feat: Add upscale latent, VAE, styles to X/Y plot

Adds upscale latent space for hires., VAE, and Styles as new axis options to the X/Y plot.
This commit is contained in:
MMaker 2022-12-18 10:47:02 -05:00 committed by GitHub
parent 685f9631b5
commit 492052b5df
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -10,13 +10,16 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
from modules import images, sd_samplers
from modules import images, paths, sd_samplers
from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
import modules.sd_vae
import glob
import os
import re
@ -114,6 +117,38 @@ def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
def apply_upscale_latent_space(p, x, xs):
if x.lower().strip() != '0':
opts.data["use_scale_latent_for_hires_fix"] = True
else:
opts.data["use_scale_latent_for_hires_fix"] = False
def find_vae(name: str):
if name.lower() in ['auto', 'none']:
return name
else:
vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE'))
found = glob.glob(os.path.join(vae_path, f'**/{name}.*pt'), recursive=True)
if found:
return found[0]
else:
return 'auto'
def apply_vae(p, x, xs):
if x.lower().strip() == 'none':
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file='None')
else:
found = find_vae(x)
if found:
v = modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=found)
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles = x.split(',')
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@ -167,7 +202,10 @@ axis_options = [
AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
AxisOption("Upscale latent space for hires.", str, apply_upscale_latent_space, format_value_add_label, None),
AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
AxisOption("VAE", str, apply_vae, format_value_add_label, None),
AxisOption("Styles", str, apply_styles, format_value_add_label, None),
]
@ -229,14 +267,18 @@ class SharedSettingsStackHelper(object):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.hypernetwork = opts.sd_hypernetwork
self.model = shared.sd_model
self.use_scale_latent_for_hires_fix = opts.use_scale_latent_for_hires_fix
self.vae = opts.sd_vae
def __exit__(self, exc_type, exc_value, tb):
modules.sd_models.reload_model_weights(self.model)
modules.sd_vae.reload_vae_weights(self.model, vae_file=find_vae(self.vae))
hypernetwork.load_hypernetwork(self.hypernetwork)
hypernetwork.apply_strength()
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
opts.data["use_scale_latent_for_hires_fix"] = self.use_scale_latent_for_hires_fix
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")