90415fb42252406437b3d2ceb2110 Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Tue, 13 Sep 2022 14:29:56 +0300 Subject: [PATCH] Complete cross attention update --- modules/sd_hijack.py | 74 +++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 73 insertions(+), 1 deletion(-) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index c058ac6e..ec7d14cb 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -11,7 +11,7 @@ from modules.shared import opts, device, cmd_opts from ldm.util import default from einops import rearrange import ldm.modules.attention - +import ldm.modules.diffusionmodules.model # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion @@ -100,6 +100,76 @@ def split_cross_attention_forward(self, x, context=None, mask=None): return self.to_out(r2) +def nonlinearity_hijack(x): + # swish + t = torch.sigmoid(x) + x *= t + del t + + return x + +def cross_attention_attnblock_forward(self, x): + h_ = x + h_ = self.norm(h_) + q1 = self.q(h_) + k1 = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q1.shape + + q2 = q1.reshape(b, c, h*w) + del q1 + + q = q2.permute(0, 2, 1) # b,hw,c + del q2 + + k = k1.reshape(b, c, h*w) # b,c,hw + del k1 + + h_ = torch.zeros_like(k, device=q.device) + + stats = torch.cuda.memory_stats(q.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + + tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() + mem_required = tensor_size * 2.5 + steps = 1 + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + + w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w2 = w1 * (int(c)**(-0.5)) + del w1 + w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) + del w2 + + # attend to values + v1 = v.reshape(b, c, h*w) + w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) + del w3 + + h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + del v1, w4 + + h2 = h_.reshape(b, c, h, w) + del h_ + + h3 = self.proj_out(h2) + del h2 + + h3 += x + + return h3 class StableDiffusionModelHijack: ids_lookup = {} @@ -175,6 +245,8 @@ class StableDiffusionModelHijack: if cmd_opts.opt_split_attention: ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward + ldm.modules.diffusionmodules.model.nonlinearity = nonlinearity_hijack + ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward elif cmd_opts.opt_split_attention_v1: ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1