added token counter next to txt2img and img2img prompts
This commit is contained in:
parent
ca3e5519e8
commit
5034f7d759
5 changed files with 92 additions and 9 deletions
13
javascript/helpers.js
Normal file
13
javascript/helpers.js
Normal file
|
@ -0,0 +1,13 @@
|
|||
// helper functions
|
||||
|
||||
function debounce(func, wait_time) {
|
||||
let timeout;
|
||||
return function wrapped(...args) {
|
||||
let call_function = () => {
|
||||
clearTimeout(timeout);
|
||||
func(...args)
|
||||
}
|
||||
clearTimeout(timeout);
|
||||
timeout = setTimeout(call_function, wait_time);
|
||||
};
|
||||
}
|
|
@ -183,4 +183,51 @@ onUiUpdate(function(){
|
|||
});
|
||||
|
||||
json_elem.parentElement.style.display="none"
|
||||
|
||||
let debounce_time = 800
|
||||
if (!txt2img_textarea) {
|
||||
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea")
|
||||
txt2img_textarea?.addEventListener("input", debounce(submit_prompt_text.bind(null, "txt2img"), debounce_time))
|
||||
}
|
||||
if (!img2img_textarea) {
|
||||
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea")
|
||||
img2img_textarea?.addEventListener("input", debounce(submit_prompt_text.bind(null, "img2img"), debounce_time))
|
||||
}
|
||||
})
|
||||
|
||||
|
||||
let txt2img_textarea, img2img_textarea = undefined;
|
||||
function submit_prompt_text(source, e) {
|
||||
let prompt_text;
|
||||
if (source == "txt2img")
|
||||
prompt_text = txt2img_textarea.value;
|
||||
else if (source == "img2img")
|
||||
prompt_text = img2img_textarea.value;
|
||||
if (!prompt_text)
|
||||
return;
|
||||
params = {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Accept": "application/json",
|
||||
"Content-type": "application/json"
|
||||
},
|
||||
body: JSON.stringify({data:[prompt_text]})
|
||||
}
|
||||
fetch('http://127.0.0.1:7860/api/tokenize/', params)
|
||||
.then((response) => response.json())
|
||||
.then((data) => {
|
||||
if (data?.data.length) {
|
||||
let response_json = data.data[0]
|
||||
if (elem = gradioApp().getElementById(source+"_token_counter")) {
|
||||
if (response_json.token_count > response_json.max_length)
|
||||
elem.classList.add("red");
|
||||
else
|
||||
elem.classList.remove("red");
|
||||
elem.innerText = response_json.token_count + "/" + response_json.max_length;
|
||||
}
|
||||
}
|
||||
})
|
||||
.catch((error) => {
|
||||
console.error('Error:', error);
|
||||
});
|
||||
}
|
|
@ -180,6 +180,7 @@ class StableDiffusionModelHijack:
|
|||
dir_mtime = None
|
||||
layers = None
|
||||
circular_enabled = False
|
||||
clip = None
|
||||
|
||||
def load_textual_inversion_embeddings(self, dirname, model):
|
||||
mt = os.path.getmtime(dirname)
|
||||
|
@ -242,6 +243,7 @@ class StableDiffusionModelHijack:
|
|||
|
||||
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
|
||||
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
|
||||
self.clip = m.cond_stage_model
|
||||
|
||||
if cmd_opts.opt_split_attention_v1:
|
||||
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
|
||||
|
@ -268,6 +270,11 @@ class StableDiffusionModelHijack:
|
|||
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
|
||||
layer.padding_mode = 'circular' if enable else 'zeros'
|
||||
|
||||
def tokenize(self, text):
|
||||
max_length = self.clip.max_length - 2
|
||||
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
|
||||
return {"tokens": remade_batch_tokens[0], "token_count":token_count, "max_length":max_length}
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
||||
def __init__(self, wrapped, hijack):
|
||||
|
@ -294,14 +301,16 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||
if mult != 1.0:
|
||||
self.token_mults[ident] = mult
|
||||
|
||||
def forward(self, text):
|
||||
self.hijack.fixes = []
|
||||
self.hijack.comments = []
|
||||
remade_batch_tokens = []
|
||||
def process_text(self, text):
|
||||
id_start = self.wrapped.tokenizer.bos_token_id
|
||||
id_end = self.wrapped.tokenizer.eos_token_id
|
||||
maxlen = self.wrapped.max_length
|
||||
used_custom_terms = []
|
||||
remade_batch_tokens = []
|
||||
overflowing_words = []
|
||||
hijack_comments = []
|
||||
hijack_fixes = []
|
||||
token_count = 0
|
||||
|
||||
cache = {}
|
||||
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
|
||||
|
@ -353,9 +362,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||
ovf = remade_tokens[maxlen - 2:]
|
||||
overflowing_words = [vocab.get(int(x), "") for x in ovf]
|
||||
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
|
||||
|
||||
self.hijack.comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
|
||||
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
|
||||
token_count = len(remade_tokens)
|
||||
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
|
||||
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
|
||||
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
|
||||
|
@ -364,8 +372,14 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
|
||||
|
||||
remade_batch_tokens.append(remade_tokens)
|
||||
self.hijack.fixes.append(fixes)
|
||||
hijack_fixes.append(fixes)
|
||||
batch_multipliers.append(multipliers)
|
||||
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
|
||||
|
||||
def forward(self, text):
|
||||
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
|
||||
self.hijack.fixes = hijack_fixes
|
||||
self.hijack.comments = hijack_comments
|
||||
|
||||
if len(used_custom_terms) > 0:
|
||||
self.hijack.comments.append("Used custom terms: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
|
||||
|
|
|
@ -22,6 +22,7 @@ from modules.paths import script_path
|
|||
from modules.shared import opts, cmd_opts
|
||||
import modules.shared as shared
|
||||
from modules.sd_samplers import samplers, samplers_for_img2img
|
||||
from modules.sd_hijack import model_hijack
|
||||
import modules.ldsr_model
|
||||
import modules.scripts
|
||||
import modules.gfpgan_model
|
||||
|
@ -337,11 +338,15 @@ def create_toprow(is_img2img):
|
|||
with gr.Row():
|
||||
with gr.Column(scale=80):
|
||||
with gr.Row():
|
||||
prompt = gr.Textbox(label="Prompt", elem_id="prompt", show_label=False, placeholder="Prompt", lines=2)
|
||||
prompt = gr.Textbox(label="Prompt", elem_id=id_part+"_prompt", show_label=False, placeholder="Prompt", lines=2)
|
||||
|
||||
with gr.Column(scale=1, elem_id="roll_col"):
|
||||
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
|
||||
paste = gr.Button(value=paste_symbol, elem_id="paste")
|
||||
token_counter = gr.HTML(value="<span></span>", elem_id=f"{id_part}_token_counter")
|
||||
token_output = gr.JSON(visible=False)
|
||||
if is_img2img: # only define the api function ONCE
|
||||
token_counter.change(fn=model_hijack.tokenize, api_name="tokenize", inputs=[token_counter], outputs=[token_output])
|
||||
|
||||
with gr.Column(scale=10, elem_id="style_pos_col"):
|
||||
prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
|
||||
|
|
|
@ -389,3 +389,7 @@ input[type="range"]{
|
|||
border-radius: 8px;
|
||||
display: none;
|
||||
}
|
||||
|
||||
.red {
|
||||
color: red;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue