Use devices.autocast instead of torch.autocast
This commit is contained in:
parent
21effd629d
commit
4d5f1691dd
5 changed files with 6 additions and 11 deletions
|
@ -495,7 +495,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
|||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
with devices.autocast():
|
||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||
if tag_drop_out != 0 or shuffle_tags:
|
||||
shared.sd_model.cond_stage_model.to(devices.device)
|
||||
|
|
|
@ -148,8 +148,7 @@ class InterrogateModels:
|
|||
|
||||
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||
|
||||
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
with torch.no_grad(), devices.autocast():
|
||||
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
||||
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
|
|
|
@ -13,10 +13,6 @@ from modules.swinir_model_arch import SwinIR as net
|
|||
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
|
||||
precision_scope = (
|
||||
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
||||
)
|
||||
|
||||
|
||||
class UpscalerSwinIR(Upscaler):
|
||||
def __init__(self, dirname):
|
||||
|
@ -112,7 +108,7 @@ def upscale(
|
|||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(devices.device_swinir)
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
with torch.no_grad(), devices.autocast():
|
||||
_, _, h_old, w_old = img.size()
|
||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||
w_pad = (w_old // window_size + 1) * window_size - w_old
|
||||
|
|
|
@ -82,7 +82,7 @@ class PersonalizedBase(Dataset):
|
|||
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
|
||||
latent_sample = None
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
with devices.autocast():
|
||||
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
|
||||
|
||||
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
|
||||
|
@ -101,7 +101,7 @@ class PersonalizedBase(Dataset):
|
|||
entry.cond_text = self.create_text(filename_text)
|
||||
|
||||
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
|
||||
with torch.autocast("cuda"):
|
||||
with devices.autocast():
|
||||
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
||||
|
||||
self.dataset.append(entry)
|
||||
|
|
|
@ -316,7 +316,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
|||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
with torch.autocast("cuda"):
|
||||
with devices.autocast():
|
||||
# c = stack_conds(batch.cond).to(devices.device)
|
||||
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
|
||||
# print(mask)
|
||||
|
|
Loading…
Reference in a new issue