Fix latent upscale highres fix #3888

This commit is contained in:
random_thoughtss 2022-10-29 10:02:56 -07:00
parent 35c45df28b
commit 44ab954fab

View file

@ -653,6 +653,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if opts.use_scale_latent_for_hires_fix: if opts.use_scale_latent_for_hires_fix:
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
image_conditioning = self.txt2img_image_conditioning(samples)
else: else:
decoded_samples = decode_first_stage(self.sd_model, samples) decoded_samples = decode_first_stage(self.sd_model, samples)
@ -674,6 +675,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
image_conditioning = self.img2img_image_conditioning(
decoded_samples,
samples,
decoded_samples.new_ones(decoded_samples.shape[0], 1, decoded_samples.shape[2], decoded_samples.shape[3])
)
shared.state.nextjob() shared.state.nextjob()
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
@ -684,11 +691,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None x = None
devices.torch_gc() devices.torch_gc()
image_conditioning = self.img2img_image_conditioning(
decoded_samples,
samples,
decoded_samples.new_ones(decoded_samples.shape[0], 1, decoded_samples.shape[2], decoded_samples.shape[3])
)
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning) samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
return samples return samples