Merge pull request #2324 from HunterVacui/interrogate_include_ranks_in_output

Interrogate: add option to include ranks in output
This commit is contained in:
AUTOMATIC1111 2022-10-13 08:05:41 +03:00 committed by GitHub
commit 4f73e057a9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 24 additions and 14 deletions

View file

@ -19,6 +19,7 @@ def get_deepbooru_tags(pil_image):
release_process() release_process()
OPT_INCLUDE_RANKS = "include_ranks"
def create_deepbooru_opts(): def create_deepbooru_opts():
from modules import shared from modules import shared
@ -26,6 +27,7 @@ def create_deepbooru_opts():
"use_spaces": shared.opts.deepbooru_use_spaces, "use_spaces": shared.opts.deepbooru_use_spaces,
"use_escape": shared.opts.deepbooru_escape, "use_escape": shared.opts.deepbooru_escape,
"alpha_sort": shared.opts.deepbooru_sort_alpha, "alpha_sort": shared.opts.deepbooru_sort_alpha,
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
} }
@ -113,6 +115,7 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_o
alpha_sort = deepbooru_opts['alpha_sort'] alpha_sort = deepbooru_opts['alpha_sort']
use_spaces = deepbooru_opts['use_spaces'] use_spaces = deepbooru_opts['use_spaces']
use_escape = deepbooru_opts['use_escape'] use_escape = deepbooru_opts['use_escape']
include_ranks = deepbooru_opts['include_ranks']
width = model.input_shape[2] width = model.input_shape[2]
height = model.input_shape[1] height = model.input_shape[1]
@ -151,19 +154,20 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_o
if alpha_sort: if alpha_sort:
sort_ndx = 1 sort_ndx = 1
# sort by reverse by likelihood and normal for alpha # sort by reverse by likelihood and normal for alpha, and format tag text as requested
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort)) unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold: for weight, tag in unsorted_tags_in_theshold:
result_tags_out.append(tag) # note: tag_outformat will still have a colon if include_ranks is True
tag_outformat = tag.replace(':', ' ')
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat += f":{weight:.3f}"
result_tags_out.append(tag_outformat)
print('\n'.join(sorted(result_tags_print, reverse=True))) print('\n'.join(sorted(result_tags_print, reverse=True)))
tags_text = ', '.join(result_tags_out) return ', '.join(result_tags_out)
if use_spaces:
tags_text = tags_text.replace('_', ' ')
if use_escape:
tags_text = re.sub(re_special, r'\\\1', tags_text)
return tags_text.replace(':', ' ')

View file

@ -123,7 +123,7 @@ class InterrogateModels:
return caption[0] return caption[0]
def interrogate(self, pil_image): def interrogate(self, pil_image, include_ranks=False):
res = None res = None
try: try:
@ -156,7 +156,10 @@ class InterrogateModels:
for name, topn, items in self.categories: for name, topn, items in self.categories:
matches = self.rank(image_features, items, top_count=topn) matches = self.rank(image_features, items, top_count=topn)
for match, score in matches: for match, score in matches:
res += ", " + match if include_ranks:
res += ", " + match
else:
res += f", ({match}:{score})"
except Exception: except Exception:
print(f"Error interrogating", file=sys.stderr) print(f"Error interrogating", file=sys.stderr)

View file

@ -255,6 +255,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
options_templates.update(options_section(('interrogate', "Interrogate Options"), { options_templates.update(options_section(('interrogate', "Interrogate Options"), {
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
"interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),

View file

@ -17,7 +17,9 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
shared.interrogator.load() shared.interrogator.load()
if process_caption_deepbooru: if process_caption_deepbooru:
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, deepbooru.create_deepbooru_opts()) db_opts = deepbooru.create_deepbooru_opts()
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru) preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)